The Effect of Nd on Mechanical Properties and Corrosion Performance of Biodegradable Mg-5%Zn Alloy
Abstract
:1. Introduction
2. Experimental
3. Results
4. Discussion
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Gu, X.N.; Zheng, Y.F. A review on magnesium alloys as biodegradable materials. Front. Mater. Sci. China 2010, 4, 111–115. [Google Scholar] [CrossRef]
- Staiger, M.P.; Pietak, A.M.; Huadmai, J.; Dias, G. Magnesium and its alloys as orthopedic biomaterials—A review. Biomaterials 2006, 27, 1728–1734. [Google Scholar] [CrossRef] [PubMed]
- Aghion, E.; Levy, G. The effect of Ca on the in vitro corrosion performance of biodegradable Mg-Nd-Y-Zr alloy. J. Mater. Sci. 2010, 45, 3096–3101. [Google Scholar] [CrossRef]
- Aghion, E.; Levy, G.; Ovadia, S. In vivo behavior of biodegradable Mg-Nd-Y-Zr-Ca alloy. J. Mater. Sci. Mater. Med. 2012, 23, 805–812. [Google Scholar] [CrossRef] [PubMed]
- Arnon, A.; Aghion, E. Stress Corrosion Cracking of Nano/Sub-micron E906 Magnesium Alloy. Adv. Eng. Mater. 2008, 8, 742–745. [Google Scholar] [CrossRef]
- Winzer, N.; Aterns, A.; Song, G.; Ghali, E.; Dietzel, W.; Kainer, K.U.; Hort, N.; Blawert, C. A critical review of stress corrosion cracking (SCC) of magnesium alloys. Adv. Eng. Mater. 2005, 7, 659–693. [Google Scholar] [CrossRef]
- Aterns, A.; Winzer, N.; Dietzel, W. Stress corrosion cracking of magnesium alloys. Adv. Eng. Mater. 2011, 13, 11–18. [Google Scholar] [CrossRef]
- Bursle, A.J.; Pugh, E.N. On the Mechanisms of Trans-Granular Stress Corrosion Cracking, Mechanisms of Environments Sensitive Cracking of Materials; Swann, P.R., Ford, F.P., Westwood, A.R.C., Eds.; Materials Society: London, UK, 1977; pp. 471–481. [Google Scholar]
- Xin, Y.; Liu, C.; Zhang, X.; Tang, G.; Tian, X.; Chu, P.K. Corrosion behavior of biomedical AZ91 magnesium alloy in simulated body fluids. J. Mater. Res. 2007, 22, 2004–2011. [Google Scholar] [CrossRef]
- Dong-song, Y.; Er-lin, Z.; Song-yan, Z. Effect of Zn on mechanical property and corrosion property of extruded Mg-Zn-Mn alloy. Trans. Nonferr. Met. Soc. China 2008, 18, 763–768. [Google Scholar]
- Aghion, E.; Yered, T.; Perez, Y.; Gueta, Y. The prospects of carrying and releasing drugs via biodegradable magnesium foam. Adv. Eng. Mater. 2010, 12, B374–B379. [Google Scholar] [CrossRef]
- Bronfin, B.; Aghion, E.; Von Buch, F.; Schumann, S.; Katsir, M. Die casting Magnesium alloys for elevated temperature applications. In Proceedings of the TMS Annual Meeting Magnesium Technology, New Orleans, LA, USA, 11–15 February 2001; pp. 127–130. [Google Scholar]
- Aghion, E.; Gueta, Y.; Moscovitch, N.; Bronfin, B. Effect of yttrium additions on the properties of grain-refined Mg-3%Nd alloy. J. Mater. Sci. 2008, 43, 4870–4875. [Google Scholar] [CrossRef]
- Guillory, R.; Bowen, P.; Hopkins, S.; Shearier, E.; Earley, E.; Gillette, A.; Aghion, E.; Bocks, M.; Drelich, J.; Goldman, J. Corrosion characteristics dictate the long-term inflammatory profile of degradable zinc arterial implants. ACS Biomater. Sci. Eng. 2016, 2, 2355–2364. [Google Scholar] [CrossRef]
