Study of Static Recrystallization Kinetics and the Evolution of Austenite Grain Size by Dynamic Recrystallization Refinement of an Eutectoid Steel
Abstract
:1. Introduction
2. Materials and Experimental Techniques
2.1. Double-hit Interrupted Compression Tests
2.2. Continuos Compression Tests
3. Results and Discussion
3.1. Interrupted Hot Compression Testing
3.1.1. Influence of Deformation Conditions on the Kinetics of Static Recrystallization
Determination of n
Dependence of t0.5 on the Deformation Parameters
3.2. Continuous Hot Compression Testing
Dynamically Recrystallized Grain Size
3.3. Evaluation of Maximum Interpass Time Conditions for the Initiation and Propagation of DRX
4. Summary and Conclusions
- The SRX rate was found highly sensitive to strain and, to a lesser degree, on strain rate.
- The exponent values that describe the strain and strain rate effects are −3.39 and −0.43, respectively. These are similar to values that are reported in the literature for a large number of steel compositions. Thus, there is a low dependence of these parameters exponents on chemical composition.
- The dependence of t0.5 on temperature and initial austenite grain size are lower than that observed for strain and strain rate parameters. The effect of temperature can be attributed to an accelerating effect of carbon on the kinetics of SRX. This conclusion is drawn from the observation that the apparent activation energy for SRX was relativity low (122 kJ/mol). Although the interrupted tests did not exceed the critical strain () to start the DRX (softening mechanism that does not depend on the initial austenite grain size for the final grain structure), the initial grain size effect on the SRX rate was very small or negligible within the investigated range.
- The relationship between temperature, strain rate and the dynamically recrystallized grain size (dDRX) was determined by an expression that relates the refined grain size and the Zener-Hollomon parameter (Z) raised to an exponent. The recrystallized experimental grain size for a temperature range from 1050 to 850 °C and strain rates between 0.001 and 0.1 s−1 was 197.4 to 24.1 μm, respectively. Although, the predicted refined grain size could reach values as low as 1.5 μm at 800 °C and 1000 s−1.
- The maximum interpass times (calculated by the kinetic and time correction expression) that were estimated for a 5% of softening suggests that the initiation of the DRX for laboratory and rod rolling strain rates conditions can be achieved. However, after the onset of DRX, a large amount of MDRX softening is expected to take place (which is twice faster than SRX) and, in a DRCR process, the laboratory conditions are the only way to maintain continuous dynamic recrystallization.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vervynckt, S.; Verbeken, K.; Lopez, B.; Jonas, J.J. Modern HSLA steels and role of non-recrystallization temperature. Int. Mater. Rev. 2012, 57, 187–207. [Google Scholar] [CrossRef]
- Hyzak, M.; Bernstein, M. The Role of Microstructure on the Strength and Toughness of Fully Pearlitic Steels. Metall. Mater. Trans. A 1976, 7, 1217–1224. [Google Scholar] [CrossRef]
