Quantitative and Qualitative Analysis of Hydrogen Accumulation in Hydrogen-Storage Materials Using Hydrogen Extraction in an Inert Atmosphere
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
- Step 1.
- At a furnace heating step of 200 °C (120 A), the measured weight of the sample was 0.02 g. It was not necessary to carry out the measurements in this mode.
- Step 2.
- At a furnace heating step of 100 °C (60 A), the maximum sample mass to measure hydrogen concentration was 0.03 g; the analysis time was optimally fitted for measurements.
- Step 3.
- At a furnace heating step of 50 °C (30 A), the maximum sample mass was 0.04 g. Given that the maximum analysis time could not exceed 600 s, these settings could not be selected as the basic settings for measurement, since the process of determining the hydrogen content in the material cannot be prolonged over time.
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Borzenko, V.; Eronin, A. The use of air as heating agent in hydrogen metal hydride storage coupled with PEM fuel cell. Int. J. Hydrogen Energy 2016, 41, 23120–23124. [Google Scholar] [CrossRef]
- García-Triviño, P.; Fernández-Ramírez, L.M.; Gil-Mena, A.J.; Llorens-Iborra, F.; García-Vázquez, C.A.; Jurado, F. Optimized operation combining costs, efficiency and lifetime of a hybrid renewable energy system with energy storage by battery and hydrogen in grid-connected applications. Int. J. Hydrogen Energy 2016, 41, 23132–23144. [Google Scholar]
- Ortiz, A.L.; Zaragoza, M.J.M.; Collins-Martínez, V. Hydrogen production research in Mexico: A review. Int. J. Hydrogen Energy 2016, 41, 23363–23379. [Google Scholar] [CrossRef]
- Ramírez-Dámaso, G.; Ramírez-Platón, I.E.; López-Chávez, E.; Castillo-Alvarado, F.L.; Cruz-Torres, A.; Caballero, F.; Mondragón-Guzmán, R.; Rojas-Hernández, E. A DFT study of hydrogen storage on surface (110) of Mg1−x Alx (0 ≤ x ≤ 0.1). Int. J. Hydrogen Energy 2016, 41, 23388–23393. [Google Scholar]
- Ortiz, A.L.; Sámano, R.P.; Zaragoza, M.M.; Collins-Martínez, V. Thermodynamic analysis and process simulation for the H2 production by dry reforming of ethanol with CaCO3. Int. J. Hydrogen Energy 2015, 40, 17172–17179. [Google Scholar] [CrossRef]
- Liu, W.; Aguey-Zinsou, K.F. Hydrogen storage properties of in-situ stabilised magnesium nanoparticles generated by electroless reduction with alkali metals. Int. J. Hydrogen Energy 2015, 40, 16948–16960. [Google Scholar] [CrossRef]
- Bouazizi, N.; Boudharaa, T.; Bargougui, R.; Vieillard, J.; Ammar, S.; Le Derf, F.; Azzouz, A. Synthesis and properties of ZnO-HMD@ZnO-Fe/Cu core-shell as advanced material for hydrogen storage. J. Colloids Interface Sci. 2017, 491, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Köse, D.A.; Yurdakul, Ö.; Şahin, O.; Öztürk, Z. The new metal complex templated polyoxoborate(s) (POB(s)) structures. Synthesis, structural characterization, and hydrogen storage capacities. J. Mol. Struct. 2017, 1134, 809–813. [Google Scholar]
- Kolachev, B.A.; Shalin, R.E.; Ilin, A.A. Hydrogen Storage Alloys; Metallurgy: Moscow, Russia, 1995; p. 384. (In Russian) [Google Scholar]
