The Impact of the Composition Effect on Ferromagnetic Properties of Tb2Co2Ga
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. XRD Pattern and Microstructure
3.2. Magnetic Properties
3.3. Relationship between the Ferromagnetic Properties and Crystal Structure Paremeters
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rieger, W.; Nowotny, H.; Benesovsky, F. Die kristallstruktur von W2CoB2 und isotypen phasen. Mon. Chem. 1966, 97, 378–382. [Google Scholar] [CrossRef]
- Sengupta, K.; Iyer, K.K.; Sampathkumaran, E.V. Large magnetoresistance and magnetocaloric effect above 70 K in Gd2Co2Al, Gd2Co2Ga, and Gd7Rh3. Phys. Rev. B 2005, 72, 054422. [Google Scholar] [CrossRef]
- Fu, H.; Zou, M.; Guo, M.S.; Zheng, Q.; Zu, X.T. Structural, magnetic, and magnetothermal properties of R2Co2Al (R = Tb, and Dy) compounds. Mater. Charact. 2011, 62, 451–455. [Google Scholar] [CrossRef]
- Morozkin, A.V.; Genchel, V.K.; Garchev, A.V.; Yapaskurt, V.O.; Isnard, O.; Yao, J.; Nirmala, R.; Quezado, S.; Malik, S.K. Magnetic ordering of Mo2NiB2-type (Gd, Tb, Dy)2Co2Al compounds by magnetization and neutron diffraction study. J. Magn. Magn. Mater. 2017, 442, 36–44. [Google Scholar] [CrossRef]
- Morozkin, A.V.; Garchev, A.V.; Yapaskurt, V.O.; Yao, J.; Nirmala, R.; Quezado, S.; Malik, S.K. Mo2NiB2-type Sm2Co2Al and Sm2Co2Ga compounds: Magnetic properties and giant low-temperature coercivity. J. Solid State Chem. 2018, 260, 95–100. [Google Scholar] [CrossRef]
- Kitagawa, J.; Terada, H.; Shirakawa, N.; Tsubota, M.; Nose, A.; Tanaka, S. Composition effect in ferromagnetic properties of Tb3Co3Ga. Res. Phys. 2019, 15, 102591. [Google Scholar] [CrossRef]
- Morozkin, A.V.; Yao, J.; Knotko, A.V.; Yapaskurt, V.O. Low-temperature coercivity of Mo2NiB2-type Tb2Co2Ga and Tb2Co2Al-based solid solutions. J. Solid State Chem. 2019, 277, 406–414. [Google Scholar] [CrossRef]
- Kitagawa, J.; Takeda, N.; Sakai, F.; Ishikawa, M. Effect of composition in (RE) 3Pd 20Ge 6 (RE=La, Ce and Nd). J. Phys. Soc. Jpn. 1999, 68, 3413–3416. [Google Scholar] [CrossRef]
- Lu, Q.M.; Yue, M.; Zhang, H.G.; Wang, M.L.; Yu, F.; Huang, Q.Z.; Ryan, D.H.; Altounian, Z. Intrinsic magnetic properties of single-phase Mn1+xGa (0 < x < 1) alloys. Sci. Rep. 2015, 5, 17086. [Google Scholar] [PubMed]
- Izumi, F.; Momma, K. Three-dimensional visualization in powder diffraction. Solid State Phenom. 2007, 130, 15–20. [Google Scholar] [CrossRef]