- Marder, R.; Bramfitt, B.L. The effect of morphology on the strength of pearlite. Metall. Mater. Trans. A 1976, 7, 365–372. [Google Scholar] [CrossRef]
- Alexander, D.J.; Bernstein, I.M. Cleavage Fracture in Pearlitic Eutectoid Steel. Metall. Mater. Trans. A 1989, 20, 2321–2335. [Google Scholar] [CrossRef]
- Elwazri, A.M.; Wanjara, P.; Yue, S. The effect of microstructural characteristics of pearlite on the mechanical properties of hypereutectoid steel. Mater. Sci. Eng. A 2005, 404, 91–98. [Google Scholar] [CrossRef]
- Modi, O.P.; Deshmukhb, N.; Mondal, D.P.; Jha, A.K.; Yegneswaran, A.H.; Khaira, H.K. Effect of interlamellar spacing on the mechanical properties of 0.65% C steel. Mater. Charact. 2001, 46, 347–352. [Google Scholar] [CrossRef]
- Lewandowski, J.J.; Thompson, A.W. Effects of the Prior Austenite Grain Size on the Ductility of Fully Pearlitic Eutectoid Steel. Metall. Mater. Trans. A 1986, 17, 461–472. [Google Scholar] [CrossRef]
- Bae, C.M.; Nam, W.J.; Lee, C.S. Effect of microstructural features on ductility in hypo-eutectoid steels. Script. Mater. 1999, 41, 605–610. [Google Scholar] [CrossRef]
- Krauss, G. High carbon steels: Fully pearlitic microstructures and applications. In Steels: Processing, Structure, and Performance; ASM International: Chogar County, OH, USA, 2005; pp. 281–293. [Google Scholar]
- Lesuer, D.R.; Syn, C.K.; Sherby, O.D.; Kim, D.K. Processing and Mechanical Behavior of Hypereutectoid Steel Wiresin Metallurgy. In Processing and Applications of Metal Wires; Paris, H.G., Kim, D.K., Eds.; TMS: Warrendale, PA, USA, 1996; pp. 109–121. [Google Scholar]
- Hudson, W.B.; Wadsworth, K.J.P.; Bissen, C.T.; Heffingen, R.T. Process for Producing Patented Steel Wire. U.S. Patent 5873961, 12 May 1998. [Google Scholar]
- Sakai, T.; Belyakov, A.; Kaibyshev, R.; Miura, H.; Jonas, J.J. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog. Mater. Sci. 2014, 60, 130–207. [Google Scholar] [CrossRef]
- Samuel, F.H.; Yue, S.; Jonas, J.J.; Barnes, K.R. Effect of Dynamic Recrystallization on Microstructural Evolution during Strip Rolling. ISIJ Int. 1990, 30, 216–225. [Google Scholar] [CrossRef]
- Kestenbach, H.J.; Martins, G.S. Effect of Niobium on Austenite Recrystallization and Pearlite Colony Size in a Microalloyed Eutectoid Steel. Metall. Mater. Trans. A 1984, 15, 1496–1499. [Google Scholar] [CrossRef]
- Laasraoui, A.; Jonas, J.J. Recrystallization of Austenite after Deformation at High Temperatures and Strain Rates-Analysis and Modeling. Metall. Mater. Trans. A 1991, 22, 151–159. [Google Scholar] [CrossRef]
- Li, G.; Maccagno, T.M.; Bai, D.B.; Jonas, J.J. Effect of Initial Grain Size on the Static Recrystallization Kinetics of NbMicroalloyed Steels. ISIJ Int. 1996, 36, 1479–1485. [Google Scholar] [CrossRef]
- Elwazri, M.; Essadiqi, E.; Yue, S. The Kinetics of Static Recrystallization in Microalloyed Hypereutectoid Steels. ISIJ Int. 2004, 44, 162–170. [Google Scholar] [CrossRef]
