Assessment of Different Metal Screw Joint Parameters by Using Multiple Criteria Analysis Methods
Abstract
:1. Introduction
2. Subject of the Study
3. Theoretical Analysis of a Screw Joint
4. The Multiple Criteria Evaluation
4.1. The EDAS Method
4.2. The SAW Method
4.3. The TOPSIS Method
4.4. The COPRAS Method
4.5. Methods for Determining the Weights of the Criteria
4.5.1. The Entropy Method
- The values of criteria are normalized as
- The entropy level of each criterion is calculated as follows:
- The variation level of each criterion is calculated:
- Entropy weights are calculated by normalizing values dj:
4.5.2. Method of Criterion Impact Loss—CILOS
4.5.3. Aggregate Objective Weights (IDOCRIW Method)
5. Results and Discussion
5.1. Results of Theoretical Analysis of Screw Joints
5.2. Assessment of Results and Analysis
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Longqi, W.L.; Tjhen, S.; Yao, Z. Detection of loose fasteners in a third rail support assembly using a wavelet analysis. IES J. Part A Civ. Struct. Eng. 2014, 7, 73–82. [Google Scholar] [CrossRef]
- Hester, D.; Gonzalez, A. A wavelet-based damage detection algorithm based on bridge acceleration response to a vehicle. Mech. Syst. Signal Process. 2012, 28, 145–166. [Google Scholar] [CrossRef]
- Nguyen, K.V.; Tran, H.T. Multi-cracks detection of a beam-like structure based on the on-vehicle vibration signal and wavelet analysis. Int. J. Sound Vibr. 2010, 329, 4455–4465. [Google Scholar] [CrossRef]
- Doyle, D.; Zagria, A.; Arritt, B.; Cakan, H. Damage detection in bolted space structures. J. Intell. Mater. Syst. Struct. 2010, 21, 251–264. [Google Scholar] [CrossRef]
- Pal, J.; Banerjee, S.; Chikermane, S.; Banerji, P. Estimation of fixity factors of bolted joints in a steel frame structure using a vibration-based health monitoring technique. Int. J. Steel Struct. 2017, 17, 593–607. [Google Scholar] [CrossRef]
- Jiang, X.; Zhu, Y.; Hong, J.; Chen, X.; Zhang, Y. Investigation into the loosening mechanism of bolt in curvic coupling subjected to transverse loading. Eng. Fail. Anal. 2013, 32, 360–373. [Google Scholar] [CrossRef]
- Wentzel, H.; Huang, X.Y. Experimental characterization of the bending fatigue strength of threaded fasteners. Int. J. Fatigue 2015, 72, 102–108. [Google Scholar] [CrossRef]
- Thanwerdas, R.; Rodriguez, E.; Daidie, A. Stiffness and slip laws for threaded fasteners subjected to a transversal load. In Advances on Mechanics, Design Engineering and Manufacturing; Springer: Cham, Switzerland, 2017; pp. 517–529. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Sen, A.; Das, S. An investigation on the anti-loosening characteristics of threaded fasteners under vibratory conditions. Mech. Mach. Theory 2010, 45, 1215–1225. [Google Scholar] [CrossRef]
- Milanese, A.; Marzocca, P.; Nichols, J.M.; Seaver, M.; Trickey, S.T. Modeling and detection of joint loosening using output-only broad-band vibration data. Struct. Health Monit. 2008, 7, 309–328. [Google Scholar] [CrossRef]
