Grain Boundary Complexions and Phase Transformations in Al- and Cu-Based Alloys
Abstract
:1. Introduction
2. Experimental
3. Results
4. Discussion
5. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cahn, J.W. Critical point wetting. J. Chem. Phys. 1977, 66, 3667–3676. [Google Scholar] [CrossRef]
- Ebner, C.; Saam, W.F. New phase-transition phenomena in thin argon films. Phys. Rev. Lett. 1977, 38, 1486–1489. [Google Scholar] [CrossRef]
- Rabkin, E.I.; Shvindlerman, L.S.; Straumal, B.B. Grain boundaries: Phase transitions and critical phenomena. Int. J. Mod. Phys. B 1991, 5, 2989–3028. [Google Scholar] [CrossRef]
- Subramaniam, A.; Koch, C.; Cannon, R.M.; Rühle, M. Intergranular glassy films: An overview. Mater. Sci. Eng. A 2006, 422, 3–18. [Google Scholar] [CrossRef]
- Luo, J. Stabilization of nanoscale quasi-liquid interfacial films in inorganic materials: A review and critical assessment. Crit. Rev. Solid State Mater. Sci. 2007, 32, 67–109. [Google Scholar] [CrossRef]
- Kaplan, W.D.; Chatain, D.; Wynblatt, P.; Carter, W.C. A review of wetting versus adsorption complexions, and related phenomena: The Rosetta stone of wetting. J. Mater. Sci. 2013, 48, 5681–5717. [Google Scholar] [CrossRef]
- Cantwell, P.R.; Tang, M.; Dillon, S.J.; Luo, J.; Rohrer, G.S.; Harmer, M.P. Grain boundary complexions. Acta Mater. 2014, 62, 1–48. [Google Scholar] [CrossRef]
- Straumal, B.B.; Mazilkin, A.A.; Baretzky, B. Grain boundary complexions and pseudopartial wetting. Curr. Opin. Solid State Mater. Sci. 2016, 20, 247–256. [Google Scholar] [CrossRef]
- Luo, J. Interfacial engineering of solid electrolytes. J. Mater. 2015, 1, 22–32. [Google Scholar] [CrossRef]
- Raabe, D.; Herbig, M.; Sandloebes, S.; Li, Y.; Tytko, D.; Kuzmina, M.; Ponge, D.; Choi, P.P. Grain boundary segregation engineering in metallic alloys: A pathway to the design of interfaces. Curr. Opin. Solid State Mater. Sci. 2014, 4, 253–261. [Google Scholar] [CrossRef]
- Straumal, B.B.; Zięba, P.; Gust, W. Grain boundary phase transitions and phase diagrams. Intern. J. Inorgan. Mater. 2011, 3, 1113–1115. [Google Scholar] [CrossRef]
- Rohrer, G.S. Grain boundary energy anisotropy: A review. J. Mater. Sci. 2011, 46, 5881–5895. [Google Scholar] [CrossRef]
- Dillon, S.J.; Harmer, M.P.; Luo, J. Grain boundary complexions in ceramics and metals: An overview. JOM 2009, 61, 38–44. [Google Scholar] [CrossRef]
- Straumal, B.B.; Gust, W. Lines of grain boundary phase transitions on the bulk phase diagrams. Mater. Sci. Forum 1996, 207, 59–68. [Google Scholar] [CrossRef]
- Yang, S.; Zhou, N.; Zheng, H.; Shyue, P.O.; Luo, J. First-order interfacial Transformations with a critical point: Breaking the symmetry at a symmetric tilt grain boundary. Phys. Rev. Lett. 2018, 120, 085702. [Google Scholar] [CrossRef]
- Zhu, Q.; Samanta, A.; Li, B.; Rudd, R.E.; Frolov, T. Predicting phase behavior of grain boundaries with evolutionary search and machine learning. Nat. Commun. 2018, 9, 467. [Google Scholar] [CrossRef] [PubMed]
- Zhou, N.; Yu, Z.; Zhang, Y.; Harmer, M.P.; Luo, J. Calculation and validation of a grain boundary complexion diagram for Bi-doped Ni. Scr. Mater. 2017, 130, 165–169. [Google Scholar] [CrossRef] [Green Version]
- Gao, Q.; Widom, M. Surface and grain boundary complexions in transition metal—Bismuth alloys. Curr. Opin. Solid State Mater. Sci. 2016, 20, 240–246. [Google Scholar] [CrossRef]
- Rickman, J.M.; Luo, J. Layering transitions at grain boundaries. Curr. Opin. Solid State Mater. Sci. 2016, 20, 225–230. [Google Scholar] [CrossRef]
- Zhou, N.; Hu, T.; Luo, J. Grain boundary complexions in multicomponent alloys: Challenges and opportunities. Curr. Opin. Solid State Mater. Sci. 2016, 20, 268–277. [Google Scholar] [CrossRef]
- Johansson, S.A.E.; Wahnstrom, G. First-principles derived complexion diagrams for phase boundaries in doped cemented carbides. Curr. Opin. Solid State Mater. Sci. 2016, 20, 299–307. [Google Scholar] [CrossRef] [Green Version]
- Zhou, N.; Luo, J. Developing grain boundary diagrams for multicomponent alloys. Acta Mater. 2015, 91, 202–216. [Google Scholar] [CrossRef] [Green Version]
- Behera, S.K.; Cantwell, P.R.; Harmer, M.P. A grain boundary mobility discontinuity in reactive element Zr-doped Al2O3. Scr. Mater. 2014, 90–91, 33–36. [Google Scholar] [CrossRef]
- Shi, X.; Luo, J. Developing grain boundary diagrams as a materials science tool: A case study of nickel-doped molybdenum. Phys. Rev. B 2011, 84, 014105. [Google Scholar] [CrossRef]
- Kayyar, A.; Qian, H.; Luo, J. Surface adsorption and disordering in LiFePO4 based battery cathodes. Appl. Phys. Lett. 2009, 95, 221905. [Google Scholar] [CrossRef]
- Luo, J. Liquid-like interface complexion: From activated sintering to grain boundary diagrams. Curr. Opin. Solid State Mater. Sci. 2008, 12, 81–88. [Google Scholar] [CrossRef]
- Tang, M.; Carter, W.C.; Cannon, R.M. Diffuse interface model for structural transitions of grain boundaries. Phys. Rev. B 2006, 73, 024102. [Google Scholar] [CrossRef]
- Protasova, S.G.; Kogtenkova, O.A.; Straumal, B.B.; Zięba, P.; Baretzky, B. Inversed solid-phase grain boundary wetting in the Al–Zn system. J. Mater. Sci. 2011, 46, 4349–4353. [Google Scholar] [CrossRef]
- Straumal, B.B.; Gornakova, A.S.; Kogtenkova, O.A.; Protasova, S.G.; Sursaeva, V.G.; Baretzky, B. Continuous and discontinuous grain boundary wetting in the Zn–Al system. Phys. Rev. B 2008, 78, 054202. [Google Scholar] [CrossRef]
- Straumal, B.B.; Kogtenkova, O.; Zieba, P. Wetting transition of grain boundary triple junctions. Acta Mater. 2008, 56, 925–933. [Google Scholar] [CrossRef]
- Straumal, B.B.; Baretzky, B.; Kogtenkova, O.A.; Straumal, A.B.; Sidorenko, A.S. Wetting of grain boundaries in Al by the solid Al3Mg2 phase. J. Mater. Sci. 2010, 45, 2057–2061. [Google Scholar] [CrossRef]