- Zhang, Y.; Li, J.; Zhang, T.; Wu, T.; Kou, H.; Xue, X. Hydrogenation thermokinetics and activation behavior of non-stoichiometric Zr-based Laves alloys with enhanced hydrogen storage capacity. J. Alloys Compd. 2017, 694, 300–308. [Google Scholar] [CrossRef]
- Suárez-Alcántara, K.; Palacios-Lazcano, A.F.; Funatsu, T.; Cabañas-Moreno, J.G. Hydriding and dehydriding in air-exposed Mg Fe powder mixtures. Int. J. Hydrogen Energy 2016, 41, 23380–23387. [Google Scholar]
- Chen, X.; Zou, J.; Zeng, X.; Ding, W. Hydrogen storage properties of a Mg-La-Fe-H nano-composite prepared through reactive ball milling. J. Alloys Compd. 2017, 701, 208–214. [Google Scholar] [CrossRef]
- Ma, M.; Duan, R.; Ouyang, L.; Zhu, X.; Chen, Z.; Peng, C.; Zhu, M. Hydrogen storage and hydrogen generation properties of CaMg2-based alloys. J. Alloys Compd. 2017, 691, 929–935. [Google Scholar] [CrossRef]
- Suárez-Alcántara, K.; Palacios-Lazcano, A.F.; Funatsu, T.; Cabañas-Moreno, J.G. Mg–M–LiH alloys prepared by mechanical milling and their hydrogen storage characteristics. Int. J. Hydrogen Energy 2015, 40, 17344–17353. [Google Scholar]
- Hino, S.; Grove, H.; Ichikawa, T.; Kojima, Y.; Sørby, M.H.; Hauback, B.C. Metal aluminum amides for hydrogen storage–Crystal structure studies. Int. J. Hydrogen Energy 2015, 40, 16938–16947. [Google Scholar] [CrossRef]
- Tarasov, B.P.; Lototsky, M.V.; Yartys, V.A. The problem of hydrogen storage and the prospects for using hydrides for the accumulation of hydrogen. Russ. Chem. J. 2006, 50, 34–48. (In Russian) [Google Scholar]
- Kulik, O.P.; Chernyshev, L.I. Hydrogen Energy: Storage and Transportation of Hydrogen (Review); Frantsevich, I.N., Ed.; Preprint of NAS of Ukraine; Institute of Problems of Materials Science: Ukraine, Ukraine; pp. 1–67. (In Russian)
- Pundt, A.; Kirchheim, R. Hydrogen in metals: Microstructural aspects. Annu. Rev. Mater. Res. 2006, 36, 555–608. [Google Scholar] [CrossRef]
- Wang, L.; Jiang, J.; Ma, A.; Li, Y.; Song, D.A. Critical Review of Mg-Based Hydrogen Storage Materials Processed by Equal Channel Angular Pressing. Metals 2017, 7, 324. [Google Scholar] [CrossRef]
- Da Silva Dupim, I.; Ferreira Santos, S.; Huot, J. Effect of Cold Rolling on the Hydrogen Desorption Behavior of Binary Metal Hydride Powders under Microwave Irradiation. Metals 2015, 5, 2021–2033. [Google Scholar] [CrossRef]
- Perevezentsev, A.N.; Andreev, B.M.; Kapyshev, V.K.; Rivkis, L.A.; Malek, M.P.; Bystritskii, V.M.; Stolupin, V.A. Hydrides of intermetallic compounds and alloys, their properties and applications in nuclear engineering. Phys. Elem. Part. Atom. Nucl. 1988, 19, 1386. (In Russian) [Google Scholar]
- Azhazh, V.M.; Tikhonovsky, M.A.; Shepelev, A.G.; Kurilo, Yu.P.; Ponomarenko, T.A.; Vinogradov, D.V. Materials for hydrogen storage: Analysis of the development trend on the basis of data on information flows. Q. Atom. Sci. Technol. 2006, 1, 145–152. (In Russian) [Google Scholar]
- Milanović, I.; Milošević, S.; Rašković-Lovre, Ž.; Novaković, N.; Vujasin, R.; Matović, L.; Fernándezc, J.F.; Sánchez, C.; Novaković, J.G. Microstructure and hydrogen storage properties of MgH2–TiB2–SiC composites. Ceram. Int. 2013, 39, 4399–4405. [Google Scholar]