- Bograd, S.; Reuss, P.; Schmidt, A.; Gaul, L.; Mayer, M. Modeling the dynamics of mechanical joints. Mech. Syst. Signal Process. 2011, 25, 2801–2826. [Google Scholar] [CrossRef]
- Esmaeel, R.A.; Briand, J.; Taheri, F. Computational simulation and experimental verification of a new vibration-based structural health monitoring approach using piezoelectric sensors. Struct. Health Monit. 2012, 11, 237–250. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, C.; Cai, L.; Shi, W.; Hong, Y. Stiffness and damping model of bolted joints with uneven surface contact pressure distribution. Strojniski Vestnik J. Mech. Eng. 2016, 62, 665–677. [Google Scholar] [CrossRef]
- Dinger, G.; Friedrich, C. Avoiding self-loosening failure of bolted joints with numerical assessment of local contact state. Eng. Fail. Anal. 2011, 18, 2188–2200. [Google Scholar] [CrossRef]
- Zapico-Valle, J.L.; Garcia-Dieguez, M.; Gonzalez-Martinez, P.; Worden, K. Experimental validation of a new statistical process control feature for damage detection. Mech. Syst. Signal Process. 2011, 25, 2513–2525. [Google Scholar] [CrossRef]
- An, Y.K.; Sohn, H. Integrated impedance and guided wave based damage detection. Mech. Syst. Signal Process. 2012, 28, 50–62. [Google Scholar] [CrossRef]
- Zhu, W.D.; He, K. Detection of damage in space frame structures with l-shaped beams and bolted joints using changes in natural frequencies. J. Vibr. Acoust. Trans. ASME 2013, 135, 263–289. [Google Scholar] [CrossRef]
- Huda, F.; Kajiwara, I.; Hosoya, N.; Kawamura, S. Bolt loosening analysis and diagnosis by non-contact laser excitation vibration tests. Mech. Syst. Signal Process. 2013, 40, 589–604. [Google Scholar] [CrossRef]
- Kajiwara, I.; Hosoya, N. Vibration testing based on impulse response excited by laser ablation. J. Sound Vibr. 2011, 330, 5045–5057. [Google Scholar] [CrossRef]
- Hosoya, N.; Kajiwara, I.; Hosokawa, T. Vibration testing based on impulse response excited by pulsed-laser ablation: Measurement of frequency response function with detection-free input. J. Sound Vibr. 2012, 331, 1355–1365. [Google Scholar] [CrossRef]
- Izumi, S.; Yokoyama, T.; Kimura, M.; Sakai, S. Loosening-resistance evaluation of double-nut tightening method and spring washer by three-dimensional finite element analysis. Eng. Fail. Anal. 2009, 16, 1510–1519. [Google Scholar] [CrossRef]
- Yokoyama, T.; Oishi, K.; Kimura, M.; Izumi, S.; Sakai, S. Evaluation of loosening resistance performance of conical spring washer by three-dimensional finite element analysis. J. Solid Mech. Mater. Eng. 2008, 2, 38–46. [Google Scholar] [CrossRef]
- Ramadan, A.E.; Taheri, F. Application of a simple and cost-effective method for detection of bolt self-loosening in single lap joints. Nondestruct. Test. Eval. 2013, 28, 208–225. [Google Scholar] [CrossRef]
- Argatov, I.; Sevostianov, I. Health monitoring of bolted joints via electrical conductivity measurements. Int. J. Eng. Sci. 2010, 48, 874–887. [Google Scholar] [CrossRef]
