Investigation of Chip Deformation and Breaking with a Staggered Teeth BTA Tool in Deep Hole Drilling
Abstract
:1. Introduction
2. Theoretical Analysis
3. Experimental Conditions and Methods
4. Results and Discussion
4.1. Chip Thickness
4.2. Tool-Chip Contact Length
4.3. Chip-Strain Increment
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, H.; Shen, X.Q.; Bo, A.; Li, Y.M.; Zhan, H.F.; Gu, Y.T. A multiscale evaluation of the surface integrity in boring trepanning association deep hole drilling. Int. J. Mach. Tools Manuf. 2017, 123, 48–56. [Google Scholar] [CrossRef]
- Matsuzaki, K.; Ryu, T.; Sueoka, A.; Tsukamoto, K. Theoretical and experimental study on rifling mark generating phenomena in BTA deep hole drilling process (generating mechanism and countermeasure). Int. J. Mach. Tools Manuf. 2015, 88, 194–205. [Google Scholar] [CrossRef]
- Kong, L.F.; Chin, J.H.; Li, Y.; Lu, Y.J.; Li, P.Y. Targeted suppression of vibration in deep hole drilling using magneto-rheological fluid damper. J. Mater. Process. Technol. 2014, 55, 2617–2626. [Google Scholar] [CrossRef]
- Biermann, D.; Bleicher, F.; Heisel, U.; Klocke, F.; Möhring, H.-C.; Shih, A. Deep hole drilling. CIRP Ann. Manuf. Technol. 2018, 67, 673–694. [Google Scholar] [CrossRef]
- Biermann, D.; Kirschner, M.; Eberhardt, D. A novel method for chip formation analyses in deep hole drilling with small diameters. Prod. Eng. 2014, 8, 491–497. [Google Scholar] [CrossRef]
- Astakhov, V.P.; Galitsky, V.V.; Osman, M.O.M. A novel approach to the design of self-piloting drills with external chip removal, part 1: Geometry of the cutting tip and grinding process. J. Manuf. Sci. Eng. 1995, 117, 453–463. [Google Scholar] [CrossRef]
- Woon, K.S.; Tnay, G.L.; Rahman, M.; Wan, S.; Yeo, S.H. A computational fluid dynamics (CFD) model for effective coolant application in deep hole gundrilling. Int. J. Mach. Tools Manuf. 2017, 113, 10–18. [Google Scholar] [CrossRef]
- Chaudhari, A.; Malarvizhi, S.; Woon, K.S.; Kumar, A.S.; Rahman, M. The effects of pilot hole geometry on tool-work engagement efficacy in deep hole drilling. J. Manuf. Process. 2015, 19, 135–141. [Google Scholar] [CrossRef]
- Woon, K.S.; Tnay, G.L.; Rahman, M. Improving coolant effectiveness through drill design optimization in gundrilling. Mater. Sci. Eng. 2018, 370, 1–9. [Google Scholar] [CrossRef]
- Aramcharoen, A. Influence of cryogenic cooling on tool wear and chip formation in turning of titanium alloy. Procedia CIRP 2016, 46, 83–86. [Google Scholar] [CrossRef]
- Gao, C.H.; Cheng, K.; Kirkwood, D. The investigation on the machining process of BTA deep hole drilling. J. Mater. Process. Technol. 2001, 107, 222–227. [Google Scholar] [CrossRef]
- Biermann, D.; Kirschner, M. Experimental investigations on single-lip deep hole drilling of superalloy Inconel 718 with small diameters. J. Manuf. Process. 2015, 20, 332–339. [Google Scholar] [CrossRef]
- Ke, F.; Ni, J.; Stephenson, D.A. Chip thickening in deep-hole drilling. Int. J. Mach. Tools Manuf. 2006, 46, 1500–1507. [Google Scholar] [CrossRef]