- Fernandez, A.; Deprez, E.; Friedrichs, O. A comparative study of the role of additive in the MgH2 vs. the LiBH4–MgH2 hydrogen storage system. Int. J. Hydrogen Energy 2011, 36, 3932–3940. [Google Scholar] [CrossRef]
- Friedrichs, O.; Kolodziejczyk, L.; Sánchez-López, J.C.; Fernandez, A.; Lyubenova, L.; Zander, D.; Köster, U.; Aguey-Zinsoud, K.F.; Klassen, T.; Bormann, R. Influence of particle size on electrochemical and gas-phase hydrogen storage in nanocrystalline Mg. J. Alloys Compd. 2008, 463, 539–545. [Google Scholar] [CrossRef]
- Leardini, F.; Bodega, J.; Ares, J.R.; Fernandez, J.F. Realistic simulation in a single stage hydrogen compressor based on AB2 alloys. Int. J. Hydrogen Energy 2016, 41, 9780–9788. [Google Scholar]
- Kumar, S.; Jain, A.; Ichikawa, T.; Kojima, Y.; Dey, G.K. Development of vanadium based hydrogen storage material: A review. Renew. Sustain. Energy Rev. 2017, 72, 791–800. [Google Scholar] [CrossRef]
- Shao, H.; Xin, G.; Zheng, J.; Li, X.; Akiba, E. Nanotechnology in Mg-based materials for hydrogen storage. Nano Energy 2012, 1, 590–601. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, Y.; Zhang, M.; Hu, R.; Kou, H.; Li, J.; Xue, X. Hydrogen absorption behavior of Zr-based getter materials with Pd Ag coating against gaseous impurities. Int. J. Hydrogen Energy 2016, 41, 14778–14787. [Google Scholar] [CrossRef]
- Tarnawski, Z.; Kim-Ngan, N.T.H. Hydrogen storage characteristics of Ti–and V–based thin films. J. Sci. Adv. Mater. Dev. 2016, 1, 141–146. [Google Scholar] [CrossRef]
- Protsenko, O.M. Experience in developing a methodology for measuring hydrogen content in titanium alloys. Electron. Sci. J. 2014, 12, 1–5. (In Russian) [Google Scholar]
- Grigorovich, K.V. New possibilities of modern methods for determination of gas-forming impurities in metals. Diag. Mater. 2007, 73, 23–34. (In Russian) [Google Scholar]
- Furuya, Y.; Takasaki, A.; Mizuno, K.; Yoshiie, T. Hydrogen desorption from pure titanium with different concentration levels of hydrogen. J. Alloys Compd. 2007, 446, 447–450. [Google Scholar] [CrossRef]
- Eliezer, D.; Tal-Gutelmacher, E.; Cross, C.E.; Boellinghaus, T. Hydrogen absorption and desorption in a duplex-annealed Ti–6Al–4V alloy during exposure to different hydrogen-containing environments. Mater. Sci. Eng. A 2006, 433, 298–304. [Google Scholar] [CrossRef]
- Tal-Gutelmacher, E.; Eliezer, D.; Abramov, E. Thermal desorption spectroscopy (TDS)—Application in quantitative study of hydrogen evolution and trapping in crystalline and non-crystalline materials. Mater. Sci. Eng. A 2007, 445, 625–631. [Google Scholar] [CrossRef]
- Von Zeppelin, F.; Haluška, M.; Hirscher, M. Thermal desorption spectroscopy as a quantitative tool to determine the hydrogen content in solids. Thermochim. Acta 2003, 404, 251–258. [Google Scholar] [CrossRef]
- Takasaki, A.; Furuya, Y.; Ojima, K.; Taneda, Y. Hydride dissociation and hydrogen evolution behavior of electrochemically charged pure titanium. J. Alloys Compd. 1995, 224, 269–273. [Google Scholar] [CrossRef]
- Determination of Total and Surface Hydrogen by Melting in an Inert Gas Atmosphere: [Electronic Resource]. LECO Corporation–Representative Office in Russia, 2012. Available online: http://ru.leco-europe.com/product/rhen602/ (accessed on 27 August 2018). (In Russian).