- Croccolo, D.; DeAgostinis, M.; Vincenzi, N. Influence of tightening procedures and lubrication conditions on titanium screw joints for light weight applications. Tribol. Int. 2012, 55, 68–76. [Google Scholar] [CrossRef]
- Yokoyama, T.; Olsson, M.; Izumi, S.; Sakai, S. Investigation into the self-loosening behavior of bolted joint subjected to rotational loading. Eng. Fail. Anal. 2012, 23, 35–43. [Google Scholar] [CrossRef]
- Lim, H.J.; Kim, M.K.; Sohn, H.; Park, C.Y. Impedance based damage detection under varying temperature and loading conditions. NDT E Int. 2011, 44, 740–750. [Google Scholar] [CrossRef]
- Nah, H.S.; Choi, S.M. Estimation on clamping load of high strength bolts considering various environment conditions. Steel Compos. Struct. 2017, 24, 399–408. [Google Scholar] [CrossRef]
- Croccolo, D.; DeAgostinis, M.; Vincenzi, N. Failure analysis of bolted joints effect of friction coefficients in torque–preloading relationship. Eng. Fail. Anal. 2010, 18, 364–373. [Google Scholar] [CrossRef]
- Sánchez Egea, A.J.; Deferrari, N.; Abate, G.; Martínez Krahmer, D.; de Lacalle, L.N.L. Short-cut method to assess a gross available energy in a medium-load screw friction press. Metals 2018, 8, 173. [Google Scholar] [CrossRef]
- Landeta, J.F.; Valdivielso, A.F.; de Lacalle, L.N.L.; Girot, F.; Pérez, J.M.P. Wear of form taps in threading of steel cold forged parts. J. Manuf. Sci. Eng. Trans. ASME 2015, 137, 031002. [Google Scholar] [CrossRef]
- Elosegui, I.; Alonso, U.; de Lacalle, L.N.L. PVD coatings for thread tapping of austempered ductile iron. Int. J. Adv. Manuf. Technol. 2017, 91, 2663–2672. [Google Scholar] [CrossRef]
- Morozov, A.V. Experimental estimate of tribological characteristics of epilam-coated materials that operate in threaded joints under dry friction. J. Frict. Wear 2014, 35, 170–176. [Google Scholar] [CrossRef]
- Solis, M.; Algaba, M.; Galvin, P. Continuous wavelet analysis of mode shapes differences for damage detection. Mech. Syst. Signal Process. 2013, 40, 645–666. [Google Scholar] [CrossRef]
- Čereška, A.; Podvezko, V.; Zavadskas, E.K. Operating characteristics analysis of rotor systems using MCDM methods. Stud. Inform. Control 2016, 25, 59–68. [Google Scholar] [CrossRef]
- Čereška, A.; Zavadskas, E.K.; Cavallaro, F.; Podvezko, V.; Tetsman, I.; Grinbergienė, I. Sustainable assessment of aerosol pollution decrease applying multiple attribute decision-making methods. Sustainability 2016, 8, 586. [Google Scholar] [CrossRef]
- Čereška, A.; Bučinskas, V.; Zavadskas, E.K.; Podvezko, V.; Šutinys, E. Analysis of steelwire rope diagnostic data applying multi-criteria methods. Appl. Sci. 2018, 8, 260. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Antucheviciene, J.; Turskis, Z.; Adeli, H. Hybrid multiple-criteria decision-making methods: A review of applications in engineering. Sci. Iran. 2016, 23, 1–20. [Google Scholar]
- Zavadskas, E.K.; Antucheviciene, J.; Hajiagha, S.H.R.; Hashemi, S.S. The interval-valued intuitionistic Fuzzy MULTIMOORA method for group decision making in engineering. Math. Probl. Eng. 2015, 2015, 1–13. [Google Scholar] [CrossRef]