- Tsubota, M.; Kitagawa, J. A necessary criterion for obtaining accurate lattice parameters by Rietveld method. Sci. Rep. 2017, 7, 15381. [Google Scholar] [CrossRef] [PubMed]
- Dębiec, I.; Chełkowska, G. Magnetic, electric and XPS study of Tb(Co1−xGax)2 compounds. J. Magn. Magn. Mater. 2003, 261, 73–77. [Google Scholar] [CrossRef]
- Miyahara, J.; Shirakawa, N.; Setoguchi, Y.; Tsubota, M.; Kuroiwa, K.; Kitagawa, J. Hill plot focusing on Ce compounds with high magnetic ordering temperatures and consequent study of Ce2AuP3. J. Supercond. Nov. Magn. 2018, 31, 3559–3564. [Google Scholar] [CrossRef]
- Zheng, X.Q.; Chen, J.; Shen, J.; Zhang, H.; Xu, Z.Y.; Gao, W.W.; Wu, J.F.; Hu, F.X.; Sun, J.R.; Shen, B.G. Large refrigerant capacity of RGa (R = Tb and Dy) compounds. J. Appl. Phys. 2012, 111, 07A917. [Google Scholar] [CrossRef] [Green Version]
Group | Subgroup | Sample | Starting Composition | Tb2Co2Ga Main Phase |
---|---|---|---|---|
G1 | - | A | Tb41.7Co41.7Ga16.6 | Tb40.1(6)Co39.8(8)Ga20.1(4) |
G1 | - | B | Tb45.0Co38.0Ga17.0 | Tb39.9(8)Co40.7(4)Ga19.4(9) |
G2 | - | C | Tb41.4Co39.4Ga19.2 | Tb39.9(3)Co39.4(2)Ga20.6(5) |
G2 | - | D | Tb43.9Co36.8Ga19.3 | Tb40.3(8)Co38.8(9)Ga21.0(2) |
G3 | - | E | Tb42.0Co38.0Ga20.0 | Tb39.7(8)Co38.6(7)Ga21.7(5) |
G3 | - | F | Tb42.9Co35.7Ga21.4 | Tb39.8(6)Co39.7(5)Ga21.5(4) |
G4 | SG4-1 | G | Tb41.0Co37.0Ga22.0 | Tb39.6(7)Co37.7(9)Ga22.7(6) |
G4 | SG4-1 | H | Tb40.6Co38.7Ga20.7 | Tb39.5(4)Co38.5(9)Ga22.1(8) |
G4 | SG4-2 | I | Tb40.0Co40.0Ga20.0 | Tb39.4(5)Co37.7(6)Ga22.9(9) |
G4 | SG4-3 | J | Tb38.9Co37.0Ga24.1 | Tb39.1(1)Co38.4(6)Ga22.5(8), Tb40.9(6)Co38.5(6)Ga20.6(9) |
G4 | SG4-3 | K | Tb39.0Co39.0Ga22.0 | Tb39.1(3)Co38.0(4)Ga22.9(2) |
Group | Subgroup | Sample | Tb3Co3Ga | N phase | TbCo2−xGax | Tb1−xCoxGa (G,H,I,K) or TbCoxGa1−x (J) |
---|---|---|---|---|---|---|
G1 | - | A | Tb42.6(4)Co42.5(1)Ga14.9(3) | Tb59.2(6)Co22.5(7)Ga18.3(3) | Tb37.3(8)Co52.4(9)Ga10.3(9) | - |
G1 | - | B | Tb43.1(2)Co40.9(5)Ga16.0(7) | Tb59.9(6)Co21.4(8)Ga18.8(6) | - | - |
G2 | - | C | - | Tb56(1)Co13(1)Ga31(1) | Tb38(1)Co50(1)Ga12(1) | - |
G2 | - | D | - | Tb58.4(8)Co15.8(8)Ga25.8(3) | - | - |
G3 | - | E | - | Tb57(1)Co6(2)Ga36.8(8) | - | - |
G3 | - | F | - | Tb55.7(8)Co5(1)Ga39.3(9) | - | - |
G4 | SG4-1 | G | - | - | Tb33.8(8)Co50.8(9)Ga15.4(3) | Tb45.6(3)Co4.2(8)Ga50.3(3) |
G4 | SG4-1 | H | - | - | Tb36(1)Co48(1)Ga16(1) | Tb45(1)Co5(1)Ga49(1) |
