Experimental Investigation of Crack Propagation and Strain Fields Evolution around a Crack Tip in 5A05 Aluminum Alloy
Abstract
:1. Introduction
2. Geometric Phase Analysis
3. Materials and Methods
3.1. Experimental Procedure
3.2. In Situ SEM Three-Point Bending Test
4. Results and Discussion
4.1. Crack Initiation and Propagation
4.2. Deformation Evolution around a Crack Tip
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, P.F.; Yang, J.L.; Liu, W.S.; Tang, X.Z.; Zhao, K.; Lu, X.H.; Xu, S.L. Tunable crack propagation behavior in carbon fiber reinforced plastic laminates with polydopamine and graphene oxide treated fibers. Mater. Des. 2017, 113, 68–75. [Google Scholar] [CrossRef]
- Datta, S.; Chattopadhyay, A.; Iyyer, N.; Phan, N. Fatigue crack propagation under biaxial fatigue loading with single overloads. Int. J. Fatigue 2018, 109, 103–113. [Google Scholar] [CrossRef]
- Zhao, C.W.; Xing, Y.M.; Bai, P.C.; Li, J.J.; Liu, Q.L.; Du, Y.G.; Liu, M.H. Crack tip dislocation emission and nanoscale deformation fields in silicon. Appl. Phys. A 2011, 105, 207–210. [Google Scholar] [CrossRef]
- Patil, S.D.; Narasimhan, R.; Mishra, R.K. Observation of kink shear bands in an aluminium single crystal fracture specimen. Scr. Mater. 2009, 61, 465–468. [Google Scholar] [CrossRef]
- Jiang, R.; Pierron, F.; Octaviani, S.; Reed, P.A.S. Characterisation of strain localisation processes during fatigue crack initiation and early crack propagation by SEM-DIC in an advanced disc alloy. Mater. Sci. Eng. A 2017, 699, 128–144. [Google Scholar] [CrossRef] [Green Version]
- Gioacchino, F.D.; Fonseca, J.Q.D. An experimental study of the polycrystalline plasticity of austenitic stainless steel. Int. J. Plast. 2015, 74, 92–109. [Google Scholar] [CrossRef]
- Kasvayee, K.A.; Salomonsson, K.; Ghassemali, E.; Jarfors, A.E.W. Microstructural strain distribution in ductile iron; comparison between finite element simulation and digital image correlation measurements. Mater. Sci. Eng. A 2016, 655, 27–35. [Google Scholar] [CrossRef]
- Zhang, X.H.; Zhang, S.Y.; Zhao, Q.Y.; Zhao, Y.Q.; Li, R.; Zeng, W.D. In-situ observations of the tensile deformation and fracture behavior of a fine-grained titanium alloy sheet. J. Alloys Compd. 2018, 740, 660–668. [Google Scholar] [CrossRef]
- Barrios, A.; Gupta, S.; Castelluccio, G.M.; Pierron, O.N. Quantitative in situ SEM high cycle fatigue: The critical role of oxygen on nanoscale-void-controlled nucleation and propagation of small cracks in Ni microbeams. Nano Lett. 2018, 18, 2595–2602. [Google Scholar] [CrossRef] [PubMed]
- Meille, S.; Saâdaoui, M.; Reynaud, P.; Fantozzi, G. Mechanisms of crack propagation in dry plaster. J. Eur. Ceram. Soc. 2003, 23, 3105–3112. [Google Scholar] [CrossRef]
- Li, B.S.; Shang, J.L.; Guo, J.J.; Fu, H.Z. In situ observation of fracture behavior of in situ TiBw/Ti composites. Mater. Sci. Eng. A 2004, 383, 316–322. [Google Scholar] [CrossRef]
- Chen, Y.F.; Zheng, S.Q.; Tu, J.P.; Xiao, S.L.; Tian, J.; Xu, L.J.; Chen, Y.Y. Fracture characteristics of notched investment cast TiAl alloy through in situ SEM observation. Trans. Nonferrous. Met. Soc. China 2012, 22, 2389–2394. [Google Scholar] [CrossRef]
- Zhang, J.Z.; Zhang, J.Z.; Meng, Z.X. Direct high resolution in situ SEM observations of very small fatigue crack growth in the ultra-fine grain aluminium alloy IN 9052. Scr. Mater. 2004, 50, 825–828. [Google Scholar] [CrossRef]
- Sheng, J.; Li, J.C.; La, P.Q.; Wei, F.; Song, Y.; Wang, K.L. Investigating the tensile properties of micro-nanostructured 304 stainless steel with SEM and in-situ tension. Sci. Adv. Mater. 2017, 9, 1020–1027. [Google Scholar] [CrossRef]
- Cha, G.J.; Li, J.G.; Xiong, S.M.; Han, Z.Q. Fracture behaviors of A390 aluminum cylinder liner alloys under static loading. J. Alloys Compd. 2013, 550, 370–379. [Google Scholar] [CrossRef]
- Zhao, P.J.; Chen, Z.H.; Dong, C.F. Failure analysis based on microvoids damage model for DP600 steel on in-situ tensile tests. Eng. Fract. Mech. 2016, 154, 152–168. [Google Scholar] [CrossRef]
- Rogne, B.R.S.; Kheradmand, N.; Deng, Y.; Barnoush, A. In situ micromechanical testing in environmental scanning electron microscope: A new insight into hydrogen-assisted cracking. Acta Mater. 2018, 144, 257–268. [Google Scholar] [CrossRef]
- Alfreider, M.; Kozic, D.; Kolednik, O.; Kiener, D. In-situ elastic-plastic fracture mechanics on the microscale by means of continuous dynamical testing. Mater. Des. 2018, 148, 177–187. [Google Scholar] [CrossRef]
- Liu, X.W.; Liu, Y.; Jin, B.; Lu, Y.; Lu, J. Microstructure evolution and mechanical properties of a SMATed Mg alloy under In Situ SEM tensile testing. J. Mater. Sci. Technol. 2017, 33, 224–230. [Google Scholar] [CrossRef]
- Jin, H.; Haldar, S.; Bruck, H.A.; Lu, W.Y. Grid method for microscale discontinuous deformation measurement. Exp. Mech. 2011, 51, 565–574. [Google Scholar] [CrossRef]
- Koyama, M.; Tanaka, Y.; Tsuzaki, K. Micrographic digital image correlation coupled with microlithography: Case study of strain localization and subsequent cracking at an FIB notch tip in a laminated Ti-6Al-4V Alloy. Exp. Mech. 2018, 58, 381–386. [Google Scholar] [CrossRef]
- Tong, J.; Lin, B.; Lu, Y.W.; Madi, K.; Tai, Y.H.; Yates, J.R.; Doquet, V. Near-tip strain evolution under cyclic loading: In situ experimental observation and numerical modelling. Int. J. Fatigue 2015, 71, 45–52. [Google Scholar] [CrossRef]
- Hÿtch, M.J.; Putaux, J.L.; Pénisson, J.M. Measurement of the displacement field of dislocations to 0.03 Å by electron microscopy. Nature 2003, 423, 270–273. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.Y.; Liu, Z.W.; Wen, H.H.; Xie, H.H.; Liu, C. Subset geometric phase analysis method for deformation evaluation of HRTEM images. Ultramicroscopy 2016, 171, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.L.; Snoeck, E.; Ezcurdia, M.; Rodríguez-González, B.; Pastoriza-Santos, I.; Liz-Marzán, L.M.; Hÿtch, M.J. Effects of elastic anisotropy on strain distributions in decahedral gold nanoparticles. Nat. Mater. 2007, 7, 120–124. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.W.; Xing, Y.M.; Zhou, C.E.; Bai, P.C. Experimental examination of displacement and strain fields in an edge dislocation core. Acta Mater. 2008, 56, 2570–2575. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Wen, H.H.; Liu, Z.W.; Zhang, Q.; Xie, H.M. TEM nano-Moire evaluation for an invisible lattice structure near the grain interface. Nanoscale 2017, 9, 15923–15933. [Google Scholar] [CrossRef] [PubMed]
- Li, J.J.; Zhao, C.W.; Xing, Y.M.; Hou, X.H.; Fan, Z.C.; Jin, Y.J.; Wang, Y. In-situ SEM investigation of sub-microscale deformation fields around a crack-tip in silicon. Opt. Laser Eng. 2012, 50, 1694–1698. [Google Scholar] [CrossRef]
- Wang, Q.H.; Xie, H.M.; Liu, Z.W.; Lou, X.H.; Wang, J.F.; Xu, K.W.; Zhang, Z.H.; Liao, J.H.; Gu, C.Z. Residual stress assessment of interconnects by slot milling with FIB and geometric phase analysis. Opt. Laser Eng. 2010, 48, 1113–1118. [Google Scholar] [CrossRef]
- Dai, X.L.; Xie, H.M.; Wang, Q.H. Geometric phase analysis based on the windowed Fourier transform for the deformation field measurement. Opt. Laser Technol. 2014, 58, 119–127. [Google Scholar] [CrossRef]
- Dai, X.L.; Xie, H.M.; Wang, H.X.; Li, C.W.; Liu, Z.W.; Wu, L.F. The geometric phase analysis method based on the local high resolution discrete Fourier transform for deformation measurement. Meas. Sci. Technol. 2014, 25, 025402. [Google Scholar] [CrossRef]
- Zhu, R.H.; Xie, H.M.; Dai, X.L.; Zhu, J.G.; Jin, A.Z. Residual stress measurement in thin films using a slitting method with geometric phase analysis under a dual beam (FIB/SEM) system. Meas. Sci. Technol. 2014, 25, 095003. [Google Scholar] [CrossRef]
- Hÿtch, M.J.; Houdellier, F.; Huee, F.; Snoeck, E. Dark-field electron holography for the measurement of geometric phase. Ultramicroscopy 2011, 111, 1328–1337. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.H.N.; Su, R.K.L.; Fok, S.L.; Zhang, H.G. Fracture behavior of nuclear graphite under three-point bending tests. Eng. Fract. Mech. 2017, 186, 143–157. [Google Scholar] [CrossRef]
- Tan, C.S.; Sun, Q.Y.; Xiao, L.; Zhao, Y.Q.; Sun, J. Characterization of deformation in primary α phase and crack initiation and propagation of TC21 alloy using in-situ SEM experiments. Mater. Sci. Eng. A 2018, 725, 33–42. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, Z.; Xie, H.; Ma, K.; Wu, L. Fabrication of thermal-resistant gratings for high-temperature measurements using geometric phase analysis. Rev. Sci. Instrum. 2016, 87, 123104. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Li, W.; Zhao, C.; Xing, Y.; Lang, F.; Hou, X. Experimental Investigation of Crack Propagation and Strain Fields Evolution around a Crack Tip in 5A05 Aluminum Alloy. Metals 2018, 8, 685. https://doi.org/10.3390/met8090685
Li J, Li W, Zhao C, Xing Y, Lang F, Hou X. Experimental Investigation of Crack Propagation and Strain Fields Evolution around a Crack Tip in 5A05 Aluminum Alloy. Metals. 2018; 8(9):685. https://doi.org/10.3390/met8090685
Chicago/Turabian StyleLi, Jijun, Wencai Li, Chunwang Zhao, Yongming Xing, Fengchao Lang, and Xiaohu Hou. 2018. "Experimental Investigation of Crack Propagation and Strain Fields Evolution around a Crack Tip in 5A05 Aluminum Alloy" Metals 8, no. 9: 685. https://doi.org/10.3390/met8090685
APA StyleLi, J., Li, W., Zhao, C., Xing, Y., Lang, F., & Hou, X. (2018). Experimental Investigation of Crack Propagation and Strain Fields Evolution around a Crack Tip in 5A05 Aluminum Alloy. Metals, 8(9), 685. https://doi.org/10.3390/met8090685