- NakhaeI, J.; Bitarafan, M.; Arefi, S.L.; Kaplinski, O. Model for rapid assessment of vulnerability of office buildings to blast using SWARA and SMART methods (a case study of Swiss re tower). J. Civ. Eng. Manag. 2016, 22, 831–843. [Google Scholar] [CrossRef]
- Rashidi, M.; Ghodrat, M.; Samali, B.; Kendall, B.; Zhang, C.W. Remedial modelling of steel bridges through application of analytical hierarchy process (AHP). Appl. Sci. 2017, 7, 168. [Google Scholar] [CrossRef]
- Souzangarzadeh, H.; Rezvani, M.L.; Jahan, A. Selection of optimum design for conical segmented aluminum tubes as energy absorbers: Application of MULTIMOORA method. Appl. Math. Model. 2017, 51, 546–560. [Google Scholar] [CrossRef]
- Terracciano, G.; Di Lorenzo, G.; Formisano, A.; Landolfo, R. Cold-formed thin-walled steel structures as vertical addition and energetic retrofitting systems of existing masonry buildings. Eur. J. Environ. Civ. Eng. 2015, 19, 850–866. [Google Scholar] [CrossRef]
- Bučmys, A.; Daniūnas, A. Rectangular gusset plate behaviour in cold-formed I-type steel connections. Arch. Civ. Eng. 2017, 63, 3–21. [Google Scholar] [CrossRef]
- Shahriar, A.; Modirzadeh, M.; Sadiq, R.; Tesfamariam, S. Seismic induced damageability evaluation of steel buildings: A Fuzzy-TOPSIS method. Earthq. Struct. 2012, 3, 695–717. [Google Scholar] [CrossRef]
- Sanchez-Lozano, J.M.; Meseguer-Valdenebro, J.L.; Portoles, A. Assessment of arc welding process through the combination of TOPSIS-AHP methods with fuzzy logic. Trans. Indian Inst. Met. 2017, 70, 935–946. [Google Scholar] [CrossRef]
- Madic, M.; Antucheviciene, J.; Radovanovic, M.; Petkovic, D. Determination of laser cutting process conditions using the preference selection index method. Opt. Laser Technol. 2017, 89, 214–220. [Google Scholar] [CrossRef]
- Yin, H.F.; Xiao, Y.Y.; Wen, G.L.; Qing, Q.X.; Deng, Y.F. Multi objective optimization for foam-filled multi-cell thin-walled structures under lateral impact. Thin-Walled Struct. 2015, 94, 1–12. [Google Scholar] [CrossRef]
- Fang, J.G.; Gao, Y.K.; Sun, G.Y.; Qiu, N.; Li, Q. On design of multi-cell tubes under axial and oblique impact loads. Thin-Walled Struct. 2015, 95, 115–126. [Google Scholar] [CrossRef]
- Rezvani, M.J.; Jahan, A. Effect of initiator, design, and material on crashworthiness performance of thin-walled cylindrical tubes: A primary multi-criteria analysis in lightweight design. Thin-Walled Struct. 2015, 96, 169–182. [Google Scholar] [CrossRef]
- Pirmohammad, S.; Marzdashti, S.E. Crushing behavior of new designed multi-cell members subjected to axial and oblique quasi-static loads. Thin-Walled Struct. 2016, 108, 291–304. [Google Scholar] [CrossRef]
- Zheng, G.; Wu, S.Z.; Sun, G.Y.; Li, G.Y.; Li, Q. Crushing analysis of foam-filled single and bitubal polygonal thin-walled tubes. Int. J. Mech. Sci. 2014, 87, 226–240. [Google Scholar] [CrossRef]
- Qiu, N.; Gao, Y.K.; Fang, J.G.; Feng, Z.X.; Sun, G.Y.; Li, Q. Crashworthiness analysis and design of multi-cell hexagonal columns under multiple loading cases. Finite Elem. Anal. Des. 2015, 104, 89–101. [Google Scholar] [CrossRef]
