Flow Stress and Hot Deformation Activation Energy of 6082 Aluminium Alloy Influenced by Initial Structural State
Abstract
:1. Introduction
2. Characteristics of the Experimental Material
3. Stress-Strain Curves
4. Hot Deformation Activation Energy
5. Discussion of Results
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- ASM International. ASM Specialty Handbook: Aluminum and Aluminum Alloys; ASM International, Materials Park: Russell, OH, USA, 1993; p. 784. [Google Scholar]
- Hirsch, J. Virtual Fabrication of Aluminium Products; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2006; p. 33. [Google Scholar]
- Mrówka-Nowotnik, G.; Sieniawski, J.; Wierzbińska, M. Intermetallic phase particles in 6082 aluminium alloy. Arch. Mater. Sci. Eng. 2007, 28, 69–76. [Google Scholar]
- Lodgaard, L.; Ryum, N. Distribution of Mn- and Cr-containing dispersoids in Al-Mg-Si-alloys. Mater. Sci. Forum 2000, 331, 945–950. [Google Scholar] [CrossRef]
- Reiso, O. Extrusion of AlMgSi Alloys. In Proceedings of the 9th International Conference on Aluminum Alloys, Brisbane, Australia, 2–5 August 2014; pp. 32–46. [Google Scholar]
- Tomovic-Petrovic, S.; Jensrud, O. Extrusion of silicon-rich AlMgSi alloys. J. Mater. Process. Technol. 2012, 212, 1437–1442. [Google Scholar] [CrossRef]
- Kuijpers, N.C.W.; Kool, W.H.; van der Zwaag, S. DSC study on Mg-Si phases in As cast AA6xxx. Mater. Sci. Forum 2002, 396, 675–680. [Google Scholar] [CrossRef]
- Mrówka-Nowotnik, G.; Sieniawski, J. Influence of heat treatment on the microstructure and mechanical properties of 6005 and 6082 aluminium alloys. J. Mater. Process. Technol. 2005, 162, 367–372. [Google Scholar] [CrossRef]
- Hu, R.; Ogura, T.; Tezuka, H.; Sato, T.; Liu, Q. Dispersoid formation and recrystallization behavior in an Al-Mg-Si-Mn alloy. J. Mater. Sci. Technol. 2010, 26, 237–243. [Google Scholar] [CrossRef]
- Birol, Y.; Ilgaz, O. Effect of cast and extruded stock on grain structure of EN AW 6082 alloy forgings. Mater. Sci. Technol. 2014, 30, 860–866. [Google Scholar] [CrossRef]
- Birol, Y.; Gokcil, E.; Akdi, S. Potential of horizontal direct chill cast EN AW 6082 rods as forging stock in the manufacture of light weight suspension components. Metall. Res. Technol. 2017, 114, 209. [Google Scholar] [CrossRef]
- Birol, Y.; Gokcil, E.; Akdi, S. Potential of twin-belt-cast EN AW 6082 blanks for the manufacture of wishbone suspension forgings. Int. J. Adv. Manuf. Technol. 2017, 92, 3693–3701. [Google Scholar] [CrossRef]
- Li, J.H.; Wimmer, A.; Dehm, G.; Schumacher, P. Intermetallic phase selection during homogenization for AA6082 alloy. Philos. Mag. 2014, 94, 830–846. [Google Scholar] [CrossRef]
- Rometsch, P.A.; Wang, S.C.; Harriss, A.; Gregson, P.J.; Starink, M.J. The effect of homogenizing on the quench sensitivity of 6082. Mat. Sci. Forum 2002, 396, 655–660. [Google Scholar] [CrossRef]
- Woźnicki, A.; Leśniak, D.; Włoch, G.; Leszczyńska-Madej, B.; Wojtyna, A. The effect of homogenization conditions on the structure and properties of 6082 alloy billets. Arch. Metall. Mater. 2015, 60, 1763–1771. [Google Scholar] [CrossRef]
