Study on σ Phase in Fe–Al–Cr Alloys
Abstract
:1. Introduction
2. Experimental Procedures
3. Results and Discussion
3.1. Second Phase of Alloys
3.2. Thermodynamic Calculation
3.3. Effect of High Temperature Environment on σ Phase
4. Conclusions
- (1)
- This study provides a new way for grain refinement of Fe–Al–Cr alloys and a new idea for commercial application on a large scale. In this study, FeCr(σ) phase was obtained in the Fe–Al–Cr alloys, which had grains of several microns and was coherent and coplanar with the matrix (Fe2AlCr).
- (2)
- σ phase nucleated in austenite. The nucleation of σ phase in Fe–Al–Cr alloys is controlled by the ratio of nickel to chromium. When the Ni/Cr (eq) ratio of alloys is more than 0.19, σ phase can nucleate in Fe–Al–Cr alloys.
- (3)
- σ phase will not decompose rapidly in a 1000 °C high temperature working environment, and it will not dissolve into the matrix in a short time heating process.
Author Contributions
Conflicts of Interest
References
- Gregory, O.J.; Busch, E.; Fralick, G.C.; Chen, X. Preparation and characterization of ceramic thin film thermocouples. Thin Solid Film 2010, 518, 6093–6098. [Google Scholar] [CrossRef]
- Deodeshmukh, V.P.; Matthews, S.J.; Klarstrom, D.L. High-temperature oxidation performance of a new alumina-forming Ni–Fe–Cr–Al alloy in flowing air. Int. J. Hydrogen Energy 2011, 36, 4580–4587. [Google Scholar] [CrossRef]
- Stallybrass, C.; Schneider, A.; Sauthoff, G. The strengthening effect of (Ni, Fe)al precipitates on the mechanical properties at high temperatures of ferritic Fe–Al–Ni–Cr alloys. Intermetallics 2005, 13, 1263–1268. [Google Scholar] [CrossRef]
- Stallybrass, C.; Sauthoff, G. Ferritic Fe–Al–Ni–Cr alloys with coherent precipitates for high-temperature applications. Mater. Sci. Eng. A (Struct. Mater. Propert. Microstruct. Process.) 2004, 387–389, 985–990. [Google Scholar] [CrossRef]
- Sarkar, S.; Bansal, C. Atomic disorder–order phase transformation in nanocrystalline Fe–Al. J. Alloys Compd. 2002, 334, 135–142. [Google Scholar] [CrossRef]
- Vo, N.Q.; Liebscher, C.H.; Rawlings, M.J.S.; Asta, M.; Dunand, D.C. Creep properties and microstructure of a precipitation-strengthened ferritic Fe–Al–Ni–Cr alloy. Acta Mater. 2014, 71, 89–99. [Google Scholar] [CrossRef]
- Teng, Z.K.; Zhang, F.; Miller, M.K.; Liu, C.T.; Huang, S.; Chou, Y.T. Thermodynamic modeling and experimental validation of the Fe-Al-Ni-Cr-Mo alloy system. Mater. Lett. 2012, 71, 36–40. [Google Scholar] [CrossRef]
- Liebscher, C.H.; Radmilovic, V.R.; Dahmen, U.; Vo, N.Q.; Dunand, D.C.; Asta, M.; Ghosh, G. A hierarchical microstructure due to chemical ordering in the bcc lattice: early stages of formation in a ferritic Fe–Al–Cr–Ni–Ti alloy. Acta Mater. 2015, 92, 220–232. [Google Scholar] [CrossRef]
- Janda, D.; Ghassemiarmaki, H.; Bruder, E.; Hockauf, M.; Heilmaier, M.; Kumar, K.S. Effect of strain-rate on the deformation response of DO3-ordered Fe3Al. Acta Mater. 2016, 103, 909–918. [Google Scholar] [CrossRef]