- Shuhua, C.; Ting, L.; Nianfeng, L.; Fangfang, F. Effects of Zn on Microstructure, Mechanical Properties and Corrosion Behavior of Mg-Zn Alloys. Mater. Sci. Eng. C 2012, 32, 2570–2577. [Google Scholar]
- Koc, E.; Kannan, M.B.; Unal, M.; Candan, E. Influence of Zinc on the microstructure, mechanical properties and in-vitro corrosion behavior of magnesium-zinc binary alloys. J. Alloys Compd. 2015, 648, 291–296. [Google Scholar] [CrossRef]
- Mezbahul-Islam, M.; Omar-Mostafa, A.; Medraj, M. Essential magnesium alloys binary phase diagrams and their thermochemical data. J. Mater. 2014, 2014, 704283. [Google Scholar] [CrossRef]
- Yingwei, S.; En-Hou, H.; Dayong, S.; Chang, D.; Bong, S.Y. The Effect of Zn Concentration on the Corrosion Behavior of Mg-xZn Alloys. Corros. Sci. 2012, 65, 322–330. [Google Scholar]
- Ben-Hamu, G.; Eliezer, D.; Kaya, A.; Na, Y.G.; Shin, K.S. Microstructure and corrosion behavior of Mg-Zn-Ag alloys. Mater. Sci. Eng. A 2006, 435–436, 579–587. [Google Scholar] [CrossRef]
- Song, Y.W.; Shan, D.Y.; Chen, R.S.; Han, E.H. Effect of second phases on the corrosion behavior of wrought Mg-Zn-Y-Zr alloy. Corros. Sci. 2010, 52, 1830–1837. [Google Scholar] [CrossRef]
- Ben-Hamu, G.; Eliezer, D.; Shin, K.S. The role of Mg2Si on the corrosion behavior of wrought Mg-Zn-Mn alloy. Intermetallics 2008, 16, 860–867. [Google Scholar] [CrossRef]
- Ben-Hamu, G.; Eliezer, D.; Shin, K.S. The role of Si and Ca on new wrought Mg-Zn-Mn alloy. Mater. Sci. Eng. A 2007, 447, 35–43. [Google Scholar] [CrossRef]
- Rokhlin, L.L. Magnesium Alloys Containing Rare Earth Metals; Taylor and Francis: London, UK, 2003. [Google Scholar]
- Anyanwu, I.A.; Kamado, S.; Kojima, Y. Aging characteristics and high temperature tensile properties of Mg-Gd-Y-Zr alloys. Mater. Trans. 2001, 42, 1206–1211. [Google Scholar] [CrossRef]
- Hakimi, O.; Aghion, E.; Goldman, J. Improved stress corrosion cracking resistance of a novel biodegradable EW62 magnesium alloys by rapid solidification, in simulated electrolytes. Mater. Sci. Eng. C 2015, 51, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Yang, Y.; Chang, H. Influence of W phase on mechanical properties and damping capacity of Mg-Zn-Y-Nd-Zr alloys. Mater. Sci. Eng. A 2014, 609, 7–15. [Google Scholar] [CrossRef]
- Padezhnova, E.M.; Mel’nik, E.V.; Dobatkina, T.V. Study of phase equilibriums in magnesium-zinc-yttrium system. Russ. Metall. Eng. Trans. 1979, 1, 179. [Google Scholar]
- Padezhnova, E.M.; Mel’nik, E.V.; Miliyevskiy, R.A.; Dobatkina, T.V.; Kinzhibalo, V.V. Magnesium-zinc-yttrium system. Russ. Metall. Eng. Trans. 1982, 4, 185. [Google Scholar]
- Yang, J.; Wang, J.; Wang, L.; Wu, Y.; Wang, L.; Zhang, H. Microstructure and mechanical properties of Mg–4.5Zn–xNd (x = 0, 1 and 2, wt %) alloys. Mater. Sci. Eng. A 2008, 479, 339–344. [Google Scholar] [CrossRef]
- Qiang, L.; Qudong, W.; Haitao, Z.; Xiaoqing, Z.; Ya, Z.; Wenjiang, D. High Strength Exdruded Mg-5Zn-2Nd-1.5Y-0.6Zr-0.4Ca Alloy Produced by Electromagnetic Casting. Mater. Lett. 2005, 59, 2549–2554. [Google Scholar]