- Mikhaylov, A.A.; Laptev, R.S.; Kudiiarov, V.N.; Volokitina, T.L. Titanium defect structure change after gas-phase hydrogenation at different temperatures and cooling rates. AIP Conf. Proc. 2016, 1783, 020152. [Google Scholar] [Green Version]
- Hadjixenophontos, E.; Michalek, L.; Roussel, M.; Hirscher, M.; Schmitz, G. The role of surface oxides on hydrogen sorption kinetics in titanium thin films. Appl. Surf. Sci. 2018, 441, 324–330. [Google Scholar] [CrossRef]
- Laptev, R.; Lider, A.; Bordulev, Y.; Kudiiarov, V.; Garanin, G. Hydrogenation-induced microstructure changes in titanium. J. Alloys Compd. 2015, 645, S193–S195. [Google Scholar] [CrossRef] [Green Version]
- Stepanova, E.; Bordulev, Y.; Kudiiarov, V.; Laptev, R.; Lider, A.; Jiang, X. Effect of hydrogen on the structural and phase state and defect structure of titanium Alloys. AIP Conf. Proc. 2016, 1772, 030016. [Google Scholar]
- Sakintuna, B.; Lamari-Darkrim, F.; Hirscher, M. Metal hydride materials for solid hydrogen storage: A review. Int. J. Hydrogen Energy 2007, 32, 1121–1140. [Google Scholar] [CrossRef]
- Larionov, V.V.; Lider, A.M.; Laptev, R.S. Control of changes in the defect structure of titanium saturated with hydrogen. IOP Conf. Ser. Mater. Sci. Eng. 2016, 135, 012025. [Google Scholar] [CrossRef]
- Ulmer, U.; Dieterich, M.; Pohl, A.; Dittmeyer, R.; Linder, M.; Fichtner, M. Study of the structural, thermodynamic and cyclic effects of vanadium and titanium substitution in laves-phase AB2 hydrogen storage alloys. Int. J. Hydrogen Energy 2017, 42, 20103–20110. [Google Scholar] [CrossRef]
- Macin, V.; Christ, H.J. Influence of hydride-induced microstructure modification on mechanical properties of metastable beta titanium alloy Ti 10V-2Fe-3Al. Int. J. Hydrogen Energy 2015, 40, 16878–16891. [Google Scholar] [CrossRef]
- Vizcaíno, P.; Vergara, I.L.; Banchik, A.D.; Abriata, J.P. Terminal solid solubility determinations in the H–Ti system. Int. J. Hydrogen Energy 2015, 40, 16928–16937. [Google Scholar]
- San-Martin, A.; Manchester, F.D. The H-Ti (Hydrogen-Titanium) system. Bull. Alloy Phase Diagr. 1987, 8, 30–42. [Google Scholar] [CrossRef]
- Kudiiarov, V.N.; Babihina, M.N.; Gvozdyakov, D.V. The Influence of Gas-Phase Hydrogenation Parameters on the Processes of Activation, Sorption and Accumulation of Hydrogen in the Powder of Pure Titanium. MATEC Web Conf. 2016, 72, 01054. [Google Scholar] [CrossRef] [Green Version]
- Kolthoff, I.M.; Stenger, V.A. Volumetric Analysis; Interscience Publishers, Inc.: Olney, UK, 1947. [Google Scholar]
- Methodical Instructions to Laboratory Work on Analytical Chemistry “Gravimetric Methods of Analysis”; Comp. T.N. Ermolaeva.-Lipetsk; LSTU: Lipetsk, Russia, 2004; p. 35. (In Russian)
- Manakhova, S.V. Fundamentals of quantitative analysis: Textbook. In Allowance; Northern (Arctic) Federal University: Arkhangelsk, Russia, 2010; p. 128. (In Russian) [Google Scholar]