- Chang, Y.L.; Hung, F.Y.; Lui, T.S. Enhancement of mechanical properties of hot-forged 6082 suspension parts via rapid IR heat treatment. Metals 2018, 8, 501. [Google Scholar] [CrossRef]
- Zajac, S.; Bengtsson, B.; Jönsson, C. Influence of cooling after homogenization and reheating to extrusion on extrudability and final properties of AA 6063 and AA 6082 alloys. Mater. Sci. Forum 2002, 396, 399–404. [Google Scholar] [CrossRef]
- Warmuzek, M.; Sieniawski, J.; Gazda, A.; Mrówka, G. Processes of the formation of the Fe (Mn)-bearing intermetallic phases in the Al-Fe-(Mn)-Si alloys. Adv. Mater. Sci. 2003, 4, 81–91. [Google Scholar]
- Zener, C.; Hollomon, J.H. Effect of strain rate upon plastic flow of steel. J. Appl. Phys. 1944, 15, 22–32. [Google Scholar] [CrossRef]
- Schindler, I.; Kawulok, R.; Kulveitová, H.; Kratochvíl, P.; Šíma, V.; Knapiński, M. Activation energy in hot forming of selected Fe-40at.%Al type intermetallic compounds. Acta Phys. Pol. A 2012, 122, 610–613. [Google Scholar] [CrossRef]
- Sellars, C.M.; Tegart, W.M. Hot Workability. Int. Metall. Rev. 1972, 17, 1–24. [Google Scholar] [CrossRef]
- McQueen, H.J.; Yue, S.; Ryan, N.D.; Fry, E. Hot working characteristics of steels in austenitic state. J. Mater. Process. Technol. 1995, 53, 293–310. [Google Scholar] [CrossRef]
- Schindler, I.; Kawulok, P.; Kawulok, R.; Hadasik, E.; Kuc, D. Influence of calculation method on value of activation energy in hot forming. High. Temp. Mater. Processes 2013, 32, 149–155. [Google Scholar] [CrossRef]
- Kawulok, P.; Schindler, I.; Kawulok, R.; Opěla, P.; Sedláček, R. Influence of heating parameters on flow stress curves of low-alloy Mn-Ti-B steel. Arch. Metall. Mater. 2018, 63, 1785–1792. [Google Scholar] [CrossRef]
- Zheng, S.; Yuan, X.; Gong, X.; Le, T.; Ravindra, A.V. Hot deformation behavior and microstructural evolution of an Fe-Cr-W-Mo-V-C steel. Metall. Mater. Trans. A 2019, 50, 2342–2355. [Google Scholar] [CrossRef]
- Singh, V.; Mondal, C.; Kumar, A.; Bhattacharjee, P.P.; Ghosal, P. High temperature compressive flow behavior and associated microstructural development in a β-stabilized high Nb-containing γ-TiAl based alloy. J. Alloys Compd. 2019, 788, 573–585. [Google Scholar] [CrossRef]
- Schindler, I.; Sauer, M.; Kawulok, P.; Rodak, K.; Hadasik, E.; Jabłońska, M.B.; Rusz, S.; Ševčák, V. Study of hot deformation behavior of CuFe2 alloy. Arch. Metall. Mater. 2019, 64, 701–706. [Google Scholar] [CrossRef]
- Zhao, Q.; Yang, F.; Torrens, R.; Bolzoni, L. Comparison of hot deformation behaviour and microstructural evolution for Ti-5Al-5V-5Mo-3Cr alloys prepared by powder metallurgy and ingot metallurgy approaches. Mater. Des. 2019, 169, 107682. [Google Scholar] [CrossRef]
- Schindler, I.; Kawulok, P.; Hadasik, E.; Kuc, D. Activation energy in hot forming and recrystallization models for magnesium alloy AZ31. J. Mater. Eng. Perform. 2013, 22, 890–897. [Google Scholar] [CrossRef]
- Qian, X.; Parson, N.; Grant Chen, X. Effects of Mn addition and related Mn-containing dispersoids on the hot deformation behavior of 6082 aluminum alloys. Mater. Sci. Eng. A 2019, 764, 138253. [Google Scholar] [CrossRef]
