Effect of Microstructure on the High-Cycle Fatigue Behavior of Ti(43-44)Al4Nb1Mo (TNM) Alloys
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Fatigue Properties
3.1.1. Fatigue Strength
3.1.2. Fatigue Life
3.2. Crack Initiation
3.3. Effect of Microstructure
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yang, R. Advances and challenges of TiAl base alloys. Acta Metall. Sin. 2015, 51, 129–147. [Google Scholar]
- Kim, Y.W. Intermetallic alloys based on gamma titanium aluminide. JOM 1989, 41, 24–30. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Inui, H.; Ito, K. High-temperature structural intermetallics. Acta Mater. 2000, 48, 307–322. [Google Scholar] [CrossRef]
- Clemens, H.; Mayer, S. Design, Processing, Microstructure, Properties, and Applications of Advanced Intermetallic TiAl Alloys. Adv. Eng. Mater. 2013, 15, 191–215. [Google Scholar] [CrossRef]
- Chen, G.L.; Lin, J.P.; Song, X.P.; Wang, Y.L.; Ren, R.R. Development of High Nb Containing High Temperature TiAl Alloys. In KIM YW, CARNEIRO T. Proceedings of the International Symposium on Niobium for High Temperature Applications; TMS: Warrendale, PA, USA, 2003. [Google Scholar]
- Chu, Y.; Li, J.; Zhu, L.; Liu, Y.; Tang, B.; Kou, H. Microstructure Evolution of a High Nb Containing TiAl Alloy with (α2 + γ) Microstructure during Elevated Temperature Deformation. Metals 2018, 8, 916. [Google Scholar] [CrossRef]
- Chen, Y.; Cheng, L.; Sun, L.; Lu, Y.; Yang, G.; Kou, H.; Bouzy, E. Characterization of a New Microstructure in a β-Solidifying TiAl Alloy after Air-Cooling from a β Phase Field and Subsequent Tempering. Metals 2018, 8, 156. [Google Scholar] [CrossRef]
- Kim, Y.W.; Kim, S.L. Advances in Gammalloy Materials–Processes–Application Technology: Successes, Dilemmas, and Future. JOM 2018, 70, 553–560. [Google Scholar] [CrossRef]
- Appel, F.; Clemens, H.; Fischer, F.D. Modeling concepts for intermetallic titanium aluminides. Prog. Mater. Sci. 2016, 81, 55–124. [Google Scholar] [CrossRef]
- Loria, E.A. Gamma titanium aluminides as prospective structural materials. Intermetallics 2000, 8, 1339–1345. [Google Scholar] [CrossRef]
- Williams, J.C.; Starke, E.A. Progress in structural materials for aerospace systems. Acta Mater. 2003, 51, 5775–5799. [Google Scholar] [CrossRef]
- Hénaff, G.; Gloanec, A.L. Fatigue properties of TiAl alloys. Intermetallics 2005, 13, 543–558. [Google Scholar] [CrossRef]
- Edwards, T. Recent progress in the high-cycle fatigue behaviour of γ-TiAl alloys. Mater. Sci. Technol. 2018, 34, 1919–1939. [Google Scholar] [CrossRef]
- Appel, F.; Paul, J.D.H.; Oehring, M. Gamma Titanium Aluminide Alloys—Science and Technology; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Wu, Z.; Hu, R.; Zhang, T.; Zhou, H.; Kou, H.; Li, J. Microstructure determined fracture behavior of a high Nb containing TiAl alloy. Mater. Sci. Eng. A 2016, 666, 297–304. [Google Scholar] [CrossRef]
- Kruzic, J.; Campbell, J.; Ritchie, R. Fatigue-crack propagation in gamma-based titanium aluminide alloys at large and small crack sizes. MRS Online Proc. Libr. Arch. 1998, 552. [Google Scholar] [CrossRef]
