Annealing-Induced High Ordering and Coercivity in Novel L10 CoPt-Based Nanocomposite Magnets
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sun, A.C.; Yuan, F.T.; Hsu, J.H.; Lee, H.Y. Evolution of structure and magnetic properties of sputter-deposited CoPt thin films on MgO (1 1 1) substrates: Formation of the L11 phase. Scr. Mater. 2009, 61, 713–716. [Google Scholar] [CrossRef]
- Huang, C.F.; Chen, Y.S.; Sun, A.C.; Huang, C.F. Growth of L11 structured CoPt thin films by alternate sputtering method on glass substrate. Surf. Coat. Technol. 2016, 303, 131–135. [Google Scholar] [CrossRef]
- Chen, Y.S.; Sun, A.C.; Lee, H.Y.; Lu, H.C.; Wang, S.F.; Sharma, P. Enhanced coercivity of HCP Co–Pt alloy thin films on a glass substrate at room temperature for patterned media. J. Magn. Magn. Mater. 2015, 391, 12–16. [Google Scholar] [CrossRef]
- Shen, C.L.; Kuo, P.C.; Li, Y.S.; Lin, G.P.; Ou, S.L.; Huang, K.T.; Chen, S.C. Thickness dependence of microstructures and magnetic properties for CoPt/Ag nanocomposite thin films. Thin Solid Films 2010, 518, 7356–7574. [Google Scholar] [CrossRef]
- Kushibiki, R.; Tham, K.K.; Hinata, S.; Saito, S. High Ku and small grain size Co80Pt20 granular media with double oxide grain boundary materials consisting of B2O3. AIP Adv. 2017, 7, 05651. [Google Scholar] [CrossRef]
- Xiao, Q.F.; Brűck, E.; Zhang, Z.D.; de Boer, F.R.; Buschow, K.H.J. Remanence enhancement in nanocrystalline CoPt bulk magnets. J. Alloys Compd. 2002, 336, 41–45. [Google Scholar] [CrossRef]
- Crisan, A.D.; Nicula, R.; Crisan, O.; Burkel, E. Thermally and pressure activated phase evolution in Fe-Pt-Nb-B melt spun ribbons. Mater. Sci. Eng. C 2007, 27, 1280–1282. [Google Scholar] [CrossRef]
- Crisan, O.; Crisan, A.D.; Randrianantoandro, N.; Nicula, R.; Burkel, E. Crystallization processes and phase evolution in amorphous Fe-Pt-Nb-B alloys. J. Alloys Compd. 2007, 440, L3–L7. [Google Scholar] [CrossRef]
- Bruck, E.; Xiao, Q.F.; Thang, P.D.; Toonen, M.J.; de Boer, F.R.; Buschow, K.H.J. Influence of phase transformation on the permanent-magnetic properties of Fe-Pt based alloys. J. Phys. B 2001, 300, 215–229. [Google Scholar] [CrossRef]
- Makino, A.; Bitoh, T. High coercivity of melt-spun (Fe0.55Pt0.45)78Zr2–4B18–20 nanocrystalline alloys with L10 structure. J. Appl. Phys. 2004, 95, 7498–7500. [Google Scholar] [CrossRef]
- Makino, A.; Bitoh, T.; Inoue, A.; Hirotu, Y. Magnetic properties and structure of Fe–Pt–M–B (M = Zr, Nb and Ti) alloys produced by quenching technique. J. Alloys Compd. 2007, 434, 614–617. [Google Scholar] [CrossRef]
- Crisan, A.D.; Crisan, O.; Randrianantoandro, N.; Valeanu, M.; Morariu, M.; Burkel, E. Crystallization processes in Fe-Pt-Nb-B melt spun ribbons. Mater. Sci. Eng. C 2007, 27, 1283–1285. [Google Scholar] [CrossRef]
- Randrianantoandro, N.; Crisan, A.D.; Crisan, O.; Marcin, J.; Kovac, J.; Hanko, J.; Greneche, J.M.; Svec, P.; Chrobak, A.; Skorvanek, I. The influence of microstructure on magnetic properties of nanocrystalline Fe–Pt–Nb–B permanent magnet ribbons. J. Appl. Phys. 2010, 108, 093910. [Google Scholar] [CrossRef]
- Wang, S.; Kang, S.S.; Nikles, D.E.; Harrell, J.W.; Wu, X.W. Magnetic properties of self-organized L10 FePtAg nanoparticle arrays. J. Magn. Magn. Mater. 2003, 266, 49–56. [Google Scholar] [CrossRef]
- Crisan, O.; Angelakeris, M.; Flevaris, N.K. Magnetism and anisotropy in core-shell nanoparticles. J. Optoelectron. Adv. Mater. 2003, 5, 959–962. [Google Scholar]
