Ag2O Nanoparticles-Doped Manganese Immobilized on Graphene Nanocomposites for Aerial Oxidation of Secondary Alcohols
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of HRG
2.2. Preparation of (X%)HRG/MnO2–(1%)Ag2O Catalyst
2.3. Catalyst Characterization
2.4. General Procedure for Oxidation of Alcohols
3. Results and Discussion
3.1. Catalyst Characterization
3.1.1. X-Ray Diffraction Analysis (XRD)
3.1.2. Fourier Transforms Infrared Spectroscopy (FT-IR)
3.1.3. Thermogravimetric Analysis (TGA)
3.1.4. SEM and EDX
3.1.5. High Resolution Transmission Electron Microscope (HRTEM)
3.1.6. Raman Spectroscopy
3.1.7. BET Surface Area
3.2. Catalytic Studies
3.2.1. Impact of HRG Support
3.2.2. Impact of Calcination
3.2.3. Impact of Reaction Temperature
3.2.4. Effect of Amount of Catalyst
3.3. Reusability of Catalyst
3.4. Oxidation of a Various Alcohols over (5%)HRG/MnO2–(1%)Ag2O Catalyst
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, G.; Li, S.; Lei, J.; Zhang, G.; Xie, X.; Ding, C.; Liu, R. An efficient biomimetic aerobic oxidation of alcohols catalyzed by iron combined with amino acids. Synlett 2016, 27, 956–960. [Google Scholar] [CrossRef]
- Tojo, G.; Fernández, M.I. Oxidation of Alcohols to Aldehydes and Ketones: A Guide to Current Common Practice, 1st ed.; Springer: New York, NY, USA, 2006. [Google Scholar]
- Zhu, Y.; Xu, J.; Lu, M. Oxidation of primary and secondary alcohols to the corresponding carbonyl compounds with molecular oxygen using 1, 1-diphenyl-2-picrylhydrazyl and WO3/Al2O3 as catalysts. Catal. Commun. 2014, 48, 78–84. [Google Scholar] [CrossRef]
- Kamimura, A.; Nozaki, Y.; Ishikawa, S.; Inoue, R.; Nakayama, M. K-birnessite MnO2: A new selective oxidant for benzylic and allylic alcohols. Tetrahedron Lett. 2011, 52, 538–540. [Google Scholar] [CrossRef]
- Patel, S.; Mishra, B. Chromium (VI) oxidants having quaternary ammonium ions: Studies on synthetic applications and oxidation kinetics. Tetrahedron 2007, 63, 4367–4406. [Google Scholar] [CrossRef]
- Arena, F.; Gumina, B.; Lombardo, A.F.; Espro, C.; Patti, A.; Spadaro, L.; Spiccia, L. Nanostructured MnOx catalysts in the liquid phase selective oxidation of benzyl alcohol with oxygen: Part I. effects of Ce and Fe addition on structure and reactivity. Appl. Catal. B Environ. 2015, 162, 260–267. [Google Scholar] [CrossRef]
- Jiang, N.; Ragauskas, A.J. Vanadium-catalyzed selective aerobic alcohol oxidation in ionic liquid [bmim] PF6. Tetrahedron Lett. 2007, 48, 273–276. [Google Scholar] [CrossRef]
- Figiel, P.J.; Sobczak, J.M. Mechanistic investigation of the catalytic system based on N-hydroxy-phthalimide with vanadium co-catalysts for aerobic oxidation of alcohols with dioxygen. J. Catal. 2009, 263, 167–172. [Google Scholar] [CrossRef]
- Yan, Y.; Jia, X.; Yang, Y. Palladium NPs supported on CNT functionalized by rare-earth oxides for solvent-free aerobic oxidation of benzyl alcohol. Catal. Today 2016, 259, 292–302. [Google Scholar] [CrossRef]