- Denisov, E.A.; Kompaniets, M.V.; Kompaniets, T.N.; Spitsyn, V.I. Surface-limited permeation regime in the study of hydrogen interactions with metals. Measurement 2018, 117, 258–265. [Google Scholar] [CrossRef]
- Nikitenkov, N.N.; Chernov, I.P.; Tyurin, Y.I.; Skirnevsky, A.V.; Garanin, G.V.; Lider, A.M.; Cherdantsev, Y.P. Studies of hydrogen storage in a zirconium alloy by the method of thermally stimulated gas evolution. Proc. Tomsk Polytech. Univ. 2006, 309, 52–55. (In Russian) [Google Scholar]
- Woodruff, D.; Delchar, T. Modern Methods of Surface Investigation; Cambridge University Press: Cambridge, UK, 1989; p. 564. [Google Scholar]
- Hultquist, G.; Graham, M.J.; Smialek, J.L.; Jönsson, B. Hydrogen in metals studied by thermal desorption spectroscopy (TDS). Corros. Sci. 2015, 93, 324–326. [Google Scholar] [CrossRef]
- Ma, M.; Liang, L.; Tang, B.; Xiang, W.; Wang, Y.; Cheng, Y.; Tan, X. Decomposition kinetics study of zirconium hydride by interrupted thermal desorption spectroscopy. J. Alloys Compd. 2015, 645, S217–S220. [Google Scholar] [CrossRef]
- Ershova, O.G.; Dobrovolsky, V.D.; Solonin, Y.M.; Khyzhun, O.Y. Hydrogen-sorption and thermodynamic characteristics of mechanically grinded TiH 1.9 as studied using thermal desorption spectroscopy. J. Alloys Compd. 2011, 509, 128–133. [Google Scholar] [CrossRef]
Series | Hydrogenation Time (min) | Concentration (wt %) | Series | Hydrogenation Time (min) | Concentration (wt %) |
---|---|---|---|---|---|
1 | 55 | 0.643 ± 0.032 | 4 | 140 | 1.559 ± 0.078 |
2 | 70 | 1.068 ± 0.053 | 5 | 160 | 1.860 ± 0.093 |
3 | 120 | 1.125 ± 0.056 | 6 | 210 | 4.0 ± 0.1 |
Step | Mass 0.01 ± 0.002 g | Mass 0.02 ± 0.002 g | Mass 0.03 ± 0.002 g | Mass 0.04 ± 0.002 g |
---|---|---|---|---|
1 (120 A) | + | + | - | - |
2 (60 A) | + | + | + | - |
3 (30 A) | + | + | + | + |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Babikhina, M.N.; Kudiiarov, V.N.; Mostovshchikov, A.V.; Lider, A.M. Quantitative and Qualitative Analysis of Hydrogen Accumulation in Hydrogen-Storage Materials Using Hydrogen Extraction in an Inert Atmosphere. Metals 2018, 8, 672. https://doi.org/10.3390/met8090672
Babikhina MN, Kudiiarov VN, Mostovshchikov AV, Lider AM. Quantitative and Qualitative Analysis of Hydrogen Accumulation in Hydrogen-Storage Materials Using Hydrogen Extraction in an Inert Atmosphere. Metals. 2018; 8(9):672. https://doi.org/10.3390/met8090672
Chicago/Turabian StyleBabikhina, Maria N., Viktor N. Kudiiarov, Andrei V. Mostovshchikov, and Andrey M. Lider. 2018. "Quantitative and Qualitative Analysis of Hydrogen Accumulation in Hydrogen-Storage Materials Using Hydrogen Extraction in an Inert Atmosphere" Metals 8, no. 9: 672. https://doi.org/10.3390/met8090672
APA StyleBabikhina, M. N., Kudiiarov, V. N., Mostovshchikov, A. V., & Lider, A. M. (2018). Quantitative and Qualitative Analysis of Hydrogen Accumulation in Hydrogen-Storage Materials Using Hydrogen Extraction in an Inert Atmosphere. Metals, 8(9), 672. https://doi.org/10.3390/met8090672