- Esmaeili-Marzdashti, S.; Pirmohammad, S. Crashworthiness analysis of s-shaped structures under axial impact loading. Lat. Am. J. Solids Struct. 2017, 14, 743–764. [Google Scholar] [CrossRef]
- Bitarafan, M.; Hashemkhani Zolfani, S.; Arefi, S.L.; Zavadskas, E.K. Evaluating the construction methods of cold-formed steel structures in reconstructing the areas damaged in natural crises, using the methods AHP and COPRAS-G. Arch. Civ. Mech. Eng. 2012, 12, 360–367. [Google Scholar] [CrossRef]
- Maity, S.R.; Chatterjee, P.; Chakraborty, S. Cutting tool material selection using grey complex proportional assessment method. Mater. Des. 2012, 36, 372–378. [Google Scholar] [CrossRef]
- Chatterjee, P.; Athawale, V.M.; Chakraborty, S. Materials selection using complex proportional assessment and evaluation of mixed data methods. Mater. Des. 2011, 32, 851–860. [Google Scholar] [CrossRef]
- Chatterjee, P.; Chakraborty, S. Material selection using preferential ranking methods. Mater. Des. 2012, 35, 384–393. [Google Scholar] [CrossRef]
- Mousavi-Nasab, S.H.; Sotoudeh-Anvari, A. A comprehensive MCDM-based approach using TOPSIS, COPRAS and DEA as an auxiliary tool for material selection problems. Mater. Des. 2017, 121, 237–253. [Google Scholar] [CrossRef]
- Yazdani, M.; Jahan, A.; Zavadskas, E.K. Analysis in material selection: Influence of normalization tools on COPRAS-G. Econ. Comput. Econ. Cybern. Stud. Res. 2017, 51, 59–74. [Google Scholar]
- Nguyen, H.T.; Dawal, S.Z.M.; Nukman, Y.; Aoyama, H.; Case, K. An integrated approach of fuzzy linguistic preference based AHP and Fuzzy COPRAS for machine tool evaluation. PLoS ONE 2015, 10, 1–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dupen, B. Applied Strength of Materials for Engineering Technology; Purdue University: West Lafayette, IN, USA, 2012. [Google Scholar]
- Keshavarz Ghorabaee, M.; Zavadskas, E.K.; Olfat, L.; Turskis, Z. Multi-criteria inventory classification using a new method of evaluation based on distance from average solution (EDAS). Informatica 2015, 26, 435–451. [Google Scholar] [CrossRef]
- Hwang, C.L.; Yoon, K. Multiple Attribute Decision Making Methods and Applications: A State of the Art Survey; Springer: Berlin, Germany, 1981. [Google Scholar]
- Zavadskas, E.K.; Kaklauskas, A.; Šarka, V. The new method of multi-criteria complex proportional assessment of projects. Technol. Econ. Dev. Econ. 1994, 1, 131–139. [Google Scholar]
- Zavadskas, E.K.; Podvezko, V. Integrated determination of objective criteria weights in MCDM. Int. J. Inf. Technol. Decis. Mak. 2016, 15, 267–283. [Google Scholar] [CrossRef]
- Podviezko, A.; Podvezko, V. Influence of data transformation on multicriteria evaluation result. Procedia Eng. 2015, 122, 151–157. [Google Scholar] [CrossRef]
- Jakimavicius, M.; Burinskiene, M.; Gusaroviene, M.; Podviezko, A. Assessing multiple criteria for rapid bus routes in the public transport system in Vilnius. Public Transp. 2016, 8, 365–385. [Google Scholar] [CrossRef]
