A Fast Method for Predicting the Mechanical Properties of Precipitation-Hardenable Aluminum Alloys
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material and Samples
2.2. Experimental Design and Measurements
3. Results and Discussion
4. Conclusions and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nicolas, M.; Deschamps, A. Characterisation and modelling of precipitate evolution in an Al-Zn-Mg alloy during non-isothermal heat treatments. Acta Mater. 2003, 51, 6077–6094. [Google Scholar] [CrossRef]
- Werenskiold, J.C.; Deschamps, A.; Brechet, Y. Characterization and modeling of precipitation kinetics in an Al-Zn-Mg alloy. Mater. Sci. Eng. 2000, A293, 267–274. [Google Scholar] [CrossRef]
- Bardel, D.; Perez, M.; Nelias, D.; Deschamps, A.; Hutchinson, C.R.; Maisonnette, D.; Chaise, T.; Garnier, J.; Bourlier, F. Coupled precipitation and yield strength modelling for non-isothermal treatments of a 6061 aluminium alloy. Acta Mater. 2014, 62, 129–140. [Google Scholar] [CrossRef] [Green Version]
- Esmaeili, S.; Lloyd, D.J. Modeling of precipitation hardening in pre-aged AlMgSi(Cu) alloys. Acta Mater. 2005, 53, 5257–5271. [Google Scholar] [CrossRef]
- Khan, I.N.; Starink, M.J.; Yan, J.L. A model for precipitation kinetics and strengthening in Al-Cu-Mg alloys. Mater. Sci. Eng. 2008, A472, 66–74. [Google Scholar] [CrossRef]
- Österreicher, J.A.; Papenberg, N.P.; Kumar, M.; Ma, D.; Schwarz, S.; Schlögl, C.M. Quantitative prediction of the mechanical properties of precipitation-hardened alloys with special application to Al-Mg-Si. Mater. Sci. Eng. A 2017, 703, 380–385. [Google Scholar] [CrossRef]
- Sepehrband, P.; Esmaeili, S. Application of recently developed approaches to microstructural characterization and yield strength modeling of aluminum alloy AA7030. Mater. Sci. Eng. A 2008, 487, 309–315. [Google Scholar] [CrossRef]
- Zhu, A.W.; Starke, E.A., Jr. Stress aging of Al-Cu alloys: Computer modeling. Acta Mater. 2001, 49, 3063–3069. [Google Scholar] [CrossRef]
- Jiang, H.; Faulkner, R.G. Modelling of grain boundary segregation, precipitation and precipitate-free zones of high strength aluminium alloys—I. The model. Acta Mater. 1996, 44, 1857–1864. [Google Scholar] [CrossRef]
- Khan, I.N.; Starink, M.J. Microstructure and strength modelling of Al-Cu-Mg alloys during non-isothermal treatments Part 1—Controlled heating and cooling. Mater. Sci. Technol. 2008, 24, 1403–1410. [Google Scholar] [CrossRef]
- Löchte, L.; Gitt, A.; Gottstein, G.; Hurtado, I. Simulation of the evolution of GP zones in Al-Cu alloys: An extended Cahn-Hilliard approach. Acta Mater. 2000, 48, 2969–2984. [Google Scholar] [CrossRef]
- Robson, J.D. A new model for prediction of dispersoid precipitation in aluminium alloys containing zirconium and scandium. Acta Mater. 2004, 52, 1409–1421. [Google Scholar] [CrossRef]
- Esmaeili, S.; Lloyd, D.J.; Poole, W.J. A yield strength model for the Al-Mg-Si-Cu alloy AA6111. Acta Mater. 2003, 51, 2243–2257. [Google Scholar] [CrossRef]
- Zander, J.; Sandström, R. One parameter model for strength properties of hardenable aluminium alloys. Mater. Des. 2008, 29, 1540–1548. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, H.; Kuang, W.; Zhang, J. Application of the thermodynamic extremal principle to phase-field modeling of non-equilibrium solidification in multi-component alloys. Acta Mater. 2017, 128, 258–267. [Google Scholar] [CrossRef]
- Liu, S.; Gao, M.C.; Liaw, P.K.; Zhang, Y. Microstructures and mechanical properties of AlxCrFeNiTi0.25 alloys. J. Alloy. Compd. 2015, 619, 610–615. [Google Scholar] [CrossRef]
- Lang, P.; Povoden-Karadeniz, E.; Falahati, A.; Kozeschnik, E. Simulation of the effect of composition on the precipitation in 6xxx Al alloys during continuous-heating DSC. J. Alloy. Compd. 2014, 612, 443–449. [Google Scholar] [CrossRef]
- Garrett, R.P.; Lin, J.; Dean, T.A. An investigation of the effects of solution heat treatment on mechanical properties for AA 6xxx alloys: Experimentation and modelling. Int. J. Plast. 2005, 21, 1640–1657. [Google Scholar] [CrossRef]
- Bates, C.E. Quench optimization for aluminum alloys. AFS Trans. 1994, 93–25, 1045–1054. [Google Scholar]
- Flynn, R.J.; Robinson, J.S. The application of advances in quench factor analysis property prediction to the heat treatment of 7010 aluminium alloy. J. Mater. Process. Technol. 2004, 153–154, 674–680. [Google Scholar] [CrossRef]
- Ma, S.; Maniruzzaman, M.D.; MacKenzie, D.S.; Sisson, R.D., Jr. A methodology to predict the effects of quench rates on mechanical properties of cast aluminum alloys. Metall. Mater. Trans. 2007, 38B, 583–589. [Google Scholar] [CrossRef]
- Rometsch, P.A.; Schaffer, G.B.; Yao, J.-Y.; Couper, M.J. Application of quench factor analysis to A356.0 and A357.0 foundry alloys. In Proceedings of the 6th International Conference on Aluminum Alloys, Toyohashi, Japan, 5–10 July 1998. [Google Scholar]
- Staley, J.T. Quench factor analysis of aluminium alloys. Mater. Sci. