Leaching Manganese Nodules in an Acid Medium and Room Temperature Comparing the Use of Different Fe Reducing Agents
Abstract
:1. Introduction
2. Methodology
2.1. Manganese Nodule
2.2. FeS2
2.3. Fe2O3
2.4. Steel (FeC)
2.5. Ferrous Ions
2.6. Reactor and Leaching Tests
2.7. Estimation of Linear and Interaction Coefficients for Factorial Designs of Experiments of 23
3. Results
3.1. Statistical Analysis
3.2. Effect on MnO2/Reducing Agent Ratio
3.3. Effect on the Concentration of H2SO4
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Marino, E.; González, F.J.; Somoza, L.; Lunar, R.; Ortega, L.; Vázquez, J.T.; Reyes, J.; Bellido, E. Strategic and rare elements in Cretaceous-Cenozoic cobalt-rich ferromanganese crusts from seamounts in the Canary Island Seamount Province ( northeastern tropical Atlantic). Ore Geol. Rev. 2017, 87, 41–61. [Google Scholar] [CrossRef]
- Saldaña, M.; Toro, N.; Castillo, J.; Hernández, P.; Trigueros, E.; Navarra, A. Development of an Analytical Model for the Extraction of Manganese from Marine Nodules. Metals 2019, 9, 903. [Google Scholar] [CrossRef] [Green Version]
- Hein, J.R. The Geology of Cobalt-rich Ferromanganese Crusts. In Deep Sea Minerals: Cobalt-Rich Ferromanganese Crusts, A Physical, Biological, Environmental, and Technical Review; Secretariat of the Pacific Community (SPC): Noumea, New Caledonia, 2013; pp. 7–14. [Google Scholar]
- Hein, J.R.; Mizell, K.; Koschinsky, A.; Conrad, T.A. Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: Comparison with land-based resources. Ore Geol. Rev. 2013, 51, 1–14. [Google Scholar] [CrossRef]
- González, F.J.; Somoza, L.; León, R.; Medialdea, T.; de Torres, T.; Ortiz, J.E.; Lunar, R.; Martínez-Frías, J.; Merinero, R. Ferromanganese nodules and micro-hardgrounds associated with the Cadiz Contourite Channel (NE Atlantic): Palaeoenvironmental records of fluid venting and bottom currents. Chem. Geol. 2012, 310, 56–78. [Google Scholar] [CrossRef] [Green Version]
- Josso, P.; Pelleter, E.; Pourret, O.; Fouquet, Y.; Etoubleau, J.; Cheron, S.; Bollinger, C. A new discrimination scheme for oceanic ferromanganese deposits using high fi eld strength and rare earth elements. Ore Geol. Rev. 2017, 87, 3–15. [Google Scholar] [CrossRef] [Green Version]
- Koschinsky, A.; Heinrich, L.; Boehnke, K.; Cohrs, J.C.; Markus, T.; Shani, M.; Singh, P.; Stegen, K.S.; Werner, W. Deep-sea mining: Interdisciplinary research on potential environmental, legal, economic, and societal implications. Integr. Environ. Assess. Manag. 2018, 14, 672–691. [Google Scholar] [CrossRef]
- Ghosh, M.K.; Barik, S.P.; Anand, S. Sulphuric Acid Leaching Of Polymetallic Nodules Using Paper As A Reductant. Trans. Indian Inst. Met. 2008, 61, 477–481. [Google Scholar] [CrossRef]
- Hein, J.R. Manganese nodules. In Encyclopedia of Marine Geosciences; Springer: Dordrecht, The Netherlands, 2016; pp. 408–412. [Google Scholar]
- Sharma, R. Environmental Issues of Deep-Sea Mining. Procedia Earth Planet. Sci. 2015, 11, 204–211. [Google Scholar] [CrossRef] [Green Version]
- Usui, A.; Nishi, K.; Sato, H.; Nakasato, Y.; Thornton, B.; Kashiwabara, T. Continuous growth of hydrogenetic ferromanganese crusts since 17 Myr ago on Takuyo-Daigo Seamount, NW Paci fi c, at water depths of 800—5500 m. Ore Geol. Rev. 2017, 87, 71–87. [Google Scholar] [CrossRef] [Green Version]
- Jana, R.K.; Pandey, B.D. Ammoniacal leaching of roast reduced deep-sea manganese nodules. Hydrometallurgy 1999, 53, 45–56. [Google Scholar] [CrossRef]