- Gonzalez, J.A.; Andres, J.P.; de Toro, J.A.; Muñiz, P.; Muñoz, T.; Crisan, O.; Binns, C.; Riveiro, J.M. Co–CoO nanoparticles prepared by reactive gas-phase aggregation. Nanopart. Res. 2009, 11, 2105–2111. [Google Scholar] [CrossRef]
- Reddy, V.R.; Crisan, O.; Gupta, A.; Banerjee, A.; Kuncser, V. Tuning exchange spring effects in FePt/Fe(Co) magnetic bilayers. Thin Solid Films 2012, 520, 2184–2189. [Google Scholar] [CrossRef]
- Crisan, A.D.; Crisan, O. Direct formation of L10 FePt in as-cast FePt-based magnetic nanocomposite ribbons without post-synthesis annealing. J. Phys. D Appl. Phys. 2011, 44, 365002. [Google Scholar] [CrossRef]
- Crisan, A.D. Compositional studies and thermal analysis in amorphous and nanocrystalline FePtNbB melt spun ribbons. J. Optoelectron. Adv. Mater. 2010, 12, 250–256. [Google Scholar]
- Rosenberg, M.; Kuncser, V.; Crisan, O.; Filoti, G. A Mössbauer Spectroscopy and Magnetic Study of FeRh. J. Magn. Magn. Mater. 1998, 177, 135–136. [Google Scholar] [CrossRef]
- Iwata, S.; Yamashita, S.; Tsunashima, S. Perpendicular magnetic anisotropy and magneto-optical Kerr spectra of MBE-grown PtCo alloy films. IEEE Trans. Magn. 1997, 33, 3670–3672. [Google Scholar] [CrossRef]
- Chang, C.W.; Chang, H.W.; Chiu, C.H.; Hsieh, C.C.; Fang, Y.K.; Chang, W.C. Magnetic property improvement of Pt-lean FePt/Fe–B-type nanocomposites by Co substitution. J. Appl. Phys. 2008, 103, 07E133. [Google Scholar] [CrossRef]
- Makino, A.; Bitoh, T.; Nakagawa, M. Direct synthesis of L10-(Fe, Co)Pt nanocrystallites from (Fe, Co)–Pt–Zr–B liquid phase by melt-spinning. J. Non-Cryst. Solids 2007, 353, 3655–3660. [Google Scholar] [CrossRef]
- Inoue, A.; Zhang, W. Nanocrystalline Fe-Pt-B base hard magnets with high coercive force obtained from amorphous precursor. J. Appl. Phys. 2005, 97, 10H308. [Google Scholar] [CrossRef]
- Yoo, C.S.; Lim, S.K.; Yoon, C.S.; Kim, C.K. Crystallization of Co100−x PtxB10Si12 amorphous metallic alloys. Metall. Mater. Trans. A 2004, 35A, 2057–2061. [Google Scholar] [CrossRef]
- Lotfollahi, Z.; García-Arribas, A.; Amirabadizadeh, A.; Orue, I.; Kurlyandskaya, G.V. Comparative study of magnetic and magnetoimpedance properties of CoFeSiB-based amorphous ribbons of the same geometry with Mo or W additions. J. Alloys Compd. 2017, 693, 767–776. [Google Scholar] [CrossRef]
- Chaturvedi, A.; Dhakal, T.; Witanachchi, S.; Le, A.-T.; Phan, M.-H.; Srikanth, H. Correlation between magnetic softness, sample surface and magnetoimpedance in Co69Fe4.5X1.5Si10B15 (X = Ni, Al, Cr) amorphous ribbons. Phys. B Condens. Matter 2010, 405, 2836–2839. [Google Scholar] [CrossRef]
- Ferrari, M.; Lutterotti, L. Method for the simultaneous determination of anisotropic residual stresses and texture by x-ray diffraction. J. Appl. Phys. 1994, 76, 7246–7255. [Google Scholar] [CrossRef]
- Wenk, H.-R.; Matthies, S.; Lutterotti, L. Texture analysis from diffraction spectra. Mater. Sci. Forum 1994, 157–162, 473–480. [Google Scholar] [CrossRef]
- Matthies, S.; Lutterotti, L.; Wenk, H.-R. Advances in Texture Analysis from Diffraction Spectra. J. Appl. Crystallogr. 1997, 30, 31–42. [Google Scholar] [CrossRef] [Green Version]
- Klug, H.P.; Alexander, L.E. X-ray Diffraction Procedures, 2nd ed.; John Wiley: New York, NY, USA, 1974. [Google Scholar]
- Balzar, D.; Ledbetter, H. Voigt-function modeling in Fourier analysis of size- and strain-broadened X-ray diffraction peaks. J. Appl. Crystallogr. 1993, 26, 97–103. [Google Scholar] [CrossRef] [Green Version]