- Campbell, J.; Ritchie, R.; Rao, K.V. The effect of microstructure on fracture toughness and fatigue crack growth behavior in γ-titanium aluminide based intermetallics. Metall. Mater. Trans. A 1999, 30, 563–577. [Google Scholar] [CrossRef]
- Rugg, D.; Dixon, M.; Burrows, J. High-temperature application of titanium alloys in gas turbines. Material life cycle opportunities and threats—An industrial perspective. Mater. High Temp. 2016, 33, 536–541. [Google Scholar] [CrossRef]
- Hong, Y.; Lei, Z.; Sun, C.; Zhao, A. Propensities of crack interior initiation and early growth for very-high-cycle fatigue of high strength steels. Int. J. Fatigue 2014, 58, 144–151. [Google Scholar] [CrossRef]
- Jha, S.K.; Szczepanski, C.J.; Golden, P.J.; Porter, W.J., III; John, R. Characterization of fatigue crack-initiation facets in relation to lifetime variability in Ti–6Al–4V. Int. J. Fatigue 2012, 42, 248–257. [Google Scholar] [CrossRef]
- Golden, P.J.; Whitney-Rawls, A.; Jha, S.K.; Porter, W.J., III; Buchanan, D.; Prasad, K.; Chandravanshi, V.; Kumar, V.; John, R. Probabilistic prediction of minimum fatigue life behaviour in α + β titanium alloys. Fatigue Fract. Eng. Mater. Struct. 2019, 42, 674–685. [Google Scholar] [CrossRef]
- Sinha, V.; Pilchak, A.L.; Jha, S.K.; Porter, W.J.; John, R.; Larsen, J.M. Correlating Scatter in Fatigue Life with Fracture Mechanisms in Forged Ti-6242Si Alloy. Metall. Mater. Trans. A 2018, 49, 1061–1078. [Google Scholar] [CrossRef]
- Min, Z.; Xi-Ping, S.; Long, Y.; Hong-Liang, L.; Ze-Hui, J.; Hui-Chen, Y. In situ observation of fatigue crack initiation and propagation behavior of a high-Nb TiAl alloy at 750 °C. Mater. Sci. Eng. A 2015, 622, 30–36. [Google Scholar] [CrossRef]
- Jha, S.; Larsen, J.; Rosenberger, A. The role of competing mechanisms in the fatigue life variability of a nearly fully-lamellar γ-TiAl based alloy. Acta Mater. 2005, 53, 1293–1304. [Google Scholar] [CrossRef]
- Cao, F.; Kumar, P.; Koopman, M.; Lin, C.; Fang, Z.Z.; Chandran, K.R. Understanding competing fatigue mechanisms in powder metallurgy Ti–6Al–4V alloy: Role of crack initiation and duality of fatigue response. Mater. Sci. Eng. A 2015, 630, 139–145. [Google Scholar] [CrossRef]
- Cashman, G.T. A review of Competing Modes fatigue behavior. Int. J. Fatigue 2010, 32, 492–496. [Google Scholar] [CrossRef]
- Pilchak, A.L.; Williams, R.E.A.; Williams, J.C. Crystallography of Fatigue Crack Initiation and Growth in Fully Lamellar Ti–6Al–4V. Metall. Mater. Trans. A 2010, 41, 106. [Google Scholar] [CrossRef]
- Chandran, K.S.R.; Chang, P.; Cashman, G.T. Competing failure modes and complex—Curves in fatigue of structural materials. Int. J. Fatigue 2010, 32, 482–491. [Google Scholar] [CrossRef]
- Bayraktar, E.; Bathias, C.; Hongquian, X.; Hao, T. On the giga cycle fatigue behaviour of two-phase (α2 + γ) TiAl alloy. Int. J. Fatigue 2004, 26, 1263–1275. [Google Scholar] [CrossRef]
- Cottrell, A.H. Theory of brittle fracture in steel and similar metals. Trans. Met. Soc. AIME 1958, 212, 192–203. [Google Scholar]
- Filippini, M.; Beretta, S.; Patriarca, L.; Pasquero, G.; Sabbadini, S. Defect tolerance of a gamma titanium aluminide alloy. Procedia Eng. 2011, 10, 3677–3682. [Google Scholar] [CrossRef] [Green Version]