- Palevicius, V.; Sivilevicius, H.; Podviezko, A.; Griskeviciute-Geciene, A.; Karpavicius, T. Evaluation of park and ride facilities at communication corridors in a middle-sized city. Econ. Comput. Econ. Cybern. Stud. Res. 2017, 51, 231–248. [Google Scholar]
- Palevicius, V.; Grigonis, V.; Podviezko, A.; Barauskaite, G. Developmental analysis of park-and-ride facilities in Vilnius. PROMET-Traffic Transp. 2016, 28, 165–178. [Google Scholar] [CrossRef]
- Podviezko, A.; Podvezko, V. Absolute and relative evaluation of socio-economic objects based on multiple criteria decision making methods. Eng. Econ. 2014, 25, 522–529. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423, 623–656. [Google Scholar] [CrossRef]
- Mirkin, B.G. Group Choice; Winston & Sons: Washington, DC, USA, 1979. [Google Scholar]
- Ma, J.Z.; Fan, P.; Huang, L.H. A subjective and objective integrated approach to determine attribute weights. Eur. J. Oper. Res. 1999, 112, 397–404. [Google Scholar] [CrossRef]
- Parfenova, L.; Pugachev, A.; Podviezko, A. Comparative analysis of tax capacity in regions of Russia. Technol. Econ. Dev. Econ. 2016, 22, 905–925. [Google Scholar] [CrossRef]
- Podviezko, A. Augmenting multicriteria decision aid methods by graphical and analytical reporting tools. In International Conference on Business Informatics Research; Niedrite, L., Strazdina, R., Wangler, B., Eds.; Lecture Notes in Business Information Processing; Springer: Berlin/Heidelberg, Germany, 2012; Volume 106, pp. 236–251. [Google Scholar] [CrossRef]
Row No. | Material Elastic Coefficient E, MPa | Screw Diameter, d, mm | Friction Coefficient between Screw and Element, f1 | Friction Coefficient between Elements, f2 | Clamping Force, P, N | Torque, T, N·m | Average Price, € |
---|---|---|---|---|---|---|---|
1 | Al, 7 × 104 | 8–16 | 0.4 | 0.7 | 4629–19,123 | 7.83–63.33 | 1.40–5.43 |
2 | Stl, 2.1 × 105 | 0.16 | 0.16 | 0.25–0.97 | |||
3 | Brz, 105 | 0.13 | 0.19 | 4.82–18.72 | |||
4 | CI, 2.1 × 105 | 0.3 | 0.5 | 0.27–1.07 | |||
5 | Cu, 1.2 × 105 | 0.45 | 0.8 | 6.25–24.25 | |||
6 | Br, 1.2 × 105 | 0.35 | 0.82 | 4.05–14.42 |
Trial | Young’s Modulus E, MPa | Screw Diameter, d, mm | Friction Coefficient between Screw and Elements, f1 | Friction Coefficient between Elements, f2 | Clamping Force P, N | Torque, T, N·m | Limit Shear Force Fs, N | Limit Abruption Force Fat, N | Minimal Thickness of Connected Elements, h, mm | Limit Relative Bending Stress, Nm/mm | Average Price, € |
---|---|---|---|---|---|---|---|---|---|---|---|
ω1 | ω2 | ω3 | ω4 | ω5 | ω6 | ω7 | |||||
1 | Al, 7 × 104 | 8 | 0.4 | 0.7 | 4629 | 7834 | 3055 | 6827 | 9.93 | 1.851 | 1.40 |
2 | Stl, 2.1 × 105 | 0.16 | 0.16 | 889 | 5904 | 0.398 | 0.329 | 0.25 | |||
3 | Brz, 105 | 0.13 | 0.19 | 807 | 6341 | 1.64 | 0.329 | 4.82 | |||
4 | CI, 2.1 × 105 | 0.3 | 0.5 | 2221 | 5904 | 4.11 | 1.027 | 0.27 | |||
5 | Cu, 1.2 × 105 | 0.45 | 0.8 | 3471 | 7035 | 4.38 | 1.643 | 6.25 | |||
6 | Br, 1.2 × 105 | 0.35 | 0.82 | 3523 | 4903 | 1.99 | 1.687 | 4.05 | |||
1 | Al, 7 × 104 | 10 | 0.4 | 0.7 | 7423 | 15,663 | 4899 | 10,492 | 12.73 | 2.968 | 2.46 |
