Synthesis of Zeolite Using Aluminum Dross and Waste LCD Glass Powder: A Waste to Waste Integration Valorization Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. Characterization
2.4. Adsorption Application
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Naushad, M.; Al-Othman, Z.A. Ion Exchange Technology II: Applications; Inamuddin, M.L., Ed.; Springer: Berlin, Germany, 2012; pp. 217–235. [Google Scholar]
- Dąbrowski, A. Adsorption—from theory to practice. Adv. Colloid Interface Sci. 2001, 93, 135–224. [Google Scholar] [CrossRef]
- Yoldi, M.; Fuentes-Ordoñez, E.G.; Korili, S.A.; Gil, A. Zeolite synthesis from industrial wastes. Microporous Mesoporous Mater. 2019, 287, 183–191. [Google Scholar] [CrossRef]
- Li, Y.; Li, L.; Yu, J. Applications of zeolites in sustainable chemistry. Chem 2017, 3, 928–949. [Google Scholar] [CrossRef]
- Jha, B.; Singh, D.N. A review on synthesis, characterization and industrial applications of fly ash zeolites. J. Mater. Educ. 2011, 33, 65. [Google Scholar]
- Wang, S.; Peng, Y. Natural zeolites as effective adsorbents in water and wastewater treatment. Chem. Eng. J. 2010, 156, 11–24. [Google Scholar] [CrossRef]
- Pendergast, M.M.; Hoek, E.M.V. Porous LiMn2O4 nanorods with durable high-rate capability for rechargeable Li-ion batteries. Energy Environ. Sci. 2011, 4, 3668–3675. [Google Scholar]
- Degnan, T.F. Applications of zeolites in petroleum refining. Top. Catal. 2000, 13, 349–356. [Google Scholar] [CrossRef]
- Vermeiren, W.; Gilson, J.P. Impact of zeolites on the petroleum and petrochemical industry. Top. Catal. 2009, 52, 1131–1161. [Google Scholar] [CrossRef]
- Li, J.R.; Tao, Y.; Yu, Q.; Bu, X.H.; Sakamoto, H.; Kitagawa, S. Selective gas adsorption and unique structural topology of a highly stable guest-free zeolite-type MOF material with N-rich chiral open channels. Chemistry 2008, 14, 2771–2776. [Google Scholar] [CrossRef]
- Qin, J.-S.; Du, D.-Y.; Li, W.-L.; Zhang, J.-P.; Li, S.-L.; Su, Z.-M.; Wang, X.-L.; Xu, Q.; Shao, K.-Z.; Lan, Y.-Q. N-rich zeolite-like metal–organic framework with sodalite topology: high CO 2 uptake, selective gas adsorption and efficient drug delivery. Chem. Sci. 2012, 3, 2114–2118. [Google Scholar] [CrossRef]
- Ramesh, K.; Reddy, D.D. Advances in Agronomy; Sparks, D.L., Ed.; Elsevier: Amsterdam, The Netherlands, 2011; Volume 113, pp. 219–241. [Google Scholar]
- Noori, M.; Zendehdel, M.; Ahmadi, A. Using natural zeolite for the improvement of soil salinity and crop yield. Toxicol. Environ. Chem. 2006, 88, 77–84. [Google Scholar] [CrossRef]
- Clark, J.H. Solid acids for green chemistry. Acc. Chem. Res 2002, 35, 791–797. [Google Scholar] [CrossRef] [PubMed]
- Zhan, B.Z.; White, M.A.; Sham, T.K.; Pincock, J.A.; Doucet, R.J.; Rao, K.V.; Robertson, K.N.; Cameron, T.S. Zeolite-confined nano-RuO2: A green, selective, and efficient catalyst for aerobic alcohol oxidation. J. Am. Chem. Soc. 2003, 125, 2195–2199. [Google Scholar] [CrossRef]
- Collins, F.; Rozhkovskaya, A.; Outram, J.G.; Millar, G.J. A Critical review of waste resources, synthesis, and applications for Zeolite LTA. Microporous Mesoporous Mater. 2020, 291, 109667. [Google Scholar] [CrossRef]
- Jha, B.; Singh, D.N. Fly ash Zeolites: Innovations, Applications, and Directions; Springer: Berlin, Germany, 2016; Volume 78. [Google Scholar]
- Bukhari, S.S.; Behin, J.; Kazemian, H.; Rohani, S. Conversion of coal fly ash to zeolite utilizing microwave and ultrasound energies: a review. Fuel 2015, 140, 250–266. [Google Scholar] [CrossRef]
- Shigemoto, N.; Hayashi, H.; Miyaura, K. Selective formation of Na-X zeolite from coal fly ash by fusion with sodium hydroxide prior to hydrothermal reaction. J. Mater. Sci. 1993, 28, 4781–4786. [Google Scholar] [CrossRef]