- Dixon, W.J.; Mood, A.M. A Method for Obtaining and Analyzing Sensitivity Data. Publ. Am. Stat. Assoc. 1948, 43, 109–126. [Google Scholar] [CrossRef]
- Larsen, J.M.; Rosenberger, A.H.; Worth, B.D.; Li, K.; Maxwell, D.C.; Porter, W.J. Assuring reliability of gamma titanium aluminides in long-term service. In Proceedings of the International Symposium on Gamma Titanium Aluminides, San Diego, CA, USA, 28 February–4 March 1999; Minerals, Metals and Materials Society: Warrendale, PA, USA, 1999; pp. 463–472. [Google Scholar]
- Gao, Z. Applied Statistics in Fatigue; National Defence Industrial Press: Beijing, China, 1986. [Google Scholar]
- Jha, S.K.; Szczepanski, C.J.; John, R.; Larsen, J.M. Deformation heterogeneities and their role in life-limiting fatigue failures in a two-phase titanium alloy. Acta Mater. 2015, 82, 378–395. [Google Scholar] [CrossRef]
- Chandran, K.R.; Jha, S. Duality of the S-N fatigue curve caused by competing failure modes in a titanium alloy and the role of Poisson defect statistics. Acta Mater. 2005, 53, 1867–1881. [Google Scholar] [CrossRef]
- Chan, K.S.; Kim, Y.-W. Influence of microstructure on crack-tip micromechanics and fracture behaviors of a two-phase TiAl alloy. Metall. Mater. Trans. A 1992, 23, 1663–1677. [Google Scholar] [CrossRef]
- Zhu, B.; Xue, X.; Kou, H.; Li, X.; Li, J. Effect of microstructure on the fracture toughness of multi-phase high Nb-containing TiAl alloys. Intermetallics 2018, 100, 142–150. [Google Scholar] [CrossRef]
- Worth, B.D.; Larsen, J.M.; Balsone, S.J.; Jones, J.W. Mechanisms of ambient temperature fatigue crack growth in Ti-46.5Al-3Nb-2Cr-0.2W. Metall. Mater. Trans. A 1997, 28, 825–835. [Google Scholar]
- Zhu, B.; Xue, X.; Kou, H.; Dong, R.; Li, J. The nucleation of microcracks under tensile stress in multi-phase high Nb-containing TiAl alloys. Intermetallics 2019, 106, 13–19. [Google Scholar] [CrossRef]
Microstructure | Heat Treatment | Volume Fractions (%) | Colony Size (μm) | ||
---|---|---|---|---|---|
α2/γ Colonies | Equiaxed γ | B2 | |||
DP | 1230 °C/1 h/AC + 850 °C/6 h/FC | 50.5 | 33.9 | 15.6 | 30–40 |
NL#1 | 1280 °C/1 h/AC + 850 °C/6 h/FC | 91.7 | 3.2 | 5.1 | 45–55 |
NL#2 | 1300 °C/1 h/AC + 850 °C/6 h/FC | 93.3 | 0.1 | 6.6 | 60–70 |
Alloy | Colony/Grain Size (μm) | εt (%) | σf (MPa) |
---|---|---|---|
DP | 30–40 | 1.14 | 622 |
NL#1 | 45–55 | 0.69 | 594 |
NL#2 | 60–70 | 0.58 | 542 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, B.; Zhu, B.; Bi, W.; Liu, Y.; Li, J. Effect of Microstructure on the High-Cycle Fatigue Behavior of Ti(43-44)Al4Nb1Mo (TNM) Alloys. Metals 2019, 9, 1043. https://doi.org/10.3390/met9101043
Tang B, Zhu B, Bi W, Liu Y, Li J. Effect of Microstructure on the High-Cycle Fatigue Behavior of Ti(43-44)Al4Nb1Mo (TNM) Alloys. Metals. 2019; 9(10):1043. https://doi.org/10.3390/met9101043
Chicago/Turabian StyleTang, Bin, Bin Zhu, Weiqing Bi, Yan Liu, and Jinshan Li. 2019. "Effect of Microstructure on the High-Cycle Fatigue Behavior of Ti(43-44)Al4Nb1Mo (TNM) Alloys" Metals 9, no. 10: 1043. https://doi.org/10.3390/met9101043
APA StyleTang, B., Zhu, B., Bi, W., Liu, Y., & Li, J. (2019). Effect of Microstructure on the High-Cycle Fatigue Behavior of Ti(43-44)Al4Nb1Mo (TNM) Alloys. Metals, 9(10), 1043. https://doi.org/10.3390/met9101043