- Kogtenkova, O.A.; Straumal, A.B.; Afonikova, N.S.; Mazilkin, A.A.; Kolesnikova, K.I.; Straumal, B.B. Grain boundary wetting phase transitions in peritectic copper—Cobalt alloys. Phys. Solid State 2016, 58, 743–747. [Google Scholar] [CrossRef]
- Straumal, B.B.; Gust, W.; Watanabe, T. Tie lines of the grain boundary wetting phase transition in the Zn-rich part of the Zn–Sn phase diagram. Mater. Sci. Forum 1999, 294–296, 411–414. [Google Scholar] [CrossRef]
- Straumal, B.B.; Gust, W.; Molodov, D.A. Wetting transition on grain boundaries in Al contacting with a Sn-rich melt. Interface Sci. 1995, 3, 127–132. [Google Scholar] [CrossRef]
- Straumal, B.; Gust, W.; Molodov, D. Tie lines of the grain boundary wetting phase transition in the Al–Sn System. J. Phase Equilib. 1994, 15, 386–391. [Google Scholar] [CrossRef]
- Dash, J.G.; Fu, H.; Wettlaufer, J.S. The premelting of ice and its environmental consequences. Rep. Prog. Phys. 1995, 58, 115–167. [Google Scholar] [CrossRef]
- Chang, L.S.; Rabkin, E.; Straumal, B.; Lejcek, P.; Hofmann, S.; Gust, W. Temperature dependence of the grain boundary segregation of Bi in Cu polycrystals. Scr. Mater. 1997, 37, 729–735. [Google Scholar] [CrossRef]
- Luo, J.; Chiang, Y.M.; Cannon, R.M. Nanometer-thick surficial films in oxides as a case of prewetting. Langmuir 2005, 21, 7358–7365. [Google Scholar] [CrossRef]
- Chang, L.S.; Rabkin, E.; Straumal, B.B.; Hoffmann, S.; Baretzky, B.; Gust, W. Grain boundary segregation in the Cu–Bi system. Defect Diffus. Forum 1998, 156, 135–146. [Google Scholar] [CrossRef]
- Luo, J.; Tang, M.; Cannon, R.M.; Carter, W.C.; Chiang, Y.M. Pressure-balance and diffuse-interface models for surficial amorphous films. Mater. Sci. Eng. A 2006, 422, 19–28. [Google Scholar] [CrossRef]
- Luo, J.; Chiang, Y.M. Wetting and prewetting on ceramic surfaces. Ann. Rev. Mater. Res. 2008, 38, 227–249. [Google Scholar] [CrossRef]
- Chang, L.S.; Straumal, B.B.; Rabkin, E.; Gust, W.; Sommer, F. The solidus line of the Cu–Bi phase diagram. J. Phase Equlib. 1997, 18, 128–135. [Google Scholar] [CrossRef]
- Rabkin, E.I.; Shvindlerman, L.S.; Straumal, B.B. Diffusion of indium along [001] Sn–Ge interphase boundaries: Prewetting phase transition and critical phenomena. J. Less-Common Met. 1990, 159, 43–52. [Google Scholar] [CrossRef]
- Luo, J. Grain boundary complexions: The interplay of premelting. prewetting, and multilayer adsorption. Appl. Phys. Lett. 2009, 95, 071911. [Google Scholar] [CrossRef]
- Straumal, B.; Kogtenkova, O.; Protasova, S.; Mazilkin, A.; Zieba, P.; Czeppe, T.; Wojewoda-Budka, J.; Faryna, M. Wetting and premelting of triple junctions and grain boundaries in the Al–Zn alloys. Mater. Sci. Eng. A 2008, 495, 126–131. [Google Scholar] [CrossRef]
- Straumal, B.B.; Mazilkin, A.A.; Protasova, S.G.; Gusak, A.M.; Bulatov, M.F.; Straumal, A.B.; Baretzky, B. Grain boundary phenomena in NdFeB-based hard magnetic alloys. Rev. Adv. Mater. Sci. 2014, 38, 17–28. [Google Scholar]
- Khalajhedayati, A.; Rupert, T.J. High-temperature stability and grain boundary complexion formation in a nanocrystalline Cu–Zr alloy. JOM 2015, 67, 2788–2801. [Google Scholar] [CrossRef]
- Kuzmina, M.; Herbig, M.; Ponge, D.; Sandlöbes, S.; Raabe, D. Linear complexions: Confined chemical and structural states at dislocations. Science 2015, 349, 1080–1083. [Google Scholar] [CrossRef]
- Sternlicht, H.; Bojarski, S.A.; Rohrer, G.S.; Kaplan, W.D. Quantitative differences in the Y grain boundary excess at boundaries delimiting large and small grains in Y doped Al2O3. J. Eur. Ceram. Soc. 2018, 38, 1829–1835. [Google Scholar] [CrossRef]
- Behler, K.D.; Marvel, C.J.; LaSalvia, J.C.; Walck, S.D.; Harmer, M.P. Observations of grain boundary chemistry variations in a boron carbide processed with oxide additives. Scr. Mater. 2018, 142, 106–110. [Google Scholar] [CrossRef]
- Schuler, J.D.; Rupert, T.J. Materials selection rules for amorphous complexion formation in binary metallic alloys. Acta Mater. 2017, 140, 196–205. [Google Scholar] [CrossRef] [Green Version]
- Mazilkin, A.A.; Straumal, B.B.; Protasova, S.G.; Bulatov, M.F.; Baretzky, B. Pseudopartial wetting of W/W grain boundaries by the nickel-rich layers. Mater. Lett. 2017, 192, 101–103. [Google Scholar] [CrossRef]
- Kwiatkowski da Silva, A.; Leyson, G.; Kuzmina, M.; Ponge, D.; Herbig, M.; Sandlöbes, S.; Gault, B.; Neugebauer, J.; Raabe, D. Confined chemical and structural states at dislocations in Fe-9wt%Mn steels: A correlative TEM-atom probe study combined with multiscale modelling. Acta Mater. 2017, 124, 305–315. [Google Scholar] [CrossRef]
- Dillon, S.J.; Tai, K.; Chen, S. The importance of grain boundary complexions in affecting physical properties of polycrystals. Curr. Opin. Solid State Mater. Sci. 2016, 20, 324–335. [Google Scholar] [CrossRef]
- Tewari, A.; Bowen, P. Grain boundary complexion and transparent polycrystalline alumina from an atomistic simulation perspective. Curr. Opin. Solid State Mater. Sci. 2016, 20, 278–285. [Google Scholar] [CrossRef]
- Rheinheimer, W.; Hoffmann, M.J. Grain growth in perovskites: What is the impact of boundary transitions? Curr. Opin. Solid State Mater. Sci. 2016, 20, 286–298. [Google Scholar] [CrossRef]
- Dargatz, B.; Gonzalez, J.; Bram, M.; Shinoda, Y.; Wakai, F.; Guillon, O. FAST/SPS sintering of nanocrystalline zinc oxide-Part II: Abnormal grain growth. texture and grain anisotropy. J. Eur. Ceram. Soc. 2016, 36, 1221–1232. [Google Scholar] [CrossRef]
- Rheinheimer, W.; Hoffmann, M.J. Grain growth transitions of perovskite ceramics and their relationship to abnormal grain growth and bimodal microstructures. J. Mater. Sci. 2016, 51, 1756–1765. [Google Scholar] [CrossRef]
- Rheinheimer, W.; Hoffmann, M.J. Non-Arrhenius behavior of grain growth in strontium titanate: New evidence for a structural transition of grain boundaries. Scr. Mater. 2015, 101, 68–71. [Google Scholar] [CrossRef]
- Rheinheimer, W.; Baeurer, M.; Chien, H.; Rohrer, G.S.; Handwerker, C.A.; Blendell, J.E.; Hoffmann, M.J. The equilibrium crystal shape of strontium titanate and its relationship to the grain boundary plane distribution. Acta Mater. 2015, 82, 32–40. [Google Scholar] [CrossRef]
- Winterstein, J.P.; Carter, C.B. Electron-beam damage and point defects near grain boundaries in cerium oxide. J. Eur. Ceram. Soc. 2014, 34, 3007–3018. [Google Scholar] [CrossRef]
- Ma, S.; Cantwell, P.R.; Pennycook, T.J.; Zhou, N.; Oxley, M.P.; Leonard, D.N.; Pennycook, S.J.; Luo, J.; Harmer, M.P. Grain boundary complexion transitions in WO3- and CuO-doped TiO2 bicrystals. Acta Mater. 2013, 61, 691–1704. [Google Scholar] [CrossRef]
- Bojarski, S.A.; Ma, S.; Lenthe, W.; Harmer, M.P.; Rohrer, G.S. Changes in the grain boundary character and energy distributions resulting from a complexion transition in Ca-doped yttria. Metall. Mater. Trans. A 2012, 43, 3532–3538. [Google Scholar] [CrossRef]
- Clarke, D.R. On the equilibrium thickness of intergranular glass phases in ceramic materials. J. Am. Ceram. Soc. 1987, 70, 15–22. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, J. Observation of an unusual case of triple-line instability. Scr. Mater. 2014, 88, 45–48. [Google Scholar] [CrossRef]
- Tai, K.; Feng, L.; Dillon, S.J. Kinetics and thermodynamics associated with Bi adsorption transitions at Cu and Ni grain boundaries. J. Appl. Phys. 2013, 113, 193507. [Google Scholar] [CrossRef]
- Kundu, A.; Asl, K.M.; Luo, J.; Harmer, M.P. Identification of a bilayer grain boundary complexion in Bi-doped Cu. Scr. Mater. 2013, 68, 146–149. [Google Scholar] [CrossRef]
- Straumal, B.B.; Mazilkin, A.A.; Kogtenkova, O.A.; Protasova, S.G.; Baretzky, B. Grain boundary phase observed in Al–5 at.% Zn alloy by using HREM. Philos. Mag. Lett. 2007, 87, 423–430. [Google Scholar] [CrossRef]
- Rickman, J.M.; Harmer, M.P.; Chan, H.M. Grain-boundary layering transitions and phonon engineering. Surf. Sci. 2016, 651, 1–4. [Google Scholar] [CrossRef]
- Pan, Z.; Rupert, T.J. Effect of grain boundary character on segregation-induced structural transitions. Phys. Rev. B 2016, 93, 134113. [Google Scholar] [CrossRef]
- Harmer, M.P. Interfacial kinetic engineering: How far have we come since Kingery’s inaugural Sosman address? J. Am. Ceram. Soc. 2010, 93, 301–317. [Google Scholar] [CrossRef]
- Rickman, J.M.; Chan, H.M.; Harmer, M.P.; Luo, J. Grain-boundary layering transitions in a model bicrystal. Surf. Sci. 2013, 618, 88–93. [Google Scholar] [CrossRef]
- Dillon, S.J.; Tang, M.; Craig Carter, W.; Harmer, M.P. Complexion: A new concept for kinetic engineering in materials science. Acta Mater. 2007, 55, 6208–6218. [Google Scholar] [CrossRef]
- Konyashin, I.; Sologubenko, A.; Weirich, T.; Ries, B. Complexion at WC-Co grain boundaries of cemented carbides. Mater. Lett. 2017, 187, 7–10. [Google Scholar] [CrossRef]
- Zhou, N.; Hu, T.; Huang, J.; Luo, J. Stabilization of nanocrystalline alloys at high temperatures via utilizing high-entropy grain boundary complexions. Scr. Mater. 2016, 124, 160–163. [Google Scholar] [CrossRef] [Green Version]
- Rupert, T.J. The role of complexions in metallic nano-grain stability and deformation. Curr. Opin. Solid State Mater. Sci. 2016, 20, 257–267. [Google Scholar] [CrossRef]
- Harmer, M.P.; Rohrer, G.S. Grain boundary complexions—Current status and future directions. Curr. Opin. Solid State Mater. Sci. 2016, 20, 4–5. [Google Scholar]
- Bojarski, S.A.; Harmer, M.P.; Rohrer, G.S. Influence of grain boundary energy on the nucleation of complexion transitions. Scr. Mater. 2014, 88, 1–4. [Google Scholar] [CrossRef]
- Dillon, S.J.; Harmer, M.P.; Rohrer, G.S. The relative energies of normally and abnormally growing grain boundaries in alumina displaying different complexions. J. Am. Ceram. Soc. 2010, 93, 1796–1802. [Google Scholar] [CrossRef]
- Schumacher, O.; Marvel, C.J.; Kelly, M.N.; Cantwell, P.R.; Vinci, R.P.; Rickman, J.M.; Rohrer, G.S.; Harmer, M.P. Complexion time-temperature-transformation (TTT) diagrams: Opportunities and challenges. Curr. Opin. Solid State Mater. Sci. 2016, 20, 316–323. [Google Scholar] [CrossRef]
- Cantwell, P.R.; Ma, S.; Bojarski, S.A.; Rohrer, G.S.; Harmer, M.P. Expanding time-temperature-transformation (TTT) diagrams to interfaces: A new approach for grain boundary engineering. Acta Mater. 2016, 106, 78–86. [Google Scholar] [CrossRef]
- Molodov, D.A.; Straumal, B.B.; Shvindlerman, L.S. The effect of pressure on migration of <001> tilt grain boundaries in tin bicrystals. Scr. Metall. 1984, 18, 207–211. [Google Scholar] [CrossRef]
- Frazier, W.E.; Rohrer, G.S.; Rollett, A.D. Abnormal grain growth in the Potts model incorporating grain boundary complexion transitions that increase the mobility of individual boundaries. Acta Mater. 2015, 96, 390–398. [Google Scholar] [CrossRef] [Green Version]
- Molodov, D.A.; Czubayko, U.; Gottstein, G.; Shvindlerman, L.S.; Straumal, B.B.; Gust, W. Acceleration of grain boundary motion in Al by small additions of Ga. Philos. Mag. Lett. 1995, 72, 361–368. [Google Scholar] [CrossRef]
- Noskovich, O.I.; Rabkin, E.I.; Semenov, V.N.; Straumal, B.B.; Shvindlerman, L.S. Wetting and premelting phase transitions in 38°[100] tilt grain boundaries in (Fe–12 at.% Si) Zn alloy in the vicinity of the A2–B2 bulk ordering in Fe–12at.%Si alloy. Acta Metall. Mater. 1991, 39, 3091–3098. [Google Scholar] [CrossRef]
- Moghadam, M.M.; Rickman, J.M.; Harmer, M.P.; Chan, H.M. The role of boundary variability in polycrystalline grain-boundary diffusion. J. Appl. Phys. 2015, 117, 045311. [Google Scholar] [CrossRef]
- Straumal, B.B.; Noskovich, O.I.; Semenov, V.N.; Shvindlerman, L.S.; Gust, W.; Predel, B. Premelting transition on 38°<001> tilt grain boundaries in (Fe–10 at.% Si)–Zn alloys. Acta Metall. Mater. 1992, 40, 795–801. [Google Scholar] [CrossRef]
- Divinski, S.V.; Lohmann, M.; Herzig, C.; Straumal, B.; Baretzky, B.; Gust, W. Grain boundary melting phase transition in the Cu–Bi system. Phys. Rev. B 2005, 71, 104104. [Google Scholar] [CrossRef]
- Straumal, B.B.; Polyakov, S.A.; Bischoff, E.; Gust, W.; Mittemeijer, E.J. Faceting of Σ3 and Σ9 grain boundaries in copper. Interface Sci. 2001, 9, 287–292. [Google Scholar] [CrossRef]
- Lee, J.W.; Terner, M.; Hong, H.U.; Nab, S.H.; Seolb, J.B.; Jang, J.H.; Lee, T.H. A new observation of strain-induced grain boundary serration and its underlying mechanism in a Ni–20Cr binary model alloy. Mater. Charact. 2018, 135, 146–153. [Google Scholar] [CrossRef]
- Schölhammer, J.; Baretzky, B.; Gust, W.; Mittemeijer, E.; Straumal, B. Grain boundary grooving as an indicator of grain boundary phase transformations. Interface Sci. 2001, 9, 43–53. [Google Scholar] [CrossRef]
- Rohrer, G.S. The role of grain boundary energy in grain boundary complexion transitions. Curr. Opin. Solid State Mater. Sci. 2016, 20, 231–239. [Google Scholar] [CrossRef]
- Straumal, B.B.; Kogtenkova, O.A.; Gornakova, A.S.; Sursaeva, V.G.; Baretzky, B. Review: Grain boundary faceting-roughening phenomena. J. Mater. Sci. 2016, 51, 382–404. [Google Scholar] [CrossRef]
- Maksimova, E.L.; Shvindlerman, L.S.; Straumal, B.B. Transformation of Σ17 special tilt boundaries to general boundaries in tin. Acta Metall. 1988, 36, 1573–1583. [Google Scholar] [CrossRef]
- Feng, X.; Zhang, J.; Xia, Z.; Fu, W.; Wu, K.; Liu, G.; Sun, J. Stable nanocrystalline NbMoTaW high entropy alloy thin films with excellent mechanical and electrical properties. Mater. Lett. 2018, 210, 84–87. [Google Scholar] [CrossRef]
- Molodov, D.A.; Ivanov, V.A.; Gottstein, G. Low angle tilt boundary migration coupled to shear deformation. Acta Mater. 2007, 55, 1843–1848. [Google Scholar] [CrossRef]
- Gorkaya, T.; Molodov, D.A.; Gottstein, G. Stress-driven migration of symmetrical <001> tilt grain boundaries in Al bicrystals. Acta Mater. 2009, 57, 5396–5405. [Google Scholar] [CrossRef]
- Gorkaya, T.; Molodov, K.D.; Molodov Dmitri, A.; Gottstein, G. Concurrent grain boundary motion and grain rotation under an applied stress. Acta Mater. 2011, 59, 5674–5680. [Google Scholar] [CrossRef]
- Molodov, D.A.; Gorkaya, T.; Gottstein, G. Migration of the Sigma 7 tilt grain boundary in Al under an applied external stress. Scr. Mater. 2011, 65, 990–993. [Google Scholar] [CrossRef]
- Reddy, K.V.; Pal, S. Effect of grain boundary complexions on the deformation behavior of Ni bicrystal during bending creep. J. Mol. Model. 2018, 24, 87. [Google Scholar] [CrossRef]
- Zhang, J.; Tasan, C.C.; Lai, M.J.; Dippel, A.C.; Raabe, D. Complexion-mediated martensitic phase transformation in titanium. Nat. Commun. 2017, 8, 14210. [Google Scholar] [CrossRef] [PubMed]
- Friak, M.; Vsianska, M.; Holec, D.; Šob, M. Quantum-mechanical study of tensorial elastic and high-temperature thermodynamic properties of grain boundary states in superalloy-phase Ni3Al. IOP Conf. Ser. Mater. Sci. Eng. 2017, 219, 012019. [Google Scholar] [CrossRef]
- Feng, L.; Hao, R.; Lambros, J.; Dillon, S.J. The influence of dopants and complexion transitions on grain boundary fracture in alumina. Acta Mater. 2018, 142, 121–130. [Google Scholar] [CrossRef]
- Yu, Z.; Cantwell, P.R.; Gao, Q.; Yin, D.; Zhang, Y.; Zhou, N.; Rohrer, G.S.; Widom, M.; Luo, J.; Harmer, M.P. Segregation-induced ordered superstructures at general grain boundaries in a nickel-bismuth alloy. Science 2017, 358, 97. [Google Scholar] [CrossRef] [PubMed]
- Tran, R.; Xu, Z.; Zhou, N.; Luo, J.; Ong, S.P. Computational study of metallic dopant segregation and embrittlement at molybdenum grain boundaries. Acta Mater. 2016, 117, 91–99. [Google Scholar] [CrossRef] [Green Version]
- Ahadi, A.; Kalidindi, A.R.; Sakurai, J.; Matsushita, Y.; Tsuchiya, K.; Schuh, C.A. The role of W on the thermal stability of nanocrystalline NiTiWx thin films. Acta Mater. 2018, 142, 181–192. [Google Scholar] [CrossRef]
- Pan, Z.; Rupert, T.J. Formation of ordered and disordered interfacial films in immiscible metal alloys. Scr. Mater. 2017, 130, 91–95. [Google Scholar] [CrossRef] [Green Version]
- Cao, W.; Kundu, A.; Yu, Z.; Harmer, M.P.; Vinci, R.P. Direct correlations between fracture toughness and grain boundary segregation behavior in ytterbium-doped magnesium aluminate spinel. Scr. Mater. 2013, 69, 81–84. [Google Scholar] [CrossRef]
- Valiev, R.Z.; Murashkin, M.; Yu Straumal, B.B. Enhanced ductility in ultrafine-grained Al alloys produced by SPD techniques. Mater. Sci. Forum 2009, 633, 321–332. [Google Scholar] [CrossRef]
- Valiev, R.Z.; Murashkin, M.Y.; Kilmametov, A.; Straumal, B.B.; Chinh, N.Q.; Langdon, T.G. Unusual super-ductility at room temperature in an ultrafine-grained aluminum alloy. J. Mater. Sci. 2010, 45, 4718–4724. [Google Scholar] [CrossRef]
- Chinh, N.Q.; Csanádi, T.; Gubicza, J.; Valiev, R.Z.; Straumal, B.B.; Langdon, T.G. The effect of grain-boundary sliding and strain rate sensitivity on the ductility of ultrafine-grained materials. Mater. Sci. Forum 2011, 667, 677–682. [Google Scholar] [CrossRef]
- Chinh, N.Q.; Csanádi, T.; Győri, T.; Valiev, R.Z.; Straumal, B.B.; Kawasaki, M.; Langdon, T.G. Strain rate sensitivity studies in an ultrafine-grained Al–30 wt.% Zn alloy using micro- and nanoindentation. Mater. Sci. Eng. A 2012, 543, 117–120. [Google Scholar] [CrossRef]
- Straumal, B.B.; Sauvage, X.; Baretzky, B.; Mazilkin, A.A.; Valiev, R.Z. Grain boundary films in Al–Zn alloys after high pressure torsion. Scr. Mater. 2014, 70, 59–62. [Google Scholar] [CrossRef]
- Straumal, B.; Valiev, R.; Kogtenkova, O.; Zieba, P.; Czeppe, T.; Bielanska, E.; Faryna, M. Thermal evolution and grain boundary phase transformations in severe deformed nanograined Al–Zn alloys. Acta Mater. 2008, 56, 6123–6131. [Google Scholar] [CrossRef]
- Higashi, K.; Nieh, T.G.; Mabuchi, M.; Wadsworth, J. Effect of liquid phases on the tensile elongation of superplastic aluminum alloys and composites. Scr. Metall. Mater. 1995, 32, 1079–1084. [Google Scholar] [CrossRef]
- Takayama, Y.; Tozawa, T.; Kato, H. Superplasticity and thickness of liquid phase in the vicinity of solidus temperature in a 7475 aluminum alloy. Acta Mater. 1999, 47, 1263–1270. [Google Scholar] [CrossRef]
- Iwasaki, H.; Mori, T.; Mabuchi, M.; Higashi, K. Shear deformation behavior of Al-5% Mg in a semi-solid state. Acta Mater. 1998, 46, 6351–6360. [Google Scholar] [CrossRef]
- Baudelet, B.; Dang, M.C.; Bordeaux, F. Mechanical behaviour of an aluminium alloy with fusible grain boundaries. Scr. Metall. Mater. 1992, 26, 573–578. [Google Scholar] [CrossRef]
- Mabuchi, M.; Higashi, K.; Imai, T.; Kubo, K. Superplastic-like behavior in as-extruded Al–Zn–Mg alloy matrix composites reinforced with Si3N4 whiskers. Scr. Metall. 1991, 25, 1675–1680. [Google Scholar] [CrossRef]
- Kalcher, C.; Adjaoud, O.; Rohrer, J.; Stukowski, A.; Albe, K. Reinforcement of nanoglasses by interface strengthening. Scr. Mater. 2017, 141, 115–119. [Google Scholar] [CrossRef]
- Li, A.; Szlufarska, I. Morphology and mechanical properties of nanocrystalline Cu/Ag alloy. J. Mater. Sci. 2017, 52, 4555–4567. [Google Scholar] [CrossRef] [Green Version]
- Smith, T.M.; Esser, B.D.; Antolin, N.; Carlsson, A.; Williams, R.E.A.; Wessman, A.; Hanlon, T.; Fraser, H.L.; Windl, W.; McComb, D.W.; et al. Phase transformation strengthening of high-temperature superalloys. Nat. Commun. 2016, 7, 13434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosinova, A.; Straumal, B.B.; Kilmametov, A.R.; Rabkin, E. The effect of bismuth on microstructure evolution of ultrafine grained copper. Mater. Lett. 2017, 199, 156–159. [Google Scholar] [CrossRef]
- Shinagawa, K.; Maki, S.; Yokota, K. Phase-field simulation of platelike grain growth during sintering of alumina. J. Eur. Ceram. Soc. 2014, 34, 3027–3036. [Google Scholar] [CrossRef]
- Amaral, L.; Fernandes, M.; Reaney, I.M.; Harmer, M.P.; Senos, A.M.R.; Vilarinho, P.M. Grain growth anomaly and dielectric response in Ti-rich strontium titanate ceramics. J. Phys. Chem. C 2013, 117, 24787–24795. [Google Scholar] [CrossRef]
- Baeurer, M.; Syha, M.; Weygand, D. Combined experimental and numerical study on the effective grain growth dynamics in highly anisotropic systems: Application to barium titanate. Acta Mater. 2013, 61, 5664–5673. [Google Scholar] [CrossRef]
- Biotteau-Deheuvels, K.; Zych, L.; Gremillard, L.; Chevalier, J. Effects of Ca-, Mg- and Si-doping on microstructures of alumina-zirconia composites. J. Eur. Ceram. Soc. 2012, 32, 2711–2721. [Google Scholar] [CrossRef]
- Dillon, S.J.; Harmer, M.P.; Rohrer, G.S. Influence of interface energies on solute partitioning mechanisms in doped aluminas. Acta Mater. 2010, 58, 5097–5108. [Google Scholar] [CrossRef]
- Dillon, S.J.; Miller, H.; Harmer, M.P.; Rohrer, G.S. Grain boundary plane distributions in aluminas evolving by normal and abnormal grain growth and displaying different complexions. Int. J. Mater. Res. 2010, 101, 50–56. [Google Scholar] [CrossRef]
- Gupta, A.; Sharma, S.; Joshi, M.R.; Agarwal, P.; Balani, K. Grain growth behavior of Al2O3 nanomaterials: A review. Mater. Sci. Forum 2010, 653, 87–130. [Google Scholar] [CrossRef]
- Nie, J.; Chan, J.M.; Qin, M.; Zhou, N.; Luo, J. Liquid-like grain boundary complexion and sub-eutectic activated sintering in CuO-doped TiO2. Acta Mater. 2017, 130, 329–338. [Google Scholar] [CrossRef]
- Zu, Y.; Chen, G.; Fu, X.; Luo, K.; Wang, C.; Song, S.; Zhou, W. Effects of liquid phases on densification of TiO2-doped Al2O3-ZrO2 composite ceramics. Ceram. Int. 2014, 40, 3989–3993. [Google Scholar] [CrossRef]
- Gluzer, G.; Kaplan, W.D. Particle occlusion and mechanical properties of Ni- Al2O3 nanocomposites. J. Eur. Ceram. Soc. 2013, 33, 3101–3113. [Google Scholar] [CrossRef]
- Jung, J.I.; Zhou, N.; Luo, J. Effects of sintering aids on the densification of Mo–Si–B alloys. J. Mater. Sci. 2012, 47, 8308–8319. [Google Scholar] [CrossRef]
- Reimanis, I.; Kleebe, H.J. A Review on the Sintering and Microstructure Development of Transparent Spinel MgAl2O4. J. Am. Ceram. Soc. 2009, 92, 1472–1480. [Google Scholar] [CrossRef]
- Dillon, S.J.; Harmer, M.P. Demystifying the role of sintering additives with “complexion”. J. Eur. Ceram. Soc. 2008, 28, 1485–1493. [Google Scholar] [CrossRef]
- Bueno, P.; Varela, J.; Longo, E. SnO2, ZnO and related polycrystalline compound semiconductors, an overview and review on the voltage-dependent resistance (non-ohmic) feature. J. Eur. Ceram. Soc. 2008, 28, 505–529. [Google Scholar] [CrossRef]
- Wu, Y.; Gao, M.; Li, S.; Ren, Y.; Qin, G. Copper wires with seamless 1D nanostructures: Preparation and electrochemical sensing performance. Mater. Lett. 2018, 211, 247–249. [Google Scholar] [CrossRef]
- Bowman, W.J.; Kelly, M.N.; Rohrer, G.S.; Hernandez, C.A.; Crozier, P.A. Enhanced ionic conductivity in electroceramics by nanoscale enrichment of grain boundaries with high solute concentration. Nanoscale 2017, 9, 17293–17302. [Google Scholar] [CrossRef]
- Cesar, M.; Gall, D.; Guo, H. Reducing grain-boundary resistivity of copper nanowires by doping. Phys. Rev. Appl. 2016, 5, 054018. [Google Scholar] [CrossRef]
- Straumal, B.; Sluchanko, N.E.; Gust, W. Influence of the grain boundary phase transitions on the properties of Cu–Bi polycrystals. Defect Diffus. Forum 2001, 188, 185–194. [Google Scholar] [CrossRef]
- Straumal, B.B.; Myatiev, A.A.; Straumal, P.B.; Mazilkin, A.A. Grain boundary phase transformations in nanostructured conducting oxides. In Nanoscale Phenomena—Fundamentals and Applications; Hahn, H., Sidorenko, A., Tigineanu, I., Eds.; Series NanoScience; Springer: Berlin, Germany, 2009; pp. 75–88. [Google Scholar]
- Straumal, B.B.; Protasova, S.G.; Mazilkin, A.A.; Goering, E.; Schütz, G.; Straumal, P.B.; Baretzky, B. Ferromagnetic behaviour of ZnO: Role of grain boundaries. Beilstein J. Nanotechnol. 2016, 7, 1936–1947. [Google Scholar] [CrossRef] [PubMed]
- Straumal, B.B.; Mazilkin, A.A.; Protasova, S.G.; Myatiev, A.A.; Straumal, P.B.; Goering, E.; Baretzky, B. Influence of texture on the ferromagnetic properties of nanograined ZnO films. Phys. Stat. Sol. B 2011, 248, 581–586. [Google Scholar] [CrossRef]
- Zong, P.; Hanus, R.; Dylla, M.; Tang, Y.; Liao, J.; Zhang, Q.; Snyder, G.J.; Che, L. Skutterudite with graphene-modified grain-boundary complexion enhances zT enabling high-efficiency thermoelectric device. Energy Environ. Sci. 2017, 10, 183–191. [Google Scholar] [CrossRef]
- Kriegel, M.J.; Kilmametov, A.; Rudolph, M.; Straumal, B.B.; Gornakova, A.S.; Stöcker, H.; Ivanisenko, Y.; Fabrichnaya, O.; Hahn, H.; Rafaja, D. Transformation pathway upon heating of Ti–Fe alloys deformed by high-pressure torsion. Adv. Eng. Mater. 2018, 20, 1700933. [Google Scholar] [CrossRef]
- Straumal, B.B.; Gornakova, A.S.; Mazilkin, A.A.; Fabrichnaya, O.B.; Kriegel, M.J.; Baretzky, B.; Jiang, J.Z.; Dobatkin, S.V. Phase transformations in the severely plastically deformed Zr–Nb alloys. Mater. Lett. 2012, 81, 225–228. [Google Scholar] [CrossRef]
- Kogtenkova, O.A.; Protasova, S.G.; Mazilkin, A.A.; Straumal, B.B.; Zięba, P.; Czeppe, T.; Baretzky, B. Heat effect of grain boundary wetting in Al–Mg alloys. J. Mater. Sci. 2012, 47, 8367–8371. [Google Scholar] [CrossRef]
- Kogtenkova, O.A.; Straumal, B.B.; Protasova, S.G.; Gornakova, A.S.; Zięba, P.; Czeppe, T. Effect of the wetting of grain boundaries on the formation of a solid solution in the Al–Zn system. JETP Lett. 2012, 96, 380–384. [Google Scholar] [CrossRef]
- Kogtenkova, O.A.; Zieba, P.; Czeppe, T.; Lityn’ska-Dobrzynska, L.; Straumal, B.B.; Nekrasov, A.N. Wetting of grain boundaries by the second solid phase in the Al-based alloys. Bull. Russ. Acad. Sci. Phys. 2013, 77, 1386–1390. [Google Scholar] [CrossRef]
- Hasan, M.M.; Dholabhai, P.P.; Deya, S.; Uberuaga, B.P.; Castro, R.H.R. Reduced grain boundary energies in rare-earth doped MgAl2O4 spinel and consequent grain growth inhibition. J. Eur. Ceram. Soc. 2017, 37, 4043–4050. [Google Scholar] [CrossRef]
- Castro, R.H.R. On the thermodynamic stability of nanocrystalline ceramics. Mater. Lett. 2013, 96, 45–56. [Google Scholar] [CrossRef]
- Pereira, G.J.; Bolis, K.; Muche, D.N.F.; Gouvêa, D.; Castro, R.H.R. Direct measurement of interface energies of magnesium aluminatespinel and a brief sintering analysis. J. Eur. Ceram. Soc. 2017, 37, 4051–4058. [Google Scholar] [CrossRef]
- Li, H.; Dey, S.; Castro, R.H.R. Kinetics and thermodynamics of densification and grain growth: Insights from lanthanum doped zirconia. Acta Mater. 2018, 150, 394–402. [Google Scholar] [CrossRef]
- Bokov, A.; Zhang, S.; Feng, L.; Dillon, S.H.; Faller, R.; Castro, H.R.R. Energetic design of grain boundary networks for toughening of nanocrystalline oxides. J. Eur. Ceram. Soc. 2018, 38, 4260–4267. [Google Scholar] [CrossRef]
- Muche, D.N.F.; Marple, M.A.T.; Sen, S.; Castro, R.H.R. Grain boundary energy, disordering energy and grain growth kinetics. Acta Mater. 2018, 149, 302–311. [Google Scholar] [CrossRef]
- Li, H.; Souza, F.L.; Castro, R.H.R. Kinetic and thermodynamic effects of manganese as a densification aid in yttria-stabilized zirconia. J. Eur. Ceram. Soc. 2018, 38, 1750–1759. [Google Scholar] [CrossRef]
- Sharma, G.; Castro, R.H.R. Synthesis and surface enthalpy of MgGa2O4 spinel. Thermochim. Acta 2017, 655, 326–330. [Google Scholar] [CrossRef]
- Nafsin, N.; Aguiar, J.A.; Aoki, T.; Andrew, M.; Thron, A.M.; Benthem, K.; Castro, R.H.R. Thermodynamics versus kinetics of grain growth control in nanocrystalline zirconia. Acta Mater. 2017, 136, 224–234. [Google Scholar] [CrossRef]
- Grosso, R.L.; Muccillo, E.N.S.; Castro, R.H.R. Phase stability in scandia-zirconia nanocrystals. J. Am. Ceram. Soc. 2017, 100, 2199–2208. [Google Scholar] [CrossRef]
- Massalski, T.B. Binary Alloy Phase Diagrams, 2nd ed.; ASM International: Materials Park, OH, USA, 1990. [Google Scholar]
- Sauvage, X.; Murashkin MYu Straumal, B.B.; Bobruk, E.; Valiev, R.Z. Ultrafine grained structures resulting from SPD-induced phase transformation in Al-Zn alloys. Adv. Eng. Mater. 2015, 17, 1821–1827. [Google Scholar] [CrossRef]
- Straumal, B.B.; Kilmametov, A.R.; Korneva, A.; Mazilkin, A.A.; Straumal, P.B.; Zięba, P.; Baretzky, B. Phase transitions in Cu-based alloys under high pressure torsion. J. Alloys Compd. 2017, 707, 20–26. [Google Scholar] [CrossRef]
- Zhevnenko, S.N.; Gershman, E.I. Grain boundary phase transformation in Cu–Co solid solutions. J. Alloys Compd. 2012, 536, S554–S558. [Google Scholar] [CrossRef]
- Perevezentsev, V.N.; Shcherban, M.Y.; Murashkin, M.Y.; Valiev, R.Z. High-strain-rate superplasticity of nanocrystalline aluminum alloy 1570. Tech. Phys. Lett. 2007, 33, 648–650. [Google Scholar] [CrossRef]
- Wei, Z.J.; Wang, Z.L.; Wang, H.W.; Cao, L. Evolution of microstructures and phases of Al-Mg alloy under 4 GPa high pressure. J. Mater. Sci. 2007, 42, 7123–7128. [Google Scholar] [CrossRef]
- Schoenitz, M.; Dreizin, E.L. Structure and properties of Al–Mg mechanical alloys. J. Mater. Res. 2003, 18, 1827–1836. [Google Scholar] [CrossRef]
- Skvortsov, A.I.; Polev, V.V. Softening and hardening of alloys of the Al-Zn system under plastic deformation. Met. Sci. Heat Treat. 2017, 59, 504–508. [Google Scholar] [CrossRef]
- Rabkin, E.I.; Semenov, V.N.; Shvindlerman, L.S.; Straumal, B.B. Penetration of tin and zinc along tilt grain boundaries 43° [100] in Fe–5 at.% Si alloy: Premelting phase transition? Acta Metall. Mater. 1991, 39, 627–639. [Google Scholar] [CrossRef]
- Straumal, B.; Rabkin, E.; Shvindlerman, L.; Gust, W. Grain boundary zinc penetration in Fe–Si alloys: Premelting phase transition on the grain boundaries. Mater. Sci. Forum 1993, 126, 391–394. [Google Scholar] [CrossRef]
- Noskovich, O.I.; Rabkin, E.I.; Semenov, V.N.; Straumal, B.B. The zinc penetration along tilt grain boundary 38°[100] in Fe–12at.%Si alloy near ordering A2–B2 in the bulk. Scr. Metall. 1991, 25, 1441–1446. [Google Scholar] [CrossRef]
- Straumal, B.; Rabkin, E.; Lojkowski, W.; Gust, W.; Shvindlerman, L.S. Pressure influence on the grain boundary wetting phase transition in Fe–Si alloys. Acta Mater. 1997, 45, 1931–1940. [Google Scholar] [CrossRef]
- Chang, L.-S.; Rabkin, E.; Straumal, B.B.; Baretzky, B.; Gust, W. Thermodynamic aspects of the grain boundary segregation in Cu(Bi) alloys. Acta Mater. 1999, 47, 4041–4046. [Google Scholar] [CrossRef]
- Straumal, B.; Prokofjev, S.I.; Chang, L.S.; Sluchanko, N.E.; Baretzky, B.; Gust, W.; Mittemeijer, E. Grain boundary phase transitions in the Cu–Bi system. Defect Diffus. Forum 2001, 194–199, 1343–1348. [Google Scholar] [CrossRef]
- Chang, L.-S.; Lojkowski, W.; Straumal, B.; Rabkin, E.; Gust, W. Hot isostatic pressing of Cu–Bi polycrystals with liquid-like grain boundary layers. Acta Mater. 2007, 55, 335–343. [Google Scholar] [CrossRef]
- Straumal, B.B.; Kogtenkova, O.A.; Murashkin MYu Bulatov, M.F.; Czeppe, T.; Zięba, P. Grain boundary wetting transition in Al–Mg alloys. Mater. Lett. 2017, 186, 82–85. [Google Scholar] [CrossRef]
- Straumal, B.B.; Korneva, A.; Kogtenkova, O.; Kurmanaeva, L.; Zięba, P.; Wierzbicka-Miernik, A.; Zhevnenko, S.N.; Baretzky, B. Grain boundary wetting and premelting in the Cu–Co alloys. J. Alloys Compd. 2014, 615, S183–S187. [Google Scholar] [CrossRef]
- Bobruk, E.V.; Sauvage, X.; Enikeev, N.А.; Straumal, B.B.; Valiev, R.Z. Mechanical behavior of ultra-fine grained Al–5Zn. Al–10Zn, Al–30Zn alloys. Rev. Adv. Mater. Sci. 2015, 43, 45–51. [Google Scholar]
- López, G.A.; Mittemeijer, E.J.; Straumal, B.B. Grain boundary wetting by a solid phase; microstructural development in a Zn–5 wt.% Al alloy. Acta Mater. 2004, 52, 4537–4545. [Google Scholar]
- Straumal, B.B.; Khruzhcheva, A.S.; López, G.A. Grain boundary wetting by a (Al) solid phase in Zn–Al polycrystals and Zn bicrystals. Isvestia RAS (Ser. Phys.) 2005, 69, 1312–1318. [Google Scholar]
- Straumal, B.B.; Khruzhcheva, A.S.; López, G.A. “Wetting by solid state” grain boundary phase transition in Zn–Al alloys. Rev. Adv. Mater. Sci. 2004, 6, 13–22. [Google Scholar]
- Straumal, B.B.; Baretzky, B.; Mazilkin, A.A.; Phillipp, F.; Kogtenkova, O.A.; Volkov, M.N.; Valiev, R.Z. Formation of nanograined structure and decomposition of supersaturated solid solution during high pressure torsion of Al–Zn and Al–Mg. Acta Mater. 2004, 52, 4469–4478. [Google Scholar] [CrossRef]
- Mazilkin, A.A.; Kogtenkova, O.A.; Straumal, B.B.; Valiev, R.Z.; Baretzky, B. Formation of nanostructure during high-pressure torsion of Al–Zn, Al–Mg and Al–Zn–Mg alloys. Defect Diffus. Forum 2005, 237–240, 739–744. [Google Scholar] [CrossRef]
- Straumal, B.B.; Rodin, A.O.; Shotanov, A.E.; Straumal, A.B.; Kogtenkova, O.A.; Baretzky, B. Pseudopartial grain boundary wetting: Key to the thin intergranular layers. Defect Diffus. Forum 2013, 333, 175–192. [Google Scholar] [CrossRef]
- Straumal, B.B.; Mazilkin, A.A.; Sauvage, X.; Valiev, R.Z.; Straumal, A.B.; Gusak, A.M. Pseudopartial wetting of grain boundaries in severely deformed Al–Zn alloys. Russ. J. Non-Ferr. Met. 2015, 56, 44–51. [Google Scholar] [CrossRef]
- Chinh, N.Q.; Valiev, R.Z.; Sauvage, X.; Varga, G.; Havancsák, K.; Kawasaki, M.; Straumal, B.B.; Langdon, T.G. Grain boundary phenomena in an ultrafine-grained Al–Zn alloy with improved mechanical behavior for micro-devices. Adv. Eng. Mater. 2014, 16, 1000–1009. [Google Scholar] [CrossRef]
- Indekeu, J.O.; van Leeuwen, J.M.J. “Wetting” phase transitions in type-I superconductors. Physica A 1997, 236, 114–122. [Google Scholar] [CrossRef]
- Dietrich, S.; Schick, M. Critical wetting of surfaces in systems with long-range forces. Phys. Rev. B 1985, 31, 4718–4720. [Google Scholar] [CrossRef]
- Saam, W.F.; Shenoy, V.B. Continuous wetting transitions in adsorbed Xe films. J. Low Temp. Phys. 1995, 101, 225–230. [Google Scholar] [CrossRef]
- Saam, W.F.; Shenoy, V.B. Continuous wetting transitions in Xe adsorbed on NaF and on plated Cs and Rb substrates. Phys. Rev. Lett. 1995, 75, 4086–4089. [Google Scholar]
- Dietrich, S.; Napiorkowski, M. Analytic results for wetting transitions in the presence of van der Waals tails. Phys. Rev. A 1991, 43, 1861–1885. [Google Scholar] [CrossRef] [PubMed]
- Indekeu, J.O.; van Leeuwen, J.M.J. Wetting prewetting and surface transitions in type-I superconductors. Physica C 1995, 251, 290–306. [Google Scholar] [CrossRef]
- Boulter, C.J.; Clarysse, F. Adsorption phenomena in amphiphilic systems. Phys. Rev. E 1999, 60, R2472–R2475. [Google Scholar] [CrossRef]
- Swain, P.S.; Parry, A.O. Two parameters for three-dimensional wetting transitions. Europhys. Lett. 1997, 37, 207–212. [Google Scholar] [CrossRef] [Green Version]
- Parry, A.O.; Swain, P.S. Coupled Hamiltonians and three-dimensional short-range wetting transitions. Phys. A 1998, 250, 167–230. [Google Scholar] [CrossRef] [Green Version]
- Indekeu, J.O.; Ragil, K.; Bonn, D.; Broseta, D.; Meunier, J. Wetting of alkanes on water from a Cahn-type theory: Effects of long-range forces. J. Stat. Phys. 1999, 95, 1009–1043. [Google Scholar] [CrossRef]
- Clarysse, F.; Boulter, C.J. Effective interface models for ternary amphiphilic systems: Thin–thick. first-order and continuous wetting transitions. Phys. A 2000, 278, 356–389. [Google Scholar] [CrossRef]