2 | Stl, 2.1 × 105 | 0.16 | 0.16 | 1425 | 9427 | 0.51 | 0.527 | 0.44 | |||
3 | Brz, 105 | 0.13 | 0.19 | 1291 | 9427 | 2.10 | 0.527 | 8.49 | |||
4 | CI, 2.1 × 105 | 0.3 | 0.5 | 3563 | 9427 | 5.27 | 1.647 | 0.48 | |||
5 | Cu, 1.2 × 105 | 0.45 | 0.8 | 5567 | 11,283 | 5.62 | 2.635 | 11.0 | |||
6 | Br, 1.2 × 105 | 0.35 | 0.82 | 5611 | 7861 | 2.55 | 2.710 | 7.13 | |||
1 | Al, 7 × 104 | 12 | 0.4 | 0.7 | 10,008 | 25,220 | 6605 | 14,752 | 14.30 | 3.113 | 3.75 |
2 | Stl, 2.1 × 105 | 0.16 | 0.16 | 1921 | 12,710 | 0.576 | 0.71 | 0.67 | |||
3 | Brz, 105 | 0.13 | 0.19 | 1741 | 12,710 | 2.36 | 0.710 | 12.93 | |||
4 | CI, 2.1 × 105 | 0.3 | 0.5 | 4804 | 12,710 | 5.92 | 2.22 | 0.73 | |||
5 | Cu, 1.2 × 105 | 0.45 | 0.8 | 7506 | 15,212 | 6.31 | 3.552 | 16.75 | |||
6 | Br, 1.2 × 105 | 0.35 | 0.82 | 7026 | 10,060 | 2.87 | 3.643 | 10.85 | |||
1 | Al, 7 × 104 | 14 | 0.4 | 0.7 | 14,362 | 42,124 | 9479 | 21,169 | 17.60 | 4.446 | 4.98 |
2 | Stl, 2.1 × 105 | 0.16 | 0.16 | 2757 | 18,240 | 0.709 | 1.019 | 0.89 | |||
3 | Brz, 105 | 0.13 | 0.19 | 2498 | 18,239 | 2.91 | 1.0197 | 17.18 | |||
4 | CI, 2.1 × 105 | 0.3 | 0.5 | 6862 | 18,240 | 7.29 | 3.188 | 0.98 | |||
5 | Cu, 1.2 × 105 | 0.45 | 0.8 | 10,771 | 21,830 | 7.77 | 5.098 | 22.25 | |||
6 | Br, 1.2 × 105 | 0.35 | 0.82 | 10,082 | 15,209 | 3.53 | 5.228 | 14.42 | |||
1 | Al, 7 × 104 | 16 | 0.4 | 0.7 | 19,123 | 63,335 | 12,621 | 28,187 | 20.51 | 5.947 | 5.43 |
2 | Stl, 2.1 × 105 | 0.16 | 0.16 | 3672 | 24,286 | 0.826 | 1.358 | 0.97 | |||
3 | Brz, 105 | 0.13 | 0.19 | 3327 | 26,007 | 3.39 | 1.357 | 18.72 | |||
4 | CI, 2.1 × 105 | 0.3 | 0.5 | 9179 | 24,286 | 8.49 | 4.245 | 1.07 | |||
5 | Cu, 1.2 × 105 | 0.45 | 0.8 | 13,842 | 39,641 | 9.05 | 6.788 | 24.25 | |||
6 | Br, 1.2 × 105 | 0.35 | 0.82 | 14,024 | 20,251 | 4.11 | 6.960 | 14.42 |
Screw Diameter, d, mm | Weights | ||||||
---|---|---|---|---|---|---|---|
ω1 | ω2 | ω3 | ω4 | ω5 | ω6 | ω7 | |
8 | 0.067 | 0.119 | 0.105 | 0.005 | 0.256 | 0.139 | 0.310 |
10 | 0.067 | 0.119 | 0.105 | 0.005 | 0.256 | 0.139 | 0.309 |
12 | 0.068 | 0.120 | 0.103 | 0.007 | 0.259 | 0.130 | 0.314 |
14 | 0.068 | 0.120 | 0.103 | 0.005 | 0.259 | 0.130 | 0.314 |
16 | 0.067 | 0.119 | 0.102 | 0.019 | 0.256 | 0.128 | 0.310 |
Screw Diameter, d, mm | Weights | ||||||
---|---|---|---|---|---|---|---|
ω1 | ω2 | ω3 | ω4 | ω5 | ω6 | ω7 | |
8 | 0.116 | 0.158 | 0.172 | 0.224 | 0.107 | 0.123 | 0.101 |
10 | 0.117 | 0.157 | 0.174 | 0.214 | 0.108 | 0.127 | 0.102 |
12 | 0.118 | 0.170 | 1.127 | 0.204 | 0.110 | 0.170 | 0.100 |
14 | 0.117 | 0.166 | 0.125 | 0.217 | 0.109 | 0.166 | 0.099 |
16 | 0.120 | 0.172 | 0.190 | 0.105 | 0.127 | 0.172 | 0.113 |
Screw Diameter, d, mm | Weights | ||||||
---|---|---|---|---|---|---|---|
ω1 | ω2 | ω3 | ω4 | ω5 | ω6 | ω7 | |
8 | 0.064 | 0.154 | 0.149 | 0.010 | 0.225 | 0.140 | 0.258 |
10 | 0.064 | 0.152 | 0.149 | 0.008 | 0.225 | 0.144 | 0.258 |
12 | 0.064 | 0.163 | 0.104 | 0.011 | 0.229 | 0.176 | 0.252 |
14 | 0.065 | 0.163 | 0.105 | 0.010 | 0.230 | 0.175 | 0.253 |
16 | 0.058 | 0.146 | 0.139 | 0.014 | 0.233 | 0.158 | 0.252 |