- Garcıa Mateo, C.; Lopez, B.; Rodriguez-Ibabe, J.M. Static Recrystallization Kinetics in Warm Worked Vanadium Microalloyed Steels. Mater. Sci. Eng. A 2001, 303, 216–225. [Google Scholar] [CrossRef]
- Andrade, H.L.; Akben, M.G.; Jonas, J.J. Effect of Molybdenum, Niobium, and Vanadium on Static Recovery and Recrystallization and on Solute Strengthening in Microalloyed Steels. Metall. Mater. Trans. A 1983, 14, 1967–1977. [Google Scholar] [CrossRef]
- He, X.L.; Djahazi, M.; Jonas, J.J.; Jackman, J. The Non-Equilibrium Segregation of Boron during the Recrystallization of Nb-Treated HSLA steels. Acta Metall. Mater. 1991, 39, 2295–2308. [Google Scholar] [CrossRef]
- Hodgson, P.D.; Gibbs, R.K.A. Mathematical Model to Predict the Mechanical Properties of Hot Rolled C-Mn and Microalloyed Steels. ISIJ Int. 1992, 32, 1329–1338. [Google Scholar] [CrossRef]
- Bao, S.-Q.; Zhao, G.; Yu, C.-B.; Chang, Q.-M.; Ye, C.-L.; Mao, X.-P. Recrystallization behavior of a Nb-microalloyed steel during hot compression. Appl. Math. Model. 2011, 35, 3268–3275. [Google Scholar] [CrossRef]
- Larrañaga, A.; Pereda, B.; Jorge, D.; Gutierrez, I. Austenite Static Recrystallization Kinetics in Microalloyed B Steels. Metall. Mater. Trans. A 2016, 47, 3150–3164. [Google Scholar] [CrossRef]
- Kubota, M.; Kobayashi, Y.K.; Ushioda, K.; Takahashi, J. Effects of Alloying Elements on Static Recrystallization Behavior of Work-Hardened Austenite of High Carbon Low Alloy Steel. Mater. Trans. 2017, 58, 186–195. [Google Scholar] [CrossRef]
- Kubota, M.; Kobayashi, Y.K.; Ushioda, K.; Takahashi, J. Effect of Carbon Content on Static Recrystallization Behavior of Work-Hardened Austenite in Low Alloy Steel and Its Mechanism. Mater. Trans. 2017, 58, 196–205. [Google Scholar] [CrossRef]
- Llanos, L.; Pereda, B.; Lopez, B.; Rodriguez, J.M. Hot deformation and static softening behavior of vanadium microalloyed high manganese austenitic steels. Mater. Sci. Eng. A 2016, 651, 358–369. [Google Scholar] [CrossRef]
- Pereda, B.; Aretxabaleta, Z.; Lopez, B. Softening Kinetics in High Al and High Al-Nb-Microalloyed Steels. J. Mater. Eng. Perfom. 2015, 24, 1279–1293. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, G.R.; Sakai, T. Effect of Carbon Content on Static Restoration of Hot Worked Plain Carbon Steels. ISIJ Int. 1995, 35, 210–216. [Google Scholar] [CrossRef]
- Elwazri, M.; Wanjara, P.; Yue, S. Metadynamic and Static Recrystallization of Hypereutectoid Steel. ISIJ Int. 2003, 43, 1080–1088. [Google Scholar] [CrossRef]
- Barraclough, D.R.; Sellars, C.M. Static recrystallization and restoration after hot deformation of type 304 stainless steel. Met. Sci. 1979, 13, 257–267. [Google Scholar] [CrossRef]
- Perttula, J.S.; Karjalainen, L.P. Recrystallization rates in austenite measured by double compression and stress relaxation methods. Mater. Sci. Technol. 1998, 14, 626–630. [Google Scholar] [CrossRef]
- ASTM Standards. E112-10; ASTM International: West Conshohocken, PA, USA, 2010; pp. 1–26. [Google Scholar]
- Ruibal, E.; Urcola, J.J.; Fuentes, M. Static recrystallization kinetics, recrystallized grain size, and grain growth kinetics after hot deformation of a low-alloy steel. Z. Metallkd. 1985, 76, 568–576. [Google Scholar]