- Chibani, S.; Michel, C.; Delbecq, F.; Pinel, C.; Besson, M. On the key role of hydroxyl groups in platinum-catalysed alcohol oxidation in aqueous medium. Catal. Sci. Technol. 2013, 3, 339–350. [Google Scholar] [CrossRef]
- Wang, T.; Yuan, X.; Li, S.; Zeng, L.; Gong, J. CeO2-modified Au@ SBA-15 nanocatalysts for liquid-phase selective oxidation of benzyl alcohol. Nanoscale 2015, 7, 7593–7602. [Google Scholar] [CrossRef] [PubMed]
- Cheung, W.-H.; Yu, W.-Y.; Yip, W.-P.; Zhu, N.-Y.; Che, C.-M. A silica gel-supported ruthenium complex of 1, 4, 7-trimethyl-1, 4, 7-triazacyclononane as recyclable catalyst for chemoselective oxidation of alcohols and alkenes by tert-butyl hydroperoxide. J. Org. Chem. 2002, 67, 7716–7723. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Dai, X.; Meng, S.; Fu, X.; Chen, S. Selective oxidation of aromatic alcohols to corresponding aromatic aldehydes using In2S3 microsphere catalyst under visible light irradiation. Chem. Eng. J. 2014, 245, 107–116. [Google Scholar] [CrossRef]
- Das, O.; Paine, T.K. Aerobic oxidation of primary alcohols catalyzed by copper complexes of 1, 10-phenanthroline-derived ligands. Dalton Trans. 2012, 41, 11476–11481. [Google Scholar] [CrossRef] [PubMed]
- Hajipour, A.R.; Karimi, H.; Koohi, A. Selective oxidation of alcohols over nickel zirconium phosphate. Chin. J. Catal. 2015, 36, 1109–1116. [Google Scholar] [CrossRef]
- Ragupathi, C.; Vijaya, J.J.; Narayanan, S.; Jesudoss, S.; Kennedy, L.J. Highly selective oxidation of benzyl alcohol to benzaldehyde with hydrogen peroxide by cobalt aluminate catalysis: A comparison of conventional and microwave methods. Ceram. Int. 2015, 41, 2069–2080. [Google Scholar] [CrossRef]
- Wang, N.; Liu, R.; Chen, J.; Liang, X. NaNO2-activated, iron–TEMPO catalyst system for aerobic alcohol oxidation under mild conditions. Chem. Commun. 2005, 14, 5322–5324. [Google Scholar] [CrossRef] [PubMed]
- Goh, T.W.; Xiao, C.; Maligal-Ganesh, R.V.; Li, X.; Huang, W. Utilizing mixed-linker zirconium based metal-organic frameworks to enhance the visible light photocatalytic oxidation of alcohol. Chem. Eng. Sci. 2015, 124, 45–51. [Google Scholar] [CrossRef]
- Forouzani, M.; Mardani, H.R.; Ziari, M.; Malekzadeh, A.; Biparva, P. Comparative study of oxidation of benzyl alcohol: Influence of Cu-doped metal cation on nano ZnO catalytic activity. Chem. Eng. J. 2015, 275, 220–226. [Google Scholar] [CrossRef]
- Ndolomingo, M.J.; Meijboom, R. Selective liquid phase oxidation of benzyl alcohol to benzaldehyde by tert-butyl hydroperoxide over γ-Al2O3 supported copper and gold NPs. Appl. Surf. Sci. 2017, 398, 19–32. [Google Scholar] [CrossRef]
- Bhaumik, C.; Stein, D.; Vincendeau, S.; Poli, R.; Manoury, É. Oxidation of alcohols by TBHP in the presence of sub-stoichiometric amounts of MnO2. C. R. Chim. 2016, 19, 566–570. [Google Scholar] [CrossRef]
- Adil, S.F.; Alabbad, S.; Kuniyil, M.; Khan, M.; Alwarthan, A.; Mohri, N.; Tremel, W.; Tahir, M.N.; Siddiqui, M.R.H. Vanadia supported on nickel manganese oxide nanocatalysts for the catalytic oxidation of aromatic alcohols. Nanoscale Res. Lett. 2015, 10, 52. [Google Scholar] [CrossRef] [PubMed]