G4 | SG4-2 | I | - | - | Tb34.0(5)Co51.4(8)Ga14.5(5) | Tb44.9(3)Co7(2)Ga48(2) |
G4 | SG4-3 | J | - | - | - | Tb49(1)Co7(2)Ga43(1) |
G4 | SG4-3 | K | - | - | Tb34.0(5)Co42.8(9)Ga23.2(5) | Tb47(1)Co2.0(9)Ga50(1) |
Group | Subgroup | Sample | Composition of Tb2Co2Ga | a (Å) | b (Å) | c (Å) | V (Å3) | TC (K) | μeff (μB/Tb) | Θ (K) |
---|---|---|---|---|---|---|---|---|---|---|
G1 | - | A | Tb40.1(6)Co39.8(8)Ga20.1(4) | 4.0889 (7) | 5.407 (1) | 8.448 (2) | 186.8 (1) | 146 | 7.70 | 190 |
G1 | - | B | Tb39.9(8)Co40.7(4)Ga19.4(9) | 4.0882 (7) | 5.405 (1) | 8.451 (2) | 186.7 (1) | 145 | ||
G2 | - | C | Tb39.9(3)Co39.4(2)Ga20.6(5) | 4.0952 (5) | 5.4182 (9) | 8.436 (1) | 187.18 (8) | 101 | 9.83 | 98 |
G2 | - | D | Tb40.3(8)Co38.8(9)Ga21.0(2) | 4.0955 (6) | 5.4196 (9) | 8.435 (1) | 187.22 (9) | 102 | ||
G3 | - | E | Tb39.7(8)Co38.6(7)Ga21.7(5) | 4.0969 (5) | 5.4204 (8) | 8.430 (1) | 187.21 (8) | 92 | ||
G3 | - | F | Tb39.8(6)Co39.7(5)Ga21.5(4) | 4.0983 (5) | 5.4230 (7) | 8.427 (1) | 187.28 (7) | 90 | 10.6 | 45 |
G4 | SG4-1 | G | Tb39.6(7)Co37.7(9)Ga22.7(6) | 4.0976 (7) | 5.418 (1) | 8.423 (2) | 187.0 (1) | 78 | 10.1 | 90 |
G4 | SG4-1 | H | Tb39.5(4)Co38.5(9)Ga22.1(8) | 4.0983 (6) | 5.4189 (9) | 8.424 (1) | 187.08 (9) | 75 | ||
G4 | SG4-2 | I | Tb39.4(5)Co37.7(6)Ga22.9(9) | 4.1026 (5) | 5.4211 (7) | 8.433 (1) | 187.56 (7) | 76 | ||
G4 | SG4-3 | J | Tb39.1(1)Co38.4(6)Ga22.5(8) | 4.1046 (7) | 5.425 (1) | 8.437 (2) | 187.9 (1) | 76 | ||
G4 | SG4-3 | K | Tb39.1(3)Co38.0(4)Ga22.9(2) | 4.1037 (7) | 5.425 (1) | 8.443 (2) | 188.0 (1) | 71 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanaka, S.; Terada, H.; Shirakawa, N.; Tsubota, M.; Kitagawa, J. The Impact of the Composition Effect on Ferromagnetic Properties of Tb2Co2Ga. Metals 2019, 9, 1242. https://doi.org/10.3390/met9121242
Tanaka S, Terada H, Shirakawa N, Tsubota M, Kitagawa J. The Impact of the Composition Effect on Ferromagnetic Properties of Tb2Co2Ga. Metals. 2019; 9(12):1242. https://doi.org/10.3390/met9121242
Chicago/Turabian StyleTanaka, Seiya, Hirotaka Terada, Naoki Shirakawa, Masami Tsubota, and Jiro Kitagawa. 2019. "The Impact of the Composition Effect on Ferromagnetic Properties of Tb2Co2Ga" Metals 9, no. 12: 1242. https://doi.org/10.3390/met9121242
APA StyleTanaka, S., Terada, H., Shirakawa, N., Tsubota, M., & Kitagawa, J. (2019). The Impact of the Composition Effect on Ferromagnetic Properties of Tb2Co2Ga. Metals, 9(12), 1242. https://doi.org/10.3390/met9121242