- Senanayake, G. Acid leaching of metals from deep-sea manganese nodules—A critical review of fundamentals and applications. Miner. Eng. 2011, 24, 1379–1396. [Google Scholar] [CrossRef]
- Toro, N.; Pérez, K.; Saldaña, M.; Jeldres, R.I.; Jeldres, M.; Cánovas, M. Dissolution of pure chalcopyrite with manganese nodules and waste water. J. Mater. Res. Technol. 2019, in press. [Google Scholar] [CrossRef]
- Randhawa, N.S.; Hait, J.; Jana, R.K. A brief overview on manganese nodules processing signifying the detail in the Indian context highlighting the international scenario. Hydrometallurgy 2016, 165, 166–181. [Google Scholar] [CrossRef]
- Pérez, K.; Toro, N.; Campos, E.; González, J.; Jeldres, R.I.; Nazer, A.; Rodriguez, M.H. Extraction of Mn from Black Copper Using Iron Oxides from Tailings and Fe2+ as Reducing Agents in Acid Medium. Metals 2019, 9, 1112. [Google Scholar] [CrossRef] [Green Version]
- Su, H.; Liu, H.; Wang, F.; Lü, X.; Wen, Y. Kinetics of reductive leaching of low-grade pyrolusite with molasses alcohol wastewater in H2SO4. Chin. J. Chem. Eng. 2010, 18, 730–735. [Google Scholar] [CrossRef]
- Kanungo, S.B.; Jena, P.K. Reduction leaching of manganese nodules of Indian Ocean origin in dilute hydrochloric acid. Hydrometallurgy 1988, 21, 41–58. [Google Scholar] [CrossRef]
- Khalafalla, S.E.; Pahlman, J.E. Selective Extraction of Metals from Pacific Sea Nodules with Dissolved Sulfur Dioxide. JOM J. Miner. Met. Mater. Soc. 1981, 33, 37–42. [Google Scholar] [CrossRef]
- Han, K.N.; Fuerstenau, D.W. Extraction behavior of metallic elements from deep-sea manganese nodules in reducing medium. Mar. Min. 1986, 2, 155–169. [Google Scholar]
- Kanungo, S.B. Rate process of the reduction leaching of manganese nodules in dilute HCl in presence of pyrite. Part I. Dissolution behaviour of iron and sulphur species during leaching. Hydrometallurgy 1999, 52, 313–330. [Google Scholar] [CrossRef]
- Bafghi, M.S.; Zakeri, A.; Ghasemi, Z.; Adeli, M. Reductive dissolution of manganese ore in sulfuric acid in the presence of iron metal. Hydrometallurgy 2008, 90, 207–212. [Google Scholar] [CrossRef]
- Toro, N.; Herrera, N.; Castillo, J.; Torres, C.; Sepúlveda, R. Initial Investigation into the Leaching of Manganese from Nodules at Room Temperature with the Use of Sulfuric Acid and the Addition of Foundry Slag—Part I. Minerals 2018, 8, 565. [Google Scholar] [CrossRef] [Green Version]
- Zakeri, A.; Bafghi, M.S.; Shahriari, S.; Das, S.C.; Sahoo, P.K.; Rao, P.K. Dissolution kinetics of manganese dioxide ore in sulfuric acid in the presence of ferrous ion. Hydrometallurgy 2007, 8, 22–27. [Google Scholar]
- Kanungo, S.B. Rate process of the reduction leaching of manganese nodules in dilute HCl in presence of pyrite. Part II: Leaching behavior of manganese. Hydrometallurgy 1999, 52, 331–347. [Google Scholar] [CrossRef]
- Toro, N.; Saldaña, M.; Castillo, J.; Higuera, F.; Acosta, R. Leaching of Manganese from Marine Nodules at Room Temperature with the Use of Sulfuric Acid and the Addition of Tailings. Minerals 2019, 9, 289. [Google Scholar] [CrossRef] [Green Version]
- El Problema Global de la Chatarra de Mineral de Hierro se Agrava|Minería en Línea. 2018. Available online: https://mineriaenlinea.com/2018/11/el-problema-global-de-la-chatarra-de-mineral-de-hierro-se-agrava/ (accessed on 26 November 2019).