- Rahman, M.A.; Woon, K.S.; Venkatesh, V.C.; Rahman, M. Modelling of the combined microstructural and cutting edge effects in ultra precision machining. CIRP Ann. Manuf. Technol. 2018, 67, 129–132. [Google Scholar] [CrossRef]
- Sahu, S.K.; DeVor, R.E.; Kapoor, S.G. Modeling of forces for drills with chip-breaking grooves. J. Manuf. Sci. Eng. 2004, 126, 555–564. [Google Scholar] [CrossRef]
- Lee, Y.M.; Yang, S.H.; Chang, S.I. Assessment of chip-breaking characteristics using new chip-breaking index. J. Mater. Process. Technol. 2006, 173, 166–171. [Google Scholar] [CrossRef]
- Wang, Y.G.; Yan, X.P.; Li, B.; Tu, G.C. The study on the chip formation and wear behavior for drilling forged steel S48CS1V with TiAlN-coated gun drill. Int. J. Refractory Metals Hard Mater. 2012, 30, 200–207. [Google Scholar] [CrossRef]
- Toropov, A.; Ko, K.L. Prediction of tool-chip contact length using a new slip-line solution for orthogonal cutting. Int. J. Mach. Tools Manuf. 2003, 43, 1209–1215. [Google Scholar] [CrossRef]
- Fang, N. Machining with tool-chip contact on the tool secondary rake face—Part I: A new slip-line model. Int. J. Mech. Sci. 2002, 44, 2337–2354. [Google Scholar] [CrossRef]
- Fang, N. Machining with tool-chip contact on the tool secondary rake face—Part II: Analysis and discussion. Int. J. Mech. Sci. 2002, 44, 2355–2368. [Google Scholar] [CrossRef]
- Maruda, R.W.; Krolczyk, G.M.; Nieslony, P.; Wojciechowski, S.; Michalski, M.; Legutko, S. The influence of the cooling conditions on the cutting tool wear and the chip formation mechanism. J. Manuf. Process. 2016, 24, 107–115. [Google Scholar] [CrossRef]
- Biermann, D.; Kersting, M.; Kessler, N. Process adapted structure optimization of deep hole drilling tools. CIRP Ann. Manuf. Technol. 2009, 58, 89–92. [Google Scholar] [CrossRef]
- Tnay, G.L.; Wan, S.; Woon, K.S.; Yeo, S.H. The effects of dub-off angle on chip evacuation in single-lip deep hole gun drilling. Int. J. Mach. Tools Manuf. 2016, 108, 66–73. [Google Scholar] [CrossRef]
- Zhang, Y.Z.; Peklenik, J. Chip curl, chip breaking and chip control of the difficult-to-cut materials. CIRP Ann. Manuf. Technol. 1980, 29, 79–83. [Google Scholar] [CrossRef]
- Thil, J.; Haddag, B.; Nouari, M.; Barlier, C.; Papillon, L. Experimental and analytical analyses of the cutting process in the deep hole drilling with BTA (Boring Trepanning Association) system. Mech. Ind. 2014, 14, 413–429. [Google Scholar] [CrossRef]
- Buchkremer, S.; Klocke, F.; Lung, D. Finite-element-analysis of the relationship between chip geometry and stress triaxiality distribution in the chip breakage location of metal cutting operations. Simul. Model. Pract. Theory 2015, 55, 10–26. [Google Scholar] [CrossRef]
- Pan, H.; Liu, J.; Choi, Y.; Xu, C.; Bai, Y.; Atkins, T. Zones of material separation in simulations of cutting. Int. J. Mech. Sci. 2016, 115–116, 262–279. [Google Scholar] [CrossRef]