- Qiang, L.; Qudong, W.; Yingxin, W.; Xiaoqing, Z.; Wenjiang, D. Effect of Nd and Y addition on Microstructure and Mechanical Properties of as-cast Mg-Zn-Zr Alloys. J. Alloys Compd. 2007, 427, 115–123. [Google Scholar]
- Wang, J.; Liu, R.; Dong, X.; Yang, Y. Microstructure and Mechanical Properties of Mg-Zn-Y-Nd-Zr Alloys. J. Rare Earths 2013, 31, 616–621. [Google Scholar] [CrossRef]
- Song, G.; Atrens, A.; St John, D.; Wu, X.; Nairn, J. The anodic dissolution of magnesium in chloride and sulphate solutions. Corros. Sci. 1997, 39, 1981–2004. [Google Scholar] [CrossRef]
- Nakatsugawa, I.; Kamado, S.; Kojima, Y.; Ninomiya, R.; Kubota, K. Corrosion of magnesium alloys containing rare earth elements. Corros. Rev. 1998, 16, 139. [Google Scholar] [CrossRef]
- Zhang, E.; He, W.; Du, H.; Yang, K. Microstructure, mechanical properties and corrosion properties of Mg-Zn-Y alloys with low Zn content. Mater. Sci. Eng. A 2008, 488, 102–111. [Google Scholar] [CrossRef]
- Pierce, F.S.; Poon, S.J.; Guo, Q. Electron localization in metallic quasicrystals. Science 1993, 261, 737–739. [Google Scholar] [CrossRef] [PubMed]
Alloy Compositions | Zn | Nd | Zr | Y | Fe | Si | Ni | Cu | Mg |
---|---|---|---|---|---|---|---|---|---|
Mg-5%Zn | 5.1 | 0.0 | 0.38 | 0.15 | 0.005 | 0.01 | 0.001 | 0.001 | Bal. |
Mg-5%Zn-1%Nd | 5.0 | 1.2 | 0.36 | 0.14 | 0.008 | 0.01 | 0.001 | 0.001 | Bal. |
Mg-5%Zn-2%Nd | 5.1 | 2.1 | 0.33 | 0.12 | 0.006 | 0.01 | 0.001 | 0.001 | Bal. |
Mg-5%Zn-3%Nd | 5.2 | 3.2 | 0.35 | 0.12 | 0.006 | 0.01 | 0.001 | 0.001 | Bal. |
Parameter Alloy | Phase Type | Lattice Parameter W-Phase [Å] | % Volume Fraction of Secondary Phase |
---|---|---|---|
Mg-5%Zn | α-Mg | - | - |
Mg-5%Zn-1%Nd | α-Mg+W | 6.931 | 2 |
Mg-5%Zn-2%Nd | α-Mg+W | 6.97 | 3.5 |
Mg-5%Zn-3%Nd | α-Mg+W+T | 6.986 | 5.5 |
Alloy | Hardness (HV) |
---|---|
Mg-5%Zn | 86.6 ± 1.0 |
Mg-5%Zn-1%Nd | 96 ± 1.0 |
Mg-5%Zn-2%Nd | 97 ± 1.0 |
Mg-5%Zn-3%Nd | 84 ± 1.0 |
Parameter Alloy | Ecorr (V) | Icorr (µA) | C.R (mpy) |
---|---|---|---|
Mg-5%Zn | −1.44 | 17.6 | 17.34 |
Mg-5%Zn-1%Nd | −1.46 | 25.88 | 25.29 |
Mg-5%Zn-2%Nd | −1.45 | 21.98 | 21.65 |
Mg-5%Zn-3%Nd | −1.48 | 29.93 | 29.48 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elkaiam, L.; Hakimi, O.; Goldman, J.; Aghion, E. The Effect of Nd on Mechanical Properties and Corrosion Performance of Biodegradable Mg-5%Zn Alloy. Metals 2018, 8, 438. https://doi.org/10.3390/met8060438
Elkaiam L, Hakimi O, Goldman J, Aghion E. The Effect of Nd on Mechanical Properties and Corrosion Performance of Biodegradable Mg-5%Zn Alloy. Metals. 2018; 8(6):438. https://doi.org/10.3390/met8060438
Chicago/Turabian StyleElkaiam, Lilach, Orly Hakimi, Jeremy Goldman, and Eli Aghion. 2018. "The Effect of Nd on Mechanical Properties and Corrosion Performance of Biodegradable Mg-5%Zn Alloy" Metals 8, no. 6: 438. https://doi.org/10.3390/met8060438
APA StyleElkaiam, L., Hakimi, O., Goldman, J., & Aghion, E. (2018). The Effect of Nd on Mechanical Properties and Corrosion Performance of Biodegradable Mg-5%Zn Alloy. Metals, 8(6), 438. https://doi.org/10.3390/met8060438