- Elmaci, G.; Ozer, D.; Zumreoglu-Karan, B. Liquid phase aerobic oxidation of benzyl alcohol by using manganese ferrite supported-manganese oxide nanocomposite catalyst. Catal. Commun. 2017, 89, 56–59. [Google Scholar] [CrossRef]
- Mondal, A.; Jana, N.R. Surfactant-free, stable noble metal–graphene nanocomposite as high performance electrocatalyst. ACS Catal. 2014, 4, 593–599. [Google Scholar] [CrossRef]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Allen, M.J.; Tung, V.C.; Kaner, R.B. Honeycomb carbon: A review of graphene. Chem. Rev. 2010, 110, 132–145. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Tahir, M.N.; Adil, S.F.; Khan, H.U.; Siddiqui, M.R.H.; Al-warthan, A.A.; Tremel, W. Graphene based metal and metal oxide nanocomposites: Synthesis, properties and their applications. J. Mater. Chem. A 2015, 3, 18753–18808. [Google Scholar] [CrossRef]
- Singh, V.; Joung, D.; Zhai, L.; Das, S.; Khondaker, S.I.; Seal, S. Graphene based materials: Past, present and future. Prog. Mater. Sci. 2011, 56, 1178–1271. [Google Scholar] [CrossRef]
- Tang, M.; Wang, X.; Wu, F.; Liu, Y.; Zhang, S.; Pang, X.; Li, X.; Qiu, H. Au nanoparticle/graphene oxide hybrids as stabilizers for pickering emulsions and Au nanoparticle/graphene oxide@ polystyrene microspheres. Carbon 2014, 71, 238–248. [Google Scholar] [CrossRef]
- Al-Marri, A.H.; Khan, M.; Shaik, M.R.; Mohri, N.; Adil, S.F.; Kuniyil, M.; Alkhathlan, H.Z.; Al-Warthan, A.; Tremel, W.; Tahir, M.N. Green synthesis of Pd@ graphene nanocomposite: Catalyst for the selective oxidation of alcohols. Arab. J. Chem. 2016, 9, 835–845. [Google Scholar] [CrossRef]
- Dreyer, D.R.; Jia, H.P.; Bielawski, C.W. Graphene oxide: A convenient carbocatalyst for facilitating oxidation and hydration reactions. Angew. Chem. Int. Ed. 2010, 49, 6813–6816. [Google Scholar] [CrossRef]
- Zahed, B.; Hosseini-Monfared, H. A Comparative study of silver-graphene oxide nanocomposites as a recyclable catalyst for the aerobic oxidation of benzyl alcohol: Support effect. Appl. Surf. Sci. 2015, 328, 536–547. [Google Scholar] [CrossRef]
- Zhu, J.; Carabineiro, S.A.; Shan, D.; Faria, J.L.; Zhu, Y.; Figueiredo, J.L. Oxygen activation sites in gold and iron catalysts supported on carbon nitride and activated carbon. J. Catal. 2010, 274, 207–214. [Google Scholar] [CrossRef]
- Chua, C.K.; Pumera, M. Chemical reduction of graphene oxide: A synthetic chemistry viewpoint. Chem. Soc. Rev. 2014, 43, 291–312. [Google Scholar] [CrossRef] [PubMed]
- Yoo, E.; Okata, T.; Akita, T.; Kohyama, M.; Nakamura, J.; Honma, I. Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface. Nano Lett. 2009, 9, 2255–2259. [Google Scholar] [CrossRef] [PubMed]
- Miao, M.; Feng, J.; Jin, Q.; He, Y.; Liu, Y.; Du, Y.; Zhang, N.; Li, D. Hybrid Ni–Al layered double hydroxide/graphene composite supported gold NPs for aerobic selective oxidation of benzyl alcohol. RSC Adv. 2015, 5, 36066–36074. [Google Scholar] [CrossRef]
- Shinde, V.M.; Skupien, E.; Makkee, M. Synthesis of highly dispersed Pd NPs supported on multi-walled carbon nanotubes and their excellent catalytic performance for oxidation of benzyl alcohol. Catal. Sci. Technol. 2015, 5, 4144–4153. [Google Scholar] [CrossRef]
- Yang, S.; Lin, Y.; Song, X.; Zhang, P.; Gao, L. Covalently coupled ultrafine H-TiO2 nanocrystals/nitrogen-doped graphene hybrid materials for high-performance supercapacitor. ACS Appl. Mater. Interfaces 2015, 7, 17884–17892. [Google Scholar] [CrossRef] [PubMed]
- Mondal, P.; Salam, N.; Mondal, A.; Ghosh, K.; Tuhina, K.; Islam, S.M. A highly active recyclable gold–graphene nanocomposite material for oxidative esterification and Suzuki cross-coupling reactions in green pathway. J. Colloid Interface Sci. 2015, 459, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Mirza-Aghayan, M.; Tavana, M.M.; Boukherroub, R. Palladium NPs supported on reduced graphene oxide as an efficient catalyst for the reduction of benzyl alcohol compounds. Catal. Commun. 2015, 69, 97–103. [Google Scholar] [CrossRef]
- Qusti, A.; Mohamed, R.; Salam, M.A. Photocatalytic synthesis of aniline from nitrobenzene using Ag-reduced graphene oxide nanocomposite. Ceram. Int. 2014, 40, 5539–5546. [Google Scholar] [CrossRef]
- Zhao, B.; Liu, J.; Zhou, L.; Long, D.; Feng, K.; Sun, X.; Zhong, J. Probing the electronic structure of M-graphene oxide (M = Ni, Co, NiCo) catalysts for hydrolytic dehydrogenation of ammonia borane. Appl. Surf. Sci. 2016, 362, 79–85. [Google Scholar] [CrossRef]
- Yang, Y.; Luo, L.-M.; Guo, Y.-F.; Dai, Z.-X.; Zhang, R.-H.; Sun, C.; Zhou, X.-W. In situ synthesis of PtPd bimetallic nanocatalysts supported on graphene nanosheets for methanol oxidation using triblock copolymer as reducer and stabilizer. J. Electroanal. Chem. 2016, 783, 132–139. [Google Scholar] [CrossRef]
- Wu, G.; Wang, X.; Guan, N.; Li, L. Palladium on graphene as efficient catalyst for solvent-free aerobic oxidation of aromatic alcohols: Role of graphene support. Appl. Catal. B Environ. 2013, 136, 177–185. [Google Scholar] [CrossRef]
- Hu, Z.; Zhao, Y.; Liu, J.; Wang, J.; Zhang, B.; Xiang, X. Ultrafine MnO2 NPs decorated on graphene oxide as a highly efficient and recyclable catalyst for aerobic oxidation of benzyl alcohol. J. Colloid Interface Sci. 2016, 483, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Huo, Y.; Yang, J.; Chang, S.; Ma, Y.; Huang, W. Reduced graphene oxide supported Au NPs as an efficient catalyst for aerobic oxidation of benzyl alcohol. Appl. Surf. Sci. 2013, 280, 450–455. [Google Scholar] [CrossRef]
- Wu, X.; Guo, S.; Zhang, J. Au/graphene quantum dots/ferroferric oxide composites as catalysts for the solvent-free oxidation of alcohols. Mater. Lett. 2016, 183, 227–231. [Google Scholar] [CrossRef]
- Siddiqui, M.R.H.; Warad, I.; Adil, S.; Mahfouz, R.; Al-Arifi, A. Nano-gold supported nickel manganese oxide: Synthesis, characterisation and evaluation as oxidation catalyst. Oxid. Commun. 2012, 35, 476–481. [Google Scholar]