- Melkote, S.N.; Liu, R.; Fernandez-Zelaia, P.; Marusich, T. A physically based constitutive model for simulation of segmented chip formation in orthogonal cutting of commercially pure titanium. CIRP Ann. Manuf. Technol. 2015, 64, 65–68. [Google Scholar] [CrossRef]
- Buchkremer, S.; Klocke, F. Compilation of a thermodynamics based process signature for the formation of residual surface stresses in metal cutting. Wear 2017, 376–377, 1156–1163. [Google Scholar] [CrossRef]
- Rao, P.K.R.; Shunmugam, M.S. Wear studies in boring trepanning association drilling. Wear 1988, 124, 33–43. [Google Scholar] [CrossRef]
- Kirschner, M.; Michel, S.; Berger, S.; Biermann, D.; Debus, J.; Braukmann, D.; Bayer, M. In situ chip formation analyses in micro single-lip and twist deep hole drilling. Int. J. Adv. Manuf. Technol. 2018, 95, 2315–2324. [Google Scholar] [CrossRef]
- Dargusch, M.S.; Sun, S.J.; Kim, J.W.; Li, T.; Trimby, P.; Cairney, J. Effect of tool wear evolution on chip formation during dry machining of Ti-6Al-4V alloy. Int. J. Mach. Tools Manuf. 2018, 126, 13–17. [Google Scholar] [CrossRef]
- Bai, W.; Sun, R.L.; Roy, A.; Silberschmidt, V.V. Improved analytical prediction of chip formation in orthogonal cutting of titanium alloy Ti6Al4V. Int. J. Mech. Sci. 2017, 133, 357–367. [Google Scholar] [CrossRef]
Material | Density ρ (Kg/m3) | Elasticity Modulus E (GPa) | Poisson Ratio ε | Yield Strength σs (MPa) | Tensile Strength σb (MPa) | Elongation δ | Reduction of Area ψ |
---|---|---|---|---|---|---|---|
SA508-3 | 7920 | 210 | 0.269 | 620 | 740 | 24% | 40% |
Tool No. | Central Tooth | Intermediate Tooth | External Tooth | |||
---|---|---|---|---|---|---|
Width wb (mm) | Height hb (mm) | Width wb (mm) | Height hb (mm) | Width wb (mm) | Height hb (mm) | |
1 | 1.7 | 0.35 | 1.5 | 0.3 | 1.2 | 0.25 |
2 | 1.7 | 0.55 | 1.5 | 0.5 | 1.2 | 0.45 |
3 | 1.7 | 0.75 | 1.5 | 0.7 | 1.2 | 0.65 |
4 | 1.9 | 0.35 | 1.7 | 0.3 | 1.4 | 0.25 |
5 | 1.9 | 0.55 | 1.7 | 0.5 | 1.4 | 0.45 |
6 | 1.9 | 0.75 | 1.7 | 0.7 | 1.4 | 0.65 |
7 | 2.1 | 0.35 | 1.9 | 0.3 | 1.6 | 0.25 |
8 | 2.1 | 0.55 | 1.9 | 0.5 | 1.6 | 0.45 |
9 | 2.1 | 0.75 | 1.9 | 0.7 | 1.6 | 0.65 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.-B.; Zheng, J.-M.; Li, Y.; Kong, L.-F.; Shi, W.-C.; Guo, B. Investigation of Chip Deformation and Breaking with a Staggered Teeth BTA Tool in Deep Hole Drilling. Metals 2019, 9, 46. https://doi.org/10.3390/met9010046
Li X-B, Zheng J-M, Li Y, Kong L-F, Shi W-C, Guo B. Investigation of Chip Deformation and Breaking with a Staggered Teeth BTA Tool in Deep Hole Drilling. Metals. 2019; 9(1):46. https://doi.org/10.3390/met9010046
Chicago/Turabian StyleLi, Xu-Bo, Jian-Ming Zheng, Yan Li, Ling-Fei Kong, Wei-Chao Shi, and Bian Guo. 2019. "Investigation of Chip Deformation and Breaking with a Staggered Teeth BTA Tool in Deep Hole Drilling" Metals 9, no. 1: 46. https://doi.org/10.3390/met9010046
APA StyleLi, X. -B., Zheng, J. -M., Li, Y., Kong, L. -F., Shi, W. -C., & Guo, B. (2019). Investigation of Chip Deformation and Breaking with a Staggered Teeth BTA Tool in Deep Hole Drilling. Metals, 9(1), 46. https://doi.org/10.3390/met9010046