- El Wahabi, M.; Gavard, L.; Montheillet, F.; Cabrera, J.M.; Prado, J.M. Effect of initial grain size on dynamic recrystallization in high purity austenitic stainless steels. Acta Mater. 2005, 53, 4605–4612. [Google Scholar] [CrossRef]
- Avrami, M. Kinetics of Phase Change. I General Theory. J. Chem. Phys. 1939, 7, 1103–1112. [Google Scholar] [CrossRef]
- Sellars, C.M.; Whiteman, J.A. Recrystallization and grain growth in hot rolling. Met. Sci. 1979, 13, 187–194. [Google Scholar] [CrossRef]
- Medina, S.F.; Mancilla, J.E. Determination of Static Recrystallization Critical Temperature of Austenite in Microalloyed Steels. ISIJ Int. 1993, 33, 1257–1264. [Google Scholar] [CrossRef] [Green Version]
- Medina, S.F.; Fabregue, P. Activation Energy in the Static Recrystallization of Austenite. J. Mater. Sci. 1991, 26, 5427–5432. [Google Scholar] [CrossRef]
- Medina, S.F.; Mancilla, J.E. Influence of Alloying Elements in Solution on Static Recrystallization Kinetics of Hot Deformed Steels. ISIJ Int. 1996, 36, 1063–1069. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.P.; Hawbolt, E.B. Comparison between Static and Metadynamic Recrystallization an Application to the Hot Rolling of Steels. ISIJ Int. 1997, 37, 1000–1009. [Google Scholar] [CrossRef]
- Medina, S.F.; Lopez, V. Static Recrystallization in Austenite and Its Influence on Microstructural Changes in C-Mn Steel and Vanadium Microalloyed Steel at the Hot Strip Mill. ISIJ Int. 1993, 33, 605–614. [Google Scholar] [CrossRef] [Green Version]
- Roucoules, C.; Yue, S.; Jonas, J.J. Softening and Microstructural Change Following the Dynamic Recrystallization of Austenite. Metall. Mater. Trans. A 1994, 25, 389–400. [Google Scholar] [CrossRef]
- Sellars, C.M.; Mc-Tegart, W.J. On the mechanism of hot deformation. Acta Metall. 1966, 14, 1136–1138. [Google Scholar] [CrossRef]
- Roucoules, C.; Yue, S.; Jonas, J.J. Effect of Alloying Elements on Metadynamic Recrystallization in HSLA Steels. Metall. Mater. Trans. A 1995, 26, 181–190. [Google Scholar] [CrossRef]
- Laasraoui, A.; Jonas, J.J. Prediction of Steel Flow Stresses at High Temperatures and Strain Rates. Metall. Mater. Trans. A 1991, 22, 1545–1558. [Google Scholar] [CrossRef]
- Elwazri, A.M.; Wanjara, P.; Yue, S. Effect of Carbon Content on Dynamic Recrystallization Behaviour of Plain Carbon Steels. Can. Metall. Q. 2004, 43, 507–512. [Google Scholar] [CrossRef]
- Maccagno, T.M.; Jonas, J.J. Correcting for the Effects of the Static and Metadynamic Recrystallization during the Laboratory Simulation of Rod Rolling. ISIJ Int. 1994, 34, 607–614. [Google Scholar] [CrossRef]
- Cetlin, P.R.; Yue, S.; Jonas, J.J.; Maccagno, T.M. Influence of Strain Rate on Interpass Softening During the Simulated Warm Rolling of Interstitial-Free Steels. Metall. Mater. Trans. A 1993, 24, 1543–1553. [Google Scholar] [CrossRef]
Element | C | Si | Mn | S | Cr | Mo | Ni | Al | Cu | Ti | V | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|---|
wt. (%) | 0.74 | 0.1174 | 0.8286 | 0.024 | 0.0194 | 0.0047 | 0.08 | 0.0121 | 0.109 | 0.001 | 0.001 | 98.152 |
