Monitoring Liquid Level of Blast Furnace Hearth and Torpedo Ladle by Electromotive Force Signal
Abstract
:1. Introduction
2. EMF Measurement Principle
EMF Measurement Principle of Laboratory Experiment and Torpedo Ladle Experiment
3. Experimental Apparatus and Procedure
3.1. Experimental Apparatus and Procedure of Laboratory Experiment
3.2. Experimental Apparatus and Procedure of Torpedo Ladle Experiment
4. Experimental Results and Discussions
4.1. Laboratory Experiment
4.1.1. Validation of EMF Signals by the Height of Liquid
4.1.2. Effect of the Height of Sensor Locations on EMF Signals
4.1.3. Effect of Refractory Thickness on EMF Signals
4.1.4. Effect of the Sensor Positions along Circumference on EMF Signals
4.1.5. Effect of Different Liquid Medium on EMF Signals
4.1.6. Reproducibility of EMF Signals
4.2. Torpedo Ladle Experiment
4.2.1. Effect of the Height of Sensor Location on EMF Signals
4.2.2. Effect of Refractory Thickness on EMF Signals
5. Conclusions
- (1)
- The liquid level has the same trend as the EMF signal in the tapping process and the EMF signal can characterize the liquid level, which indicates that the EMF signal can characterize the liquid level in the hearth of the blast furnace. The EMF signals are both different in height and in the circumferential direction of the inner and outer walls, where the circumferential difference explains the state of liquid surface.
- (2)
- The EMF signals on the shallow position are similar to those on the deep position, which means that the thickness of the refractory only influences the EMF signal magnitude in a limited way; it indicates that EMF sensors can be installed on the shell of blast furnace and this suggests the potential for EMF technology in measuring lining thickness.
- (3)
- The torpedo ladle experiment further shows that the position and depth of the EMF sensor will have a large impact on the signal but the different position sensors all can characterize the change of liquid level.
6. Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Ruiz-Bustinza, I.; Antoranz, J.C.; Mochón, J.; Rodriguez, D.; Parra, R.; Verdeja, L.F.; Martin, R. New techniques to detect the suitable time to close the tap hole of a blast furnace. Steel Res. Int. 2012, 83, 783–790. [Google Scholar] [CrossRef]
- Brännbacka, J.; Saxén, H. Novel model for estimation of liquid levels in the blast furnace hearth. Chem. Eng. Sci. 2004, 59, 3423–3432. [Google Scholar] [CrossRef]
- Agrawal, A.; Kor, S.C.; Nandy, U.; Choudhary, A.R.; Tripathi, V.R. Real-time blast furnace hearth liquid level monitoring system. Ironmak. Steelmak. 2016, 43, 550–558. [Google Scholar] [CrossRef]
- Ito, T.; Yotsuji, J.; Nagamune, A. Development of pig iron and molten slag level measurement technique for blast furnace. Trans. Iron Steel Inst. Jpn. 2012, 54, 2618–2622. [Google Scholar] [CrossRef]
- Duarte, R.M.; Ruizbustinza, I.; Carrascal, D.; Verdeja, L.F.; Mochón, J.; Cores, A. Monitoring and control of hearth refractory wear to improve blast furnace operation. Ironmak. Steelmak. 2013, 40, 350–359. [Google Scholar] [CrossRef]
- Gomes, F.S.V.; Salles, J.L.F.; Wasem, L.A. A new prediction model for liquid level in blast furnaces based on time series analysis. In Proceedings of the IEEE International Conference on Control and Automation, Santiago, Chile, 19–21 December 2011; pp. 772–777. [Google Scholar]
- Alter, M.A.; Brunner, J.M.; Holmes, D.J. Continuous monitoring of liquid level and thermal state in the hearth based on measurement of emf on the blast furnace shell. Iron Steel Technol. 2013, 10, 43–50. [Google Scholar]
- Radilov, S. Electrical current in the blast furnace and its use for blast furnace monitoring. Stal 1985, 3, 9–11. [Google Scholar]
- Torrkulla, J.; Brännbacka, J.; Saxén, H.; Waller, M. Indicators of the internal state of the blast furnace hearth. ISIJ Int. 2002, 42, 504–511. [Google Scholar] [CrossRef]