- MCH, Reciclaje Minero: En Busca de un Sector Sustentable—Minería Chilena. 2013. Available online: http://www.mch.cl/2013/01/28/reciclaje-minero-en-busca-de-un-sector-sustentable/# (accessed on 25 November 2019).
- Campos, C. EyN: Reciclaje minero: En busca de un sector sustentable. 2013. Available online: http://www.economiaynegocios.cl/noticias/noticias.asp?id=105240 (accessed on 26 November 2019).
- Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 2008, 76, 965–977. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, D.C. Montgomery: Design and Analysis of Experiments, 8th ed.; John Wiley & Sons: New York, NY, USA, 2012. [Google Scholar]
- Mathews, P.G. Design of Experiments with MINITAB; William, A., Ed.; ASQ Quality Press: Milwaukee, WI, USA, 2005; ISBN 0873896378. [Google Scholar]
- Toro, N.; Briceño, W.; Pérez, K.; Cánovas, M.; Trigueros, E.; Sepúlveda, R.; Hernández, P. Leaching of Pure Chalcocite in a Chloride Media Using Sea Water and Waste Water. Metals 2019, 9, 780. [Google Scholar] [CrossRef] [Green Version]
- Komnitsas, K.; Bazdanis, G.; Bartzas, G.; Sahinkaya, E.; Zaharaki, D. Removal of heavy metals from leachates using organic/inorganic permeable reactive barriers. Desalin. Water Treat. 2013, 51, 3052–3059. [Google Scholar] [CrossRef]
Component | MgO | Al2O3 | SiO2 | P2O5 | SO3 | K2O | CaO | TiO2 | MnO2 | Fe2O3 |
---|---|---|---|---|---|---|---|---|---|---|
Mass (%) | 3.54 | 3.69 | 2.97 | 7.20 | 1.17 | 0.33 | 22.48 | 1.07 | 25.24 | 26.02 |
Component | Fe | S2 |
---|---|---|
Mass (%) | 46.63 | 53.37 |
Mineral | Amount % (w/w) |
---|---|
Chalcopyrite/Bornite CuFeS2/Cu5FeS4 | 0.47 |
Tennantite/Tetrahedrite (Cu12As4S13/Cu12Sb4S13) | 0.03 |
Other Cu Minerals | 0.63 |
Cu–Fe Hydroxides | 0.94 |
Pyrite (FeS2) | 0.12 |
Magnetite (Fe3O4) | 58.52 |
Specular Hematite (Fe2O3) | 0.89 |
Hematite (Fe2O3) | 4.47 |
Ilmenite/Titanite/Rutile (FeTiO3/CaTiSiO3/TiO2) | 0.04 |
Siderite (FeCO3) | 0.22 |
Chlorite/Biotite (Mg3Si4O10(OH)2(Mg)3(OH)6/K(Mg)3AlSi3O10(OH)2) | 3.13 |
Other Phyllosilicates | 11.61 |
Fayalite (Fe2SiO4) | 4.59 |
Dicalcium Silicate (Ca2SiO4) | 8.3 |
Kirschsteinite (CaFeSiO4) | 3.4 |
Forsterita (Mg2SiO4) | 2.3 |
Baritine (BaSO4) | 0.08 |
Zinc Oxide (ZnO) | 0.02 |
Lead Oxide (PbO) | 0.01 |
Sulfate (SO4) | 0.2 |
Others | 0.03 |
Total | 100 |
Parameters/Values | Low | Medium | High |