- Alabbad, S.; Adil, S.; Assal, M.; Khan, M.; Alwarthan, A.; Siddiqui, M.R.H. Gold & silver NPs supported on manganese oxide: Synthesis, characterization and catalytic studies for selective oxidation of benzyl alcohol. Arab. J. Chem. 2014, 7, 1192–1198. [Google Scholar]
- Assal, M.E.; Kuniyil, M.; Khan, M.; Al-Warthan, A.; Siddiqui, M.R.H.; Tremel, W.; Nawaz Tahir, M.; Adil, S.F. Synthesis and comparative catalytic study of Zirconia–MnCO3 or –Mn2O3 for the oxidation of benzylic alcohols. Chem. Open 2016, 6, 112–120. [Google Scholar]
- Hummers, W.S., Jr.; Offeman, R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Assal, M.E.; Shaik, M.R.; Kuniyil, M.; Khan, M.; Al-Warthan, A.; Siddiqui, M.R.H.; Khan, S.M.; Tremel, W.; Tahir, M.N.; Adil, S.F. A highly reduced graphene oxide/ZrOx–MnCO3 or–Mn2O3 nanocomposite as an efficient catalyst for selective aerial oxidation of benzylic alcohols. RSC Adv. 2017, 7, 55336–55349. [Google Scholar] [CrossRef]
- Esrafili, M.D.; Nematollahi, P.; Abdollahpour, H. A comparative DFT study on the CO oxidation reaction over Al-and Ge-embedded graphene as efficient metal-free catalysts. Appl. Surf. Sci. 2016, 378, 418–425. [Google Scholar] [CrossRef]
- Assal, M.E.; Shaik, M.R.; Kuniyil, M.; Khan, M.; Venkata, S.J.; Alzahrani, A.Y.; Al-Warthan, A.; Al-Tamrah, S.A.; Siddiqui, M.R.H.; Hashmi, S.A.; et al. Silver-doped manganese based nanocomposites for aerial oxidation of alcohols. Mater. Express 2018, 8, 35–54. [Google Scholar] [CrossRef]
- Karami, K.; Ghasemi, M.; Naeini, N.H. Palladium NPs supported on polymer: An efficient and reusable heterogeneous catalyst for the Suzuki cross-coupling reactions and aerobic oxidation of alcohols. Catal. Commun. 2013, 38, 10–15. [Google Scholar] [CrossRef]
- Reis, M.C.; Barros, S.D.; Lachter, E.R.; San Gil, R.A.; Flores, J.H.; da Silva, M.I.P.; Onfroy, T. Synthesis, characterization and catalytic activity of meso-niobium phosphate in the oxidation of benzyl alcohols. Catal. Today 2012, 192, 117–122. [Google Scholar] [CrossRef]
- Maurya, M.R.; Saini, N.; Avecilla, F. Catalytic oxidation of secondary alcohols by molybdenum complexes derived from 4-acyl pyrazolone in presence and absence of an N-based additive: Conventional versus microwave assisted method. Inorg. Chim. Acta 2015, 438, 168–178. [Google Scholar] [CrossRef]
- Yadav, G.D.; Yadav, A.R. Selective liquid phase oxidation of secondary alcohols into ketones by tert-butyl hydroperoxide on nano-fibrous Ag-OMS-2 catalyst. J. Mol. Catal. A Chem. 2013, 380, 70–77. [Google Scholar] [CrossRef]
- Kumar, R.; Gravel, E.; Hagege, A.; Li, H.; Jawale, D.V.; Verma, D.; Namboothiri, I.N.; Doris, E. Carbon nanotube–gold nanohybrids for selective catalytic oxidation of alcohols. Nanoscale 2013, 5, 6491–6497. [Google Scholar] [CrossRef] [PubMed]
- Rostami, A.; Pourshiani, O.; Darvishi, N.; Atashkar, B. Efficient and green oxidation of alcohols with tert-butyl hydrogenperoxide catalyzed by a recyclable magnetic core-shell nanoparticle-supported oxo-vanadium ephedrine complex. C. R. Chim. 2017, 20, 435–439. [Google Scholar] [CrossRef]
- Farhadi, S.; Zaidi, M. Polyoxometalate–zirconia (POM/ZrO2) nanocomposite prepared by sol–gel process: A green and recyclable photocatalyst for efficient and selective aerobic oxidation of alcohols into aldehydes and ketones. Appl. Catal. A 2009, 354, 119–126. [Google Scholar] [CrossRef]
- Yasu-eda, T.; Kitamura, S.; Ikenaga, N.-O.; Miyake, T.; Suzuki, T. Selective oxidation of alcohols with molecular oxygen over Ru/CaO–ZrO2 catalyst. J. Mol. Catal. A Chem. 2010, 323, 7–15. [Google Scholar] [CrossRef]
- Dell’Anna, M.M.; Mali, M.; Mastrorilli, P.; Cotugno, P.; Monopoli, A. Oxidation of benzyl alcohols to aldehydes and ketones under air in water using a polymer supported palladium catalyst. J. Mol. Catal. A Chem. 2014, 386, 114–119. [Google Scholar] [CrossRef]
- Kantam, M.L.; Reddy, R.S.; Pal, U.; Sudhakar, M.; Venugopal, A.; Ratnam, K.J.; Figueras, F.; Chintareddy, V.R.; Nishina, Y. Ruthenium/magnesium–lanthanum mixed oxide: An efficient reusable catalyst for oxidation of alcohols by using molecular oxygen. J. Mol. Catal. A Chem. 2012, 359, 1–7. [Google Scholar] [CrossRef]
- Qi, L.; Qi, X.; Wang, J.; Zheng, L. A synergistic effect in the combination of H2O2, FeAPO-5 and NaBr for selective oxidation of benzyl alcohols. Catal. Commun. 2011, 16, 225–228. [Google Scholar] [CrossRef]
- Yoshida, A.; Mori, Y.; Ikeda, T.; Azemoto, K.; Naito, S. Enhancement of catalytic activity of Ir/TiO2 by partially reduced titanium oxide in aerobic oxidation of alcohols. Catal. Today 2013, 203, 153–157. [Google Scholar] [CrossRef]
- Wang, L.; Meng, X.; Xiao, F. Au NPs supported on a layered double hydroxide with excellent catalytic properties for the aerobic oxidation of alcohols. Chin. J. Catal. 2010, 31, 943–947. [Google Scholar] [CrossRef]
- Sato, T.; Komanoya, T. Selective oxidation of alcohols with molecular oxygen catalyzed by Ru/Mnox/CeO2 under mild conditions. Catal. Commun. 2009, 10, 1095–1098. [Google Scholar] [CrossRef]
- Zhao, J.; Yu, G.; Xin, K.; Li, L.; Fu, T.; Cui, Y.; Liu, H.; Xue, N.; Peng, L.; Ding, W. Highly active gold catalysts loaded on NiAl-oxide derived from layered double hydroxide for aerobic alcohol oxidation. Appl. Catal. A 2014, 482, 294–299. [Google Scholar] [CrossRef]
- Wang, H.; Fang, L.; Yang, Y.; Hu, R.; Wang, Y. Immobilization Na7PW11O39 on quanternary ammonium functionalized chloromethylated polystyrene by electrostatic interactions: An efficient recyclable catalyst for alcohol oxidation. Appl. Catal. A 2016, 520, 35–43. [Google Scholar] [CrossRef]
- Shaabani, A.; Keshipour, S.; Hamidzad, M.; Shaabani, S. Cobalt (II) phthalocyanine covalently anchored to cellulose as a recoverable and efficient catalyst for the aerobic oxidation of alkyl arenes and alcohols. J. Mol. Catal. A Chem. 2014, 395, 494–499. [Google Scholar] [CrossRef]