- Sartori, A.; Parry, A.O. Critical wetting in power-law wedge geometries. J. Phys. Cond. Matter 2002, 14, L679–L686. [Google Scholar] [CrossRef] [Green Version]
- Fenzl, W. Van der Waals interaction and wetting transitions. Europhys. Lett. 2003, 64, 64–69. [Google Scholar] [CrossRef]
- Kogtenkova, O.A.; Mazilkin, A.A.; Straumal, B.B.; Abrosimova, G.E.; Zięba, P.; Czeppe, T.; Baretzky, B.; Valiev, R.Z. Phase transformations in Al–Mg–Zn alloys during high pressure torsion and subsequent heating. J. Mater. Sci. 2013, 48, 4758–4765. [Google Scholar] [CrossRef]
- Straumal, B.B.; Kogtenkova, O.A.; Protasova, S.G.; Zięba, P.; Czeppe, T.; Baretzky, B.; Valiev, R.Z. First measurement of the heat effect of the grain boundary wetting phase transition. J. Mater. Sci. 2011, 46, 4243–4247. [Google Scholar] [CrossRef]
- Straumal, B.B.; López, G.; Mittemeijer, E.J.; Gust, W.; Zhilyaev, A.P. Grain boundary phase transitions in the Al–Mg system and their influence on the high-strain rate superplaticity. Defect Diffus. Forum 2003, 216–217, 307–312. [Google Scholar] [CrossRef]
- Mondolfo, L.F. Aluminium Alloys—Structures & Properties; Butterworths: London, UK, 1976. [Google Scholar]
- Krishna Rao, K.; Herman, H.; Parte, E. The structure of a metastable, trigonal transition phase in quenched Al-29 at. % Zn. Mater. Sci. Eng. 1996, 1, 162–166. [Google Scholar]
- Sandoval-Jimenez, A.; Negrete, J.; Torres-Villaceňor, G. The triclinic high temperature modification of the phase of the phase of the Zn–Al system. Mater. Res. Bull. 1999, 34, 2291–2296. [Google Scholar] [CrossRef]
- Nakayama, Y.; Takaai, T.; Jin, D.; Yamada, Y. Changes in microstructures of Al-5, 10 mass% Mg binary alloys with aging treatment. J. Jpn. Inst. Met. 1997, 61, 34–40. [Google Scholar] [CrossRef]
- Gao, N.; Starink, M.J.; Langdon, T.G. Using differential scanning calorimetry as an analytical tool for ultrafine grained metals processed by severe plastic deformation. Mater. Sci. Technol. 2009, 25, 687–698. [Google Scholar] [CrossRef] [Green Version]
- Straumal, B.B.; Bokstein, B.S.; Straumal, A.B.; Petelin, A.L. First observation of a wetting transition in low-angle grain boundaries. JETP Lett. 2008, 88, 537–542. [Google Scholar] [CrossRef]
- Frolov, T.; Mishin, Y. Thermodynamics of coherent interfaces under mechanical stresses. II. Application to atomistic simulation of grain boundaries. Phys. Rev. B 2012, 85, 224107. [Google Scholar] [CrossRef]
- Hickman, J.; Mishin, Y. Disjoining potential and grain boundary premelting in binary alloys. Phys. Rev. B 2016, 93, 224108. [Google Scholar] [CrossRef]
- Frolov, T.; Asta, M.; Mishin, Y. Segregation-induced phase transformations in grain boundaries. Phys. Rev. B 2015, 92, 020103. [Google Scholar] [CrossRef]
- Frolov, T.; Divinski, S.V.; Asta, M.; Mishin, Y. Effect of interface phase transformations on diffusion and segregation in high-angle grain boundaries. Phys. Rev. Lett. 2013, 110, 255502. [Google Scholar] [CrossRef]
- Berthier, F.; Creuze, J.; Tetot, R.; Legrand, B. Multilayer properties of superficial and intergranular segregation isotherms: A mean-field approach. Phys. Rev. B 2002, 65, 195413. [Google Scholar] [CrossRef]
- Creuze, J.; Berthier, F.; Tetot, R.; Legrand, B. Intergranular segregation and ordering effect: A mixed Monte Carlo mean-field approach. Phys. Rev. B 2000, 62, 2813–2824. [Google Scholar] [CrossRef]
- Creuze, J.; Berthier, F.; Tetot, R.; Legrand, B. Wetting and structural transition induced by segregation at grain boundaries: A Monte Carlo study. Phys. Rev. Lett. 2001, 86, 5735–5738. [Google Scholar] [CrossRef] [PubMed]
- Lozovoi, A.Y.; Paxton, A.T.; Finnis, M.W. Structural and chemical embrittlement of grain boundaries by impurities: A general theory and first-principles calculations for copper. Phys. Rev. B 2006, 74, 155416. [Google Scholar] [CrossRef]
- Zhevnenko, S.N. Interfacial free energy of Cu-Co solid solutions. Metall. Mater. Trans. A 2013, 44, 2533–2538. [Google Scholar] [CrossRef]
- Zhevnenko, S.; Gershman, E. Interface controlled diffusional creep of Cu+2.8 at.% Co solid solution. Defect Diffus. Forum 2012, 322, 33–39. [Google Scholar] [CrossRef]
- Khairullin, A.; Nikulkina, V.; Zhevnenko, S.; Rodin, A. Peculiarity of grain boundary diffusion of Fe and Co in Cu. Defect Diffus. Forum 2017, 380, 135–140. [Google Scholar] [CrossRef]
- Straumal, B.B.; Shvindlerman, L.S. Regions of existence of special and non-special grain boundaries. Acta Metall. 1985, 33, 1735–1749. [Google Scholar]
- Maksimova, E.L.; Rabkin, E.I.; Shvindlerman, L.S.; Straumal, B.B. Phase transitions at grain boundaries in the presence of impurities. Acta Metal. 1989, 37, 1995–1998. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kogtenkova, O.; Straumal, B.; Korneva, A.; Czeppe, T.; Wierzbicka-Miernik, A.; Faryna, M.; Zięba, P. Grain Boundary Complexions and Phase Transformations in Al- and Cu-Based Alloys. Metals 2019, 9, 10. https://doi.org/10.3390/met9010010
Kogtenkova O, Straumal B, Korneva A, Czeppe T, Wierzbicka-Miernik A, Faryna M, Zięba P. Grain Boundary Complexions and Phase Transformations in Al- and Cu-Based Alloys. Metals. 2019; 9(1):10. https://doi.org/10.3390/met9010010
Chicago/Turabian StyleKogtenkova, Olga, Boris Straumal, Anna Korneva, Tomasz Czeppe, Anna Wierzbicka-Miernik, Marek Faryna, and Pawel Zięba. 2019. "Grain Boundary Complexions and Phase Transformations in Al- and Cu-Based Alloys" Metals 9, no. 1: 10. https://doi.org/10.3390/met9010010
APA StyleKogtenkova, O., Straumal, B., Korneva, A., Czeppe, T., Wierzbicka-Miernik, A., Faryna, M., & Zięba, P. (2019). Grain Boundary Complexions and Phase Transformations in Al- and Cu-Based Alloys. Metals, 9(1), 10. https://doi.org/10.3390/met9010010