- Hattink, M.; van der Stel, J.; Lecacheux, B. Determination of Factors Influencing the Deadman Position and Evaluation of Its Impacton Blast Furnace Lifetime; Publications Office of the European Union: Luxembourg, 2011; pp. 21–37. [Google Scholar]
- Brännbacka, J.; Torrkulla, J.; Saxén, H. Simple simulation model of blast furnace hearth. Ironmak. Steelmak. 2005, 32, 479–486. [Google Scholar] [CrossRef]
- Sau, D.C.; Sengupta, R.; Bandopadhyay, D. Development of Model for the Estimation of Coke Bed Voidage and the Liquid Levels in the Blast Furnace Hearth; CSIR: New Delhi, India, 2011. [Google Scholar]
- Shao, L.; Saxén, H. Model of blast furnace hearth drainage. Steel Res. Int. 2012, 83, 197–204. [Google Scholar] [CrossRef]
- Gomes, F.S.V.; Côco, K.F.; Salles, J.L.F. Multistep forecasting models of the liquid level in a blast furnace hearth. IEEE Trans. Autom. Sci. Eng. 2017, 14, 1286–1296. [Google Scholar] [CrossRef]
- Sancho, L.F.; Chust, R.P.; Carrascal, D. New technique for abnormal casting identification in a blast furnace. Rev. Met. Paris 2012, 104, 23–28. [Google Scholar] [CrossRef]
- Uchida, K.; Takahashi, S.; Harii, K.; Ieda, J.; Koshibae, W.; Ando, K.; Maekawa, S.; Saitoh, E. Observation of the spin seebeck effect. Nature 2008, 455, 778–781. [Google Scholar] [CrossRef] [PubMed]
- Maekawa, S.; Tohyama, T.; Barnes, S.E.; Ishihara, S.; Koshibae, W.; Khaliullin, G. Physics of Transition Metal Oxides; Springer Science & Business Media: New York, NY, USA, 2004; Volume 144. [Google Scholar]
- Goldsmid, H.J. The Thermoelectric and Related Effects; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1–6. [Google Scholar]
- Zhao, K.Q.; Wu, H.X.; Ni, F.L. Sensors Technology and Engineering Application; China Electric Power Press: Beijing, China, 2012; Volume 2, p. 316. [Google Scholar]
- Lebed’, P.; Safina, L.; Demidenko, T.; Semenko, A.Y.; Pochekailo, I.; Grishchenko, V. Monitoring the distribution of molten smelting products around the hearth of a blast furnace. Metallurgist 1989, 33, 190–191. [Google Scholar] [CrossRef]
Position of Sensors | Inner Wall | Outer Wall | ||
---|---|---|---|---|
EMF Curve | EMF Value | EMF Curve | EMF Value | |
S | √ | √ | √ | √ |
W | √ | × | √ | √ |
N | √ | × | √ | √ |
E | √ | × | √ | √ |
Position of Sensors | Top | Middle | Bottom | |||
---|---|---|---|---|---|---|
Similarity of EMF Curve between Inner and Outer | EMF Value on inner Wall Bigger | Similarity of EMF Curve between Inner and Outer | EMF Value on Inner Wall Bigger | Similarity of EMF Curve between Inner and Outer | EMF Value on Inner Wall Bigger | |
S | √ | √ | √ | √ | √ | √ |
W | √ | √ | √ | √ | √ | √ |
N | √ | √ | √ | √ | √ | √ |
E | √ | √ | √ | √ | √ | √ |
The Position of EMF Curve and EMF Value | Sensors on the Top | Sensors on the Middle | Sensors on the Bottom |
---|---|---|---|
EMF curve distribution on inner wall | √ | √ | √ |
Order of EMF value on inner wall | S > E > W > N | S > E > W > N | S > E > W > N |
EMF curve distribution on inner wall | √ | √ | √ |
Order of EMF value on outer wall | S > E > W > N | S > E > W > N | S > E > W > N |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Zan, L.; Ge, Y.; Wei, H.; Zhang, Z.; Bi, C.; Lu, K.; Yu, Y. Monitoring Liquid Level of Blast Furnace Hearth and Torpedo Ladle by Electromotive Force Signal. Metals 2018, 8, 665. https://doi.org/10.3390/met8090665
Li Y, Zan L, Ge Y, Wei H, Zhang Z, Bi C, Lu K, Yu Y. Monitoring Liquid Level of Blast Furnace Hearth and Torpedo Ladle by Electromotive Force Signal. Metals. 2018; 8(9):665. https://doi.org/10.3390/met8090665
Chicago/Turabian StyleLi, Ying, Lei Zan, Yao Ge, Han Wei, Zhenghao Zhang, Chuanguang Bi, Kaicheng Lu, and Yaowei Yu. 2018. "Monitoring Liquid Level of Blast Furnace Hearth and Torpedo Ladle by Electromotive Force Signal" Metals 8, no. 9: 665. https://doi.org/10.3390/met8090665
APA StyleLi, Y., Zan, L., Ge, Y., Wei, H., Zhang, Z., Bi, C., Lu, K., & Yu, Y. (2018). Monitoring Liquid Level of Blast Furnace Hearth and Torpedo Ladle by Electromotive Force Signal. Metals, 8(9), 665. https://doi.org/10.3390/met8090665