- Hou, J.; Luan, Y.; Tang, J.; Wensley, A.M.; Yang, M.; Lu, Y. Synthesis of UiO-66-NH2 derived heterogeneous copper (II) catalyst and study of its application in the selective aerobic oxidation of alcohols. J. Mol. Catal. A Chem. 2015, 407, 53–59. [Google Scholar] [CrossRef]
- Zhao, H.; Sun, W.; Miao, C.; Zhao, Q. Aerobic oxidation of secondary alcohols using NHPI and iron salt as catalysts at room temperature. J. Mol. Catal. A Chem. 2014, 393, 62–67. [Google Scholar] [CrossRef]
- Zhou, L.-H.; Yu, X.-Q.; Pu, L. Na-promoted aerobic oxidation of alcohols to ketones. Tetrahedron Lett. 2010, 51, 475–477. [Google Scholar] [CrossRef]
- Vindigni, F.; Dughera, S.; Armigliato, F.; Chiorino, A. Aerobic oxidation of alcohols on Au/TiO2 catalyst: New insights on the role of active sites in the oxidation of primary and secondary alcohols. Monatsh. Chem. 2016, 147, 391–403. [Google Scholar] [CrossRef]
- Shaikh, M.; Satanami, M.; Ranganath, K.V. Efficient aerobic oxidation of alcohols using magnetically recoverable catalysts. Catal. Commun. 2014, 54, 91–93. [Google Scholar] [CrossRef]
- Sahu, D.; Silva, A.R.; Das, P. A novel iron (III)-based heterogeneous catalyst for aqueous oxidation of alcohols using molecular oxygen. RSC Adv. 2015, 5, 78553–78560. [Google Scholar] [CrossRef]
Entry | Catalyst | Conversion (%) | Specific Activity (mmol/g·h) | Selectivity (%) |
---|---|---|---|---|
1 | HRG | 3.94 | 0.63 | >99 |
2 | MnO2–(1%)Ag2O | 60.39 | 9.66 | >99 |
3 | (1%)HRG/MnO2–(1%)Ag2O | 69.81 | 11.17 | >99 |
4 | (3%)HRG/MnO2–(1%)Ag2O | 91.34 | 14.61 | >99 |
5 | (5%)HRG/MnO2–(1%)Ag2O | 100.0 | 16.0 | >99 |
6 | (7%)HRG/MnO2–(1%)Ag2O | 84.45 | 13.51 | >99 |
Entry | Catalyst | T. (°C) | SA (m2/g) | Conv. (%) | Specific Activity (mmol/g·h) | Sel. (%) |
---|---|---|---|---|---|---|
1 | MnCO3–(1%)Ag2O | 300 | 51.7 | 58.47 | 9.36 | >99 |
2 | MnO2–(1%)Ag2O | 400 | 84.3 | 60.39 | 9.66 | >99 |
3 | Mn2O3–(1%)Ag2O | 500 | 41.8 | 39.81 | 6.37 | >99 |
4 | (5%)HRG/MnCO3–(1%)Ag2O | 300 | 107.1 | 89.11 | 14.26 | >99 |
5 | (5%)HRG/MnO2–(1%)Ag2O | 400 | 149.1 | 100.0 | 16.0 | >99 |
6 | (5%)HRG/Mn2O3–(1%)Ag2O | 500 | 98.7 | 59.74 | 9.56 | >99 |
Entry | Temperature (°C) | Conv. (%) | Specific Activity (mmol/g·h) | Sel. (%) |
---|---|---|---|---|
1 | 20 | 33.14 | 5.30 | >99 |
2 | 40 | 50.20 | 8.03 | >99 |
3 | 60 | 66.41 | 10.63 | >99 |
4 | 80 | 82.93 | 13.27 | >99 |
5 | 100 | 100.0 | 16.0 | >99 |
Entry | Catalyst Dosage (mg) | Conv. (%) | Specific Activity (mmol/g·h) | Sel. (%) |
---|---|---|---|---|
1 | 50 | 23.06 | 22.14 | >99 |
2 | 100 | 39.85 | 19.13 | >99 |
3 | 150 | 55.12 | 17.64 | >99 |
4 | 200 | 70.81 | 16.99 | >99 |
5 | 250 | 84.70 | 16.26 | >99 |
6 | 300 | 100.0 | 16.00 | >99 |
Catalyst | Conv. (%) | Sel. (%) | T (°C) | Time | Specific Activity (mmol/g·h) | Ref. |
---|---|---|---|---|---|---|
(5%)HRG/MnO2–(1%)Ag2O | 100 | >99 | 100 | 25 min | 16.0 | This study |
Pd NPs/PS | 100 | >99 | 85 | 15 h | 1.80 | [55] |
NbP-S2 | 72 | 100 | 90 | 24 h | 2.74 | [56] |
MoVIO2(bp-bhz)(MeOH) | 84.0 | - | 80 | 0.5 h | 13.77 | [57] |