Strain Rate (s−1) | |||||||
Laboratory | |||||||
Strain | Temperature (°C) | 0.01 | 0.1 | 1 | |||
0.15 | 950 °C | [1] 0.363 | |||||
[5] 1.5 | |||||||
[3] 0.134 | |||||||
0.1 | 1050 °C | [1] 0.573 | [4] 0.178 | ||||
[5] 1.7 | |||||||
[3] 0.213 | [6] 63.7 | ||||||
950 °C | [1] 3.829 | [4] 0.171 | [1] 1.422 | [4] 0.226 | [1] 0.528 | [4] 0.298 | |
[5] 1.7 | [2] 1.422 | [5] 2.2 | [5] 2.9 | ||||
[3] 1.422 | [6] 69.0 | [3] 0.196 | [6] 38.8 | [3] 0.027 | [6] 21.8 | ||
850 °C | [1] 4.149 | [4] 0.299 | |||||
- | [5] 2.9 | ||||||
[3] 1.541 | [6] 21.6 | ||||||
0.05 | 950 °C | [1] 14.71 | |||||
[5] 4.5 | |||||||
[3] 5.465 | |||||||
0.05 | 800 °C | [1] 78.95 | [4] 0.351 | ||||
- | [5] 7.0 | ||||||
[3] 29.33 | [6] 15.5 | ||||||
Strain Rate (s−1) | |||||||
Rod Rolling | |||||||
Strain | Temperature (°C) | 10 | 100 | 1000 | |||
0.15 | 950 °C | [1] 0.050 | [1] 0.019 | [1] 0.007 | |||
[5] 2.6 | [5] 3.4 | [5] 4.5 | |||||
[3] 0.002 | [3] 0.000 | [3] 0.000 | |||||
0.1 | 1050 °C | [1] 0.079 | [4] 0.310 | [1] 0.029 | [4] 0.409 | [1] 0.010 | [4] 0.539 |
[5] 3.1 | [5] 4.0 | [5] 5.3 | |||||
[3] 0.004 | [6] 20.1 | [3] 0.000 | [6] 11.3 | [3] 0.000 | [6] 6.3 | ||
950 °C | [1] 0.196 | [4] 0.393 | [1] 0.072 | [4] 0.519 | [1] 0.027 | [4] 0.684 | |
[2] 0.196 | [5] 3.9 | [2] 0.072 | [5] 5.1 | [2] 0.027 | [5] 6.8 | ||
[3] 0.003 | [6] 12.2 | [3] 0.000 | [6] 6.9 | [3] 0.000 | [6] 3.8 | ||
850 °C | [1] 0.572 | [4] 0.521 | [1] 0.212 | [4] 0.687 | [1] 0.079 | [4] 0.905 | |
[5] 5.2 | [5] 6.8 | [5] 9.0 | |||||
[3] 0.029 | [6] 6.8 | [3] 0.004 | [6] 3.8 | [3] 0.000 | [6] 2.1 | ||
0.05 | 950 °C | [1] 2.030 | [1] 0.754 | [1] 0.280 | |||
[5] 7.8 | [5] 10.3 | [5] 13.6 | |||||
[3] 0.104 | [3] 0.014 | [3] 0.001 | |||||
0.05 | 800 °C | [1] 10.89 | [4] 0.611 | [1] 4.049 | [4] 0.805 | [1] 1.504 | [4] 1.062 |
[5] 5.2 | [5] 16.1 | [5] 21.2 | |||||
[3] 0.558 | [6] 4.9 | [3] 0.077 | [6] 2.7 | [3] 0.011 | [6] 1.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Facusseh, C.; Salinas, A.; Flores, A.; Altamirano, G. Study of Static Recrystallization Kinetics and the Evolution of Austenite Grain Size by Dynamic Recrystallization Refinement of an Eutectoid Steel. Metals 2019, 9, 1289. https://doi.org/10.3390/met9121289
Facusseh C, Salinas A, Flores A, Altamirano G. Study of Static Recrystallization Kinetics and the Evolution of Austenite Grain Size by Dynamic Recrystallization Refinement of an Eutectoid Steel. Metals. 2019; 9(12):1289. https://doi.org/10.3390/met9121289
Chicago/Turabian StyleFacusseh, Cesar, Armando Salinas, Alfredo Flores, and Gerardo Altamirano. 2019. "Study of Static Recrystallization Kinetics and the Evolution of Austenite Grain Size by Dynamic Recrystallization Refinement of an Eutectoid Steel" Metals 9, no. 12: 1289. https://doi.org/10.3390/met9121289
APA StyleFacusseh, C., Salinas, A., Flores, A., & Altamirano, G. (2019). Study of Static Recrystallization Kinetics and the Evolution of Austenite Grain Size by Dynamic Recrystallization Refinement of an Eutectoid Steel. Metals, 9(12), 1289. https://doi.org/10.3390/met9121289