- Wang, J.; Han, X.; Liu, S.; Hou, W. Effects of Si and V on high temperature oxidation resistance of Fe-Al-Cr alloys. J. Chongqing Univ. 2019, 42, 86–97. [Google Scholar]
- Minamino, Y.; Koizum, Y.; Tsuji, N.; Hirohata, N.; Mizuuchi, K.; Ohkanda, Y. Microstructures and mechanical properties of bulk nanocrystalline Fe–Al–C alloys made by mechanically alloying with subsequent spark plasma sintering. Sci. Technol. Adv. Mater. 2004, 5, 133–143. [Google Scholar] [CrossRef]
- Risanti, D.D.; Sauthoff, G. Strengthening of iron aluminide alloys by atomic ordering and Laves phase precipitation for high-temperature applications. Intermetallics 2005, 13, 1313–1321. [Google Scholar] [CrossRef]
- Palm, M.; Sauthoff, G. Deformation behaviour and oxidation resistance of single-phase and two-phase L21-ordered Fe–Al–Ti alloys. Intermetallics 2004, 12, 1345–1359. [Google Scholar] [CrossRef]
- Ha, M.C.; Koo, J.M.; Lee, J.K.; Hwang, S.W.; Park, K.T. Tensile deformation of a low density Fe–27Mn–12Al–0.8C duplex steel in association with ordered phases at ambient temperature. Mater. Sci. Eng. A 2013, 586, 276–283. [Google Scholar] [CrossRef]
- Zhao, X.B.; Dang, Y.Y.; Yin, H.F.; Lu, J.T.; Yuan, Y.; Cui, C.Y.; Gu, Y.F. Super-supercritical power stations with nickel-iron-based high-temperature alloy TCP phase and carbide precipitation thermodynamic calculations. Mater. Eng. 2015, 43, 38–43. [Google Scholar]
- Baik, S.I.; Rawlings, M.J.S.; Dunand, D.C. Atom probe tomography study of Fe-Ni-Al-Cr-Ti ferritic steels with hierarchically-structured precipitates. Acta Mater. 2018, 144, 707–715. [Google Scholar] [CrossRef]
No. | Fe | Al | Cr | Ni | C | V | Ti |
---|---|---|---|---|---|---|---|
#1 | 72.27 | 7.91 | 13.17 | 6.65 | - | - | - |
#2 | 81.97 | 8.46 | 8.76 | - | 0.81 | - | - |
#3 | 75.15 | 12.25 | 10.29 | 2.11 | 0.20 | - | - |
#4 | 75.54 | 11.73 | 11.48 | 8.68 | - | - | 1.21 |
#5 | 82.57 | 8.80 | 4.86 | 2.19 | - | 1.36 | - |
#6 | 86.91 | 8.38 | 4.71 | - | - | - | - |
Element | Location 1 (at. %) | Location 2 (at. %) | Location 3 (at. %) | Location 4 (at. %) | Location 5 (at. %) |
---|---|---|---|---|---|
Fe | 53.64 | 57.68 | 59.72 | 73.19 | 75.86 |
Al | 1.46 | 7.31 | 9.96 | 18.31 | 16.72 |
Cr | 42.45 | 14.07 | 34.48 | - | - |
C | - | 20.94 | 3.76 | - | - |
Ni | 2.45 | - | 2.04 | 8.60 | 4.32 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Liu, S.; Han, X. Study on σ Phase in Fe–Al–Cr Alloys. Metals 2019, 9, 1092. https://doi.org/10.3390/met9101092
Wang J, Liu S, Han X. Study on σ Phase in Fe–Al–Cr Alloys. Metals. 2019; 9(10):1092. https://doi.org/10.3390/met9101092
Chicago/Turabian StyleWang, Jintao, Shouping Liu, and Xiaoyu Han. 2019. "Study on σ Phase in Fe–Al–Cr Alloys" Metals 9, no. 10: 1092. https://doi.org/10.3390/met9101092
APA StyleWang, J., Liu, S., & Han, X. (2019). Study on σ Phase in Fe–Al–Cr Alloys. Metals, 9(10), 1092. https://doi.org/10.3390/met9101092