- Mirzadeh, H.; Najafizadeh, A. Flow stress prediction at hot working conditions. Mater. Sci. Eng. A 2010, 527, 1160–1164. [Google Scholar] [CrossRef]
- Yu, B.J.; Guan, X.J.; Wang, L.J.; Zhao, J.; Liu, Q.Q.; Cao, Y. Hot deformation behavior and constitutive relationship of Q420qE steel. J. Cent. South. Univ. Technol. 2011, 18, 36–41. [Google Scholar] [CrossRef]
- Li, H.Y.; Wei, D.D.; Hu, J.D.; Li, Y.H.; Chen, S.L. Constitutive modeling for hot deformation behavior of T24 ferritic steel. Comput. Mater. Sci. 2012, 53, 425–430. [Google Scholar] [CrossRef]
- Shafaat, M.A.; Omidvar, H.; Fallah, B. Prediction of hot compression flow curves of Ti–6Al–4V alloy in α + β phase region. Mater. Des. 2011, 32, 4689–4695. [Google Scholar] [CrossRef]
- Changizian, P.; Zarei-Hanzaki, A.; Roostaei, A.A. The high temperature flow behavior modeling of AZ81 magnesium alloy considering strain effects. Mater. Des. 2012, 39, 384–389. [Google Scholar] [CrossRef]
- Zhang, X.; Ma, F.; Zhang, W.; Li, X. Kinetics of dynamic recrystallization in AA2024 aluminum alloy. Mod. Appl. Sci. 2014, 8, 47–52. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, H.; Han, Y.; Wu, W.X.; Chen, J.H. Hot deformation behavior of 2026 aluminum alloy during compression at elevated temperature. Mater. Sci. Eng. A 2010, 527, 485–490. [Google Scholar] [CrossRef]
- Spigarelli, S.; Evangelista, E.; McQueen, H.J. Study of hot workability of a heat treated AA6082 aluminum alloy. Scripta Mater. 2003, 49, 179–183. [Google Scholar] [CrossRef]
- Soliman, M.S.; El-Danaf, E.; Almajid, A.A. Effect of heat treatment conditions on the high temperature deformation of 6082-Al alloy. Adv. Mater. Res. 2010, 83, 407–414. [Google Scholar] [CrossRef]
- Ren, W.; Xu, C.; Chen, X. Hot deformation behavior and dynamic recrystallization model of 6082 aluminum alloy in high temperature. IOP Conf. Ser. Mater. Sci. Eng. 2018, 381, 012175. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Jiang, H.; Zhang, R.; Huang, S. Study of hot deformation behavior of 6082 aluminum alloy. Mater. Sci. Forum 2016, 877, 340–346. [Google Scholar] [CrossRef]
- El-Danaf, E.A.; AlMajid, A.A.; Soliman, M.S. Hot deformation of AA6082-T4 aluminum alloy. J. Mater. Sci. 2008, 43, 6324–6330. [Google Scholar] [CrossRef]
- Sang, D.L.; Fu, R.D.; Li, Y.J. The hot deformation activation energy of 7050 aluminum alloy under three different deformation modes. Metals 2016, 6, 49. [Google Scholar] [CrossRef]
- Zhang, H.; Li, L.X.; Yuan, D.; Peng, D.S. Hot deformation behavior of the new Al–Mg–Si–Cu aluminum alloy during compression at elevated temperatures. Mater. Charact. 2007, 58, 168–173. [Google Scholar] [CrossRef]
- Li, K.; Pan, Q.; Li, R.; Liu, S.; Huang, Z.; He, X. Constitutive modeling of the hot deformation behavior in 6082 aluminum alloy. J. Mater. Eng. Perform. 2019, 28, 981–994. [Google Scholar] [CrossRef]
- Luštinec, J.; Očenášek, V.; Jelínek, M. Structure of Al-Mg-Si cast and extruded rods for die forgings. Manuf. Technol. J. Sci. Res. Prod. 2016, 16, 1009–1013. [Google Scholar]
- Mirzadeh, H.; Cabrera, J.M.; Prado, J.M.; Najafizadeh, A. Hot deformation behavior of a medium carbon microalloyed steel. Mater. Sci. Eng. A 2011, 528, 3876–3882. [Google Scholar] [CrossRef]