- Balzar, D. X-Ray Diffraction Line Broadening: Modeling and Applications to High-Tc Superconductors. J. Res. Natl. Inst. Stand. Technol. 1993, 98, 321–353. [Google Scholar] [CrossRef] [PubMed]
- Warren, B.E. X-ray Diffraction; Addison Wesley: Reading, MA, USA, 1969. [Google Scholar]
- Kurlyandskaya, G.V.; Lukshina, V.A.; Larrañaga, A.; Orue, I.; Zaharova, A.A.; Shishkin, D.A. Induced magnetic anisotropy features in FeCrSiBNbCu nanocrystalline alloy: Role of stress distribution proven by direct X-ray measurements. J. Alloys Compd. 2013, 566, 31–36. [Google Scholar] [CrossRef] [Green Version]
- Li, J.J.; Hu, L.F.; Li, F.Z.; Li, M.S.; Zhou, Y.C. Variation of microstructure and composition of the Cr2AlC coating prepared by sputtering at 370 and 500 °C. Surf. Coat. Technol. 2010, 204, 3838–3845. [Google Scholar] [CrossRef]
- Lee, D.N. Textures and structures of vapor deposits. J. Mater. Sci. 1999, 34, 2575–2582. [Google Scholar] [CrossRef]
- Aryshenskii, E.V.; Aryshenskii, V.Y.; Grechnikova, A.F.; Beglov, E.D. Evolution of Texture and Microstructure in the Production of Sheets and Ribbons from Aluminum Alloy 5182 in Modern Rolling Facilities. Met. Sci. Heat Treat. 2014, 56, 347–352. [Google Scholar] [CrossRef]
- Komogortsev, S.V.; Iskhakov, R.S. Law of approach to magnetic saturation in nanocrystalline and amorphous ferromagnets with improved transition behavior between power-law regimes. J. Magn. Magn. Mater. 2017, 440, 213–216. [Google Scholar] [CrossRef]
- Luong, N.H.; Hai, N.H.; Phu, N.D.; MacLaren, D.A. Co-Pt nanoparticles encapsulated in carbon cages prepared by sonoelectrodeposition. Nanotechnology 2011, 22, 285603. [Google Scholar] [CrossRef] [PubMed]
- Komogortsev, S.V.; Chizhik, N.A.; Filatov, E.Y.; Korenev, S.V.; Shubin, Y.V.; Velikanov, D.A.; Iskhakov, R.S.; Yurkin, G.Y. Magnetic Properties and L10 Phase Formation in CoPt Nanoparticles. Solid State Phenom. 2012, 190, 159–162. [Google Scholar] [CrossRef]
Co48Pt28Ag6B18 | Structure | Lattice Parameters (Å) | Average Grain Size (nm) | RMS Strain (%) |
---|---|---|---|---|
As cast | Fcc CoPt-cubic | a = 3.729 ± 0.006 | D = 20 ± 3 | 0.78 ± 0.08 |
400 °C | Fcc CoPt-cubic | a = 3.714 ± 0.003 | D = 25 ± 4 | 0.33 ± 0.05 |
473 °C | L10 CoPt | a = 2.650 ± 0.007 c = 3.679 ± 0.011 | D = 47 ± 3 | 0.25 ± 0.03 |
670 °C | L10 CoPt | a = 2.674 ± 0.004 c = 3.644 ± 0.008 | D = 189 ± 8 | 0.16 ± 0.03 |
Co48Pt28Ag6B18 | Texture Coefficient | ||
---|---|---|---|
(100) | (110) | (200) | |
473 °C | 0.42 | 0.38 | 0.44 |
670 °C | 1.13 | 0.89 | 1.01 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crisan, A.D.; Vasiliu, F.; Mercioniu, I.; Bartha, C.; Enculescu, M.; Crisan, O. Annealing-Induced High Ordering and Coercivity in Novel L10 CoPt-Based Nanocomposite Magnets. Metals 2018, 8, 466. https://doi.org/10.3390/met8060466
Crisan AD, Vasiliu F, Mercioniu I, Bartha C, Enculescu M, Crisan O. Annealing-Induced High Ordering and Coercivity in Novel L10 CoPt-Based Nanocomposite Magnets. Metals. 2018; 8(6):466. https://doi.org/10.3390/met8060466
Chicago/Turabian StyleCrisan, Alina Daniela, Florin Vasiliu, Ionel Mercioniu, Cristina Bartha, Monica Enculescu, and Ovidiu Crisan. 2018. "Annealing-Induced High Ordering and Coercivity in Novel L10 CoPt-Based Nanocomposite Magnets" Metals 8, no. 6: 466. https://doi.org/10.3390/met8060466
APA StyleCrisan, A. D., Vasiliu, F., Mercioniu, I., Bartha, C., Enculescu, M., & Crisan, O. (2018). Annealing-Induced High Ordering and Coercivity in Novel L10 CoPt-Based Nanocomposite Magnets. Metals, 8(6), 466. https://doi.org/10.3390/met8060466