15% w/w Ag-OMS-2 | 78.9 | - | 75 | 4 h | 0.16 | [58] |
AuCNT | 80 | - | RT | 24 h | - | [59] |
VO(ephedrine)2@MNPs | 96 | >99 | 80 | 3 h | 9.60 | [60] |
CoAl2O4 | 78.54 | 85.43 | 80 | 5 h | 1.57 | [16] |
POM/ZrO2 | 88 | - | RT | 3 h | 11.73 | [61] |
Ru/CaO–ZrO2 | 95 | 94 | 90 | 2 h | 7.92 | [62] |
Pd-pol | 98 | >99 | 100 | 16 h | 2.65 | [63] |
Ru/Mg–LaO | 96 | >99 | 80 | 4 h | 2.40 | [64] |
FeAPO-5/NaBr | 56.2 | 100 | 70 | 8 h | 7.45 | [65] |
2 wt% Ir/TiO2 | >99 | >99 | 80 | 3 h | 2.67 | [66] |
Au/LDH | >99 | >99.5 | 80 | 2 h | 9.28 | [67] |
Ru/MnOx/CeO2 | 99 | 99 | 27 | 7 h | 1.41 | [68] |
Au/NiAlO | 96 | >99 | 80 | 1 h | 8.0 | [69] |
PW11-DMA16/CMPS | 92 | 98.7 | 90 | 6 h | 2.56 | [70] |
CoPc@Cell | 91 | >99 | RT | 5.5 h | 3.31 | [71] |
Co(II)/ZnO | 95 | 100 | 70 | 13 h | 1.45 | [72] |
Fe(NO3)3·9H2O/NHPI | 92 | >99 | RT | 48 h | 1.92 | [73] |
Na/CoCl3 | 99 | 100 | RT | 46 h | 0.43 | [74] |
Au/TiO2 | 100 | >99 | 110 | 24 h | 0.83 | [75] |
Fe3O4 | 76 | >99 | 80 | 18 h | 1.40 | [76] |
FeCl3-imine@SiO2 | 90 | >99 | 80 | 6 h | 3.26 | [77] |
Entry | Substrate | Product | Time (min) | Conv. (%) | Sel. (%) |
---|---|---|---|---|---|
1 | 25 | 100 | >99 | ||
2 | 35 | 100 | >99 | ||
3 | 20 | 100 | >99 | ||
4 | 25 | 100 | >99 | ||
5 | 45 | 100 | >99 | ||
6 | 60 | 100 | >99 | ||
7 | 95 | 100 | >99 | ||
8 | 180 | 100 | >99 | ||
9 | 210 | 100 | >99 | ||
10 | 35 | 100 | >99 | ||
11 | 30 | 100 | >99 | ||
12 | 30 | 100 | >99 | ||
13 | 55 | 100 | >99 | ||
14 | 40 | 100 | >99 | ||
15 | 45 | 100 | >99 | ||
16 | 55 | 100 | >99 | ||
17 | 65 | 100 | >99 | ||
18 | 80 | 100 | >99 | ||
19 | 100 | 100 | >99 | ||
20 | 140 | 100 | >99 | ||
21 | 60 | 100 | >99 | ||
22 | 120 | 100 | >99 | ||
23 | 90 | 100 | >99 | ||
24 | 200 | 100 | >99 | ||
25 | 220 | 100 | >99 | ||
26 | 130 | 100 | >99 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Assal, M.E.; Shaik, M.R.; Kuniyil, M.; Khan, M.; Al-Warthan, A.; Siddiqui, M.R.H.; Adil, S.F. Ag2O Nanoparticles-Doped Manganese Immobilized on Graphene Nanocomposites for Aerial Oxidation of Secondary Alcohols. Metals 2018, 8, 468. https://doi.org/10.3390/met8060468
Assal ME, Shaik MR, Kuniyil M, Khan M, Al-Warthan A, Siddiqui MRH, Adil SF. Ag2O Nanoparticles-Doped Manganese Immobilized on Graphene Nanocomposites for Aerial Oxidation of Secondary Alcohols. Metals. 2018; 8(6):468. https://doi.org/10.3390/met8060468
Chicago/Turabian StyleAssal, Mohamed E., Mohammed Rafi Shaik, Mufsir Kuniyil, Mujeeb Khan, Abdulrahman Al-Warthan, Mohammed Rafiq H. Siddiqui, and Syed Farooq Adil. 2018. "Ag2O Nanoparticles-Doped Manganese Immobilized on Graphene Nanocomposites for Aerial Oxidation of Secondary Alcohols" Metals 8, no. 6: 468. https://doi.org/10.3390/met8060468
APA StyleAssal, M. E., Shaik, M. R., Kuniyil, M., Khan, M., Al-Warthan, A., Siddiqui, M. R. H., & Adil, S. F. (2018). Ag2O Nanoparticles-Doped Manganese Immobilized on Graphene Nanocomposites for Aerial Oxidation of Secondary Alcohols. Metals, 8(6), 468. https://doi.org/10.3390/met8060468