- Li, Ch.; Liu, Y.; Tan, Y.; Zhao, F. Hot deformation behavior and constitutive modeling of H13-mod steel. Metals 2018, 8, 846. [Google Scholar] [CrossRef] [Green Version]
- Schindler, I.; Kliber, J.; Bořuta, J. Prediction of Deformation Resistances at High-reduction Forming. In Proceedings of the 3rd Symposium Metal 94, Ostrava, Czech Republic, 10–12 May 1994; pp. 132–142. [Google Scholar]
- Schindler, I.; Bořuta, J. Utilization Potentialities of the Torsion Plastometer; Silesian Technical University: Katowice, Poland, 1998; 106 p. [Google Scholar]
- Legerski, M.; Plura, J.; Schindler, I.; Rusz, S.; Kawulok, P.; Kulveitova, H.; Hadasik, E.; Kuc, D.; Niewielski, G. Complex flow stress model for a magnesium alloy AZ31 at hot forming. High. Temp. Mater. Processes 2011, 30, 63–69. [Google Scholar] [CrossRef]
Alloy | Si | Fe | Cu | Mn | Mg | Cr | Zn | Ti | Al |
---|---|---|---|---|---|---|---|---|---|
EN AW 6082 | 0.7–1.3 | max. 0.50 | max. 0.10 | 0.4–1.0 | 0.6–1.2 | max. 0.25 | max. 0.20 | max. 0.10 | remainder |
Extruded rod | 0.93 | 0.16 | 0.06 | 0.68 | 0.76 | 0.14 | 0.01 | 0.05 | remainder |
As-cast rod | 0.93 | 0.15 | 0.07 | 0.53 | 0.74 | 0.13 | 0.01 | 0.03 | remainder |
Energy | As-Cast | Homogenized | Extruded |
---|---|---|---|
Qp [kJ·mol−1] | 200.2 | 116.3 | 98.6 |
Qss [kJ·mol−1] | 216.1 | 121.9 | 120.6 |
Alloy | Q [kJ·mol−1] | Reference |
---|---|---|
2024 (As-cast) | 345 | [36] |
2026 (Homogenized) | 341 | [37] |
6082 (Homogenized) | 191 | [30] |
6082 (Extruded) | 269 | [38] |
6082 (Artificially aged) | 228 | [39] |
6082 (N/A) | 175 | [40] |
6082 (Homogenized) | 182 | [41] |
6082 (Naturally aged) | 245 | [42] |
7050 (As-rolled) | 237–241 | [43] |
Al-Mg-Si-Cu (Homogenized) | 236 | [44] |
Stress Type | Constant | As-Cast | Homogenized | Extruded |
---|---|---|---|---|
n [–] | 1.03 | 3.58 | 3.07 | |
Peak | α [MPa−1] | 0.18 | 0.05 | 0.05 |
C [s−1] | 2.7 × 1010 | 1.7 × 106 | 1.1 × 105 | |
Steady State | n [–] | 1.19 | 3.24 | 2.88 |
α [MPa−1] | 0.17 | 0.06 | 0.07 | |
C [s−1] | 2.2 × 1011 | 2.2 × 106 | 1.7 × 106 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schindler, I.; Kawulok, P.; Očenášek, V.; Opěla, P.; Kawulok, R.; Rusz, S. Flow Stress and Hot Deformation Activation Energy of 6082 Aluminium Alloy Influenced by Initial Structural State. Metals 2019, 9, 1248. https://doi.org/10.3390/met9121248
Schindler I, Kawulok P, Očenášek V, Opěla P, Kawulok R, Rusz S. Flow Stress and Hot Deformation Activation Energy of 6082 Aluminium Alloy Influenced by Initial Structural State. Metals. 2019; 9(12):1248. https://doi.org/10.3390/met9121248
Chicago/Turabian StyleSchindler, Ivo, Petr Kawulok, Vladivoj Očenášek, Petr Opěla, Rostislav Kawulok, and Stanislav Rusz. 2019. "Flow Stress and Hot Deformation Activation Energy of 6082 Aluminium Alloy Influenced by Initial Structural State" Metals 9, no. 12: 1248. https://doi.org/10.3390/met9121248
APA StyleSchindler, I., Kawulok, P., Očenášek, V., Opěla, P., Kawulok, R., & Rusz, S. (2019). Flow Stress and Hot Deformation Activation Energy of 6082 Aluminium Alloy Influenced by Initial Structural State. Metals, 9(12), 1248. https://doi.org/10.3390/met9121248