---|---|---|---|
Time (min) | 10 | 20 | 30 |
MnO2/Reducing agent | 2/1 | 1/1 | 1/2 |
Codifications | −1 | 0 | 1 |
Exp. No. | Time (min) | MnO2/Reducing Agent Ratio | Mn Recovery (%; Reducing Agent) | |||
---|---|---|---|---|---|---|
FeS2 | Fe2+ | FeC | Fe2O3 | |||
1 | 10 | 2/1 | 4.12 | 20.52 | 22.31 | 33.33 |
2 | 10 | 1/1 | 8.51 | 40.69 | 44.00 | 50.23 |
3 | 10 | 1/2 | 10.66 | 80.27 | 87.13 | 71.00 |
4 | 20 | 2/1 | 8.34 | 27.80 | 30.22 | 39.22 |
5 | 20 | 1/1 | 12.69 | 63.11 | 67.43 | 57.32 |
6 | 20 | 1/2 | 19.21 | 90.18 | 97.00 | 73.21 |
7 | 30 | 2/1 | 15.84 | 40.32 | 41.99 | 42.55 |
8 | 30 | 1/1 | 19.11 | 70.00 | 74.33 | 72.96 |
9 | 30 | 1/2 | 26.32 | 93.50 | 97.34 | 75.14 |
Response | F-Value | p-Value | S | R2 | R2 (Pred) |
---|---|---|---|---|---|
Mn Extraction (%) [FeS2] | 102.13 | 0.000 | 1.34602 | 97.15% | 92.65% |
Mn Extraction (%) [Fe2+] | 145.76 | 0.000 | 4.44890 | 97.98% | 95.63% |
Mn Extraction (%) [FeC] | 116.48 | 0.000 | 5.25341 | 97.49% | 94.35% |
Mn Extraction (%) [Fe2O3] | 42.02 | 0.000 | 4.91305 | 93.34% | 84.37% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres, D.; Ayala, L.; Saldaña, M.; Cánovas, M.; Jeldres, R.I.; Nieto, S.; Castillo, J.; Robles, P.; Toro, N. Leaching Manganese Nodules in an Acid Medium and Room Temperature Comparing the Use of Different Fe Reducing Agents. Metals 2019, 9, 1316. https://doi.org/10.3390/met9121316
Torres D, Ayala L, Saldaña M, Cánovas M, Jeldres RI, Nieto S, Castillo J, Robles P, Toro N. Leaching Manganese Nodules in an Acid Medium and Room Temperature Comparing the Use of Different Fe Reducing Agents. Metals. 2019; 9(12):1316. https://doi.org/10.3390/met9121316
Chicago/Turabian StyleTorres, David, Luís Ayala, Manuel Saldaña, Manuel Cánovas, Ricardo I. Jeldres, Steven Nieto, Jonathan Castillo, Pedro Robles, and Norman Toro. 2019. "Leaching Manganese Nodules in an Acid Medium and Room Temperature Comparing the Use of Different Fe Reducing Agents" Metals 9, no. 12: 1316. https://doi.org/10.3390/met9121316
APA StyleTorres, D., Ayala, L., Saldaña, M., Cánovas, M., Jeldres, R. I., Nieto, S., Castillo, J., Robles, P., & Toro, N. (2019). Leaching Manganese Nodules in an Acid Medium and Room Temperature Comparing the Use of Different Fe Reducing Agents. Metals, 9(12), 1316. https://doi.org/10.3390/met9121316