Ranks | (Al), E, 7 × 104 | (Stl), E, 2.1 × 105 | (Brz), E, 105 | (CI), E, 2.1 × 105 | (Cu), E, 1.2 × 105 | (Br), E, 1.2 × 105 |
---|---|---|---|---|---|---|
EDAS | 0.524 | 0.678 | 0.145 | 0.717 | 0.444 | 0.786 |
4 | 3 | 6 | 2 | 5 | 1 | |
TOPSIS | 0.4862 | 0.6805 | 0.4778 | 0.6977 | 0.4490 | 0.6357 |
4 | 2 | 5 | 1 | 6 | 3 | |
COPRAS | 0.1416 | 0.3588 | 0.0594 | 0.1375 | 0.1458 | 0.1570 |
4 | 1 | 6 | 5 | 3 | 2 | |
SAW | 0.1463 | 0.2802 | 0.0695 | 0.2001 | 0.1442 | 0.1597 |
4 | 1 | 6 | 2 | 5 | 3 | |
Sum rank | 16 | 7 | 23 | 10 | 19 | 9 |
Total rank | 4 | 1 | 6 | 3 | 5 | 2 |
Screw Diameter, d, mm | (Al), E, 7 × 104 | (Stl), E, 2.1 × 105 | (Brz), E, 105 | (CI), E, 2.1 × 105 | (Cu), E, 1.2 × 105 | (Br), E, 1.2 × 105 |
---|---|---|---|---|---|---|
10 | 4 | 1 | 6 | 3 | 5 | 2 |
12 | 5 | 1 | 6 | 2–3 | 4 | 2–3 |
14 | 5 | 1 | 6 | 2–3 | 4 | 2–3 |
16 | 5 | 1 | 6 | 2–3 | 4 | 2–3 |
Screw Diameter, d, mm | Weights | |||||
---|---|---|---|---|---|---|
ω1 | ω2 | ω3 | ω4 | ω5 | ω6 | |
8 | 0.072 | 0.212 | 0.207 | 0.009 | 0.296 | 0.204 |
10 | 0.072 | 0.208 | 0.207 | 0.007 | 0.296 | 0.210 |
12 | 0.072 | 0.233 | 0.135 | 0.009 | 0299 | 0.251 |
14 | 0.072 | 0.233 | 0.136 | 0.008 | 0.301 | 0.251 |
16 | 0.061 | 0.205 | 0.196 | 0.012 | 0.305 | 0.221 |
Ranks | (Al), E, 7 × 104 | (Stl), E, 2.1 × 105 | (Brz), E, 105 | (CI), E, 2.1 × 105 | (Cu), E, 1.2 × 105 | (Br), E, 1.2 × 105 |
---|---|---|---|---|---|---|
EDAS | 0.303 | 0.316 | 0.210 | 0.428 | 0.807 | 0.998 |
5 | 4 | 6 | 3 | 2 | 1 | |
TOPSIS | 0.3815 | 0.5918 | 0.5543 | 0.5727 | 0.6752 | 0.8577 |
6 | 4 | 5 | 3 | 2 | 1 | |
COPRAS | 0.1719 | 0.2187 | 0.0842 | 0.1275 | 0.1897 | 0.2079 |
4 | 1 | 6 | 5 | 3 | 2 | |
SAW | 0.1719 | 0.2187 | 0.0842 | 0.1275 | 0.1897 | 0.2079 |
4 | 1 | 6 | 5 | 3 | 2 | |
Sum rank | 19 | 10 | 23 | 16 | 10 | 6 |
Total rank | 5 | 3 | 6 | 4 | 2 | 1 |
Screw Diameter, d, mm | (Al), E, 7 × 104 | (Stl), E, 2.1 × 105 | (Brz), E, 105 | (CI), E, 2.1 × 105 | (Cu), E, 1.2 × 105 | (Br), E, 1.2 × 105 |
---|---|---|---|---|---|---|
10 | 5 | 3 | 6 | 4 | 2 | 1 |
12 | 5 | 3 | 6 | 4 | 2 | 1 |
14 | 5 | 3 | 6 | 4 | 2 | 1 |
16 | 4–5 | 3 | 6 | 4–5 | 2 | 1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Čereška, A.; Podviezko, A.; Zavadskas, E.K. Assessment of Different Metal Screw Joint Parameters by Using Multiple Criteria Analysis Methods. Metals 2018, 8, 318. https://doi.org/10.3390/met8050318
Čereška A, Podviezko A, Zavadskas EK. Assessment of Different Metal Screw Joint Parameters by Using Multiple Criteria Analysis Methods. Metals. 2018; 8(5):318. https://doi.org/10.3390/met8050318
Chicago/Turabian StyleČereška, Audrius, Askoldas Podviezko, and Edmundas Kazimieras Zavadskas. 2018. "Assessment of Different Metal Screw Joint Parameters by Using Multiple Criteria Analysis Methods" Metals 8, no. 5: 318. https://doi.org/10.3390/met8050318
APA StyleČereška, A., Podviezko, A., & Zavadskas, E. K. (2018). Assessment of Different Metal Screw Joint Parameters by Using Multiple Criteria Analysis Methods. Metals, 8(5), 318. https://doi.org/10.3390/met8050318