- La Iglesia, A.; González, M.V.; Dufour, J. Zeolite synthesis employing alkaline waste effluents from the aluminum industry. Environ. Prog. 2002, 21, 105–110. [Google Scholar] [CrossRef]
- Swain, B.; Mishra, C.; Hong, H.S.; Cho, S.S. Beneficiation and recovery of indium from liquid-crystal-display glass by hydrometallurgy. Waste Manag. 2016, 57, 207–214. [Google Scholar] [CrossRef]
- Swain, B.; Lee, C.; Hong, H. Value Recovery from Waste Liquid Crystal Display Glass Cullet through Leaching: Understanding the Correlation between Indium Leaching Behavior and Cullet Piece Size. Metals 2018, 8, 235. [Google Scholar] [CrossRef]
- Yang, J.; Ekberg, C.; Retegan, T. Optimization of Indium Recovery and Separation from LCD Waste by Solvent Extraction with Bis(2-ethylhexyl) Phosphate (D2EHPA). Int. J. Chem. Eng. 2014, 2014, 1–9. [Google Scholar] [CrossRef]
- Yang, J.; Retegan, T.; Ekberg, C. Indium recovery from discarded LCD panel glass by solvent extraction. Hydrometallurgy 2013, 137, 68–77. [Google Scholar] [CrossRef]
- Swain, B.; Lee, C.G. Commercial indium recovery processes development from various e-(industry) waste through the insightful integration of valorization processes: A perspective. Waste Manag. 2019, 87, 597–611. [Google Scholar] [CrossRef] [PubMed]
- Swain, B.; Mishra, C.; Hong, H.S.; Cho, S.-S. Treatment of indium-tin-oxide etching wastewater and recovery of In, Mo, Sn and Cu by liquid–liquid extraction and wet chemical reduction: A laboratory scale sustainable commercial green process. Green Chem. 2015, 17, 4418–4431. [Google Scholar] [CrossRef]
- Swain, B.; Mishra, C.; Hong, H.S.; Cho, S.-S.; Lee, S.K. Commercial process for the recovery of metals from ITO etching industry wastewater by liquid–liquid extraction: simulation, analysis of mechanism, and mathematical model to predict optimum operational conditions. Green Chem. 2015, 17, 3979–3991. [Google Scholar] [CrossRef]
Experiment | Al Dross Used, (g) | Waste LCD Glass, (g) | Mixed Powder, (g) | NaOH 2 M Solution, (mL) | Temperature, (°C) | Time, (h) |
---|---|---|---|---|---|---|
1 | 40 | 10 | 12 | 120 | 90 | 24 |
2 | 30 | 10 | 12 | 120 | 90 | 24 |
3 | 20 | 10 | 12 | 120 | 90 | 24 |
4 | 10 | 10 | 12 | 120 | 90 | 24 |
5 | 5 | 10 | 12 | 120 | 90 | 24 |
6 | 3 | 10 | 12 | 120 | 90 | 24 |
Al Dross: Waste LCD (wt/wt) | BET, (m2/g) | ||||
---|---|---|---|---|---|
Case-I | Case-II | Case-III | Average | BET Average, Standard Deviation | |
0.3:1 | 28.0 | 22.3 | 21.4 | 23.9 | 2.9 |
0.5:1 | 32.6 | 25.0 | 22.2 | 26.6 | 4.4 |
1:1 | 28.5 | 28.3 | 25.1 | 27.3 | 1.6 |
2:1 | 30.2 | 34.3 | 30.5 | 31.6 | 1.9 |
3:1 | 23.9 | 28.3 | 27.0 | 26.4 | 1.8 |
4:1 | 26.4 | 22.5 | 19.8 | 22.9 | 2.7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, Y.; Swain, B.; Im, B.; Yoon, J.-H.; Park, K.H.; Lee, C.G.; Kim, D.G. Synthesis of Zeolite Using Aluminum Dross and Waste LCD Glass Powder: A Waste to Waste Integration Valorization Process. Metals 2019, 9, 1240. https://doi.org/10.3390/met9121240
Kang Y, Swain B, Im B, Yoon J-H, Park KH, Lee CG, Kim DG. Synthesis of Zeolite Using Aluminum Dross and Waste LCD Glass Powder: A Waste to Waste Integration Valorization Process. Metals. 2019; 9(12):1240. https://doi.org/10.3390/met9121240
Chicago/Turabian StyleKang, Yubin, Basudev Swain, Byoungyong Im, Jin-Ho Yoon, Kwang Hoon Park, Chan Gi Lee, and Dae Guen Kim. 2019. "Synthesis of Zeolite Using Aluminum Dross and Waste LCD Glass Powder: A Waste to Waste Integration Valorization Process" Metals 9, no. 12: 1240. https://doi.org/10.3390/met9121240
APA StyleKang, Y., Swain, B., Im, B., Yoon, J. -H., Park, K. H., Lee, C. G., & Kim, D. G. (2019). Synthesis of Zeolite Using Aluminum Dross and Waste LCD Glass Powder: A Waste to Waste Integration Valorization Process. Metals, 9(12), 1240. https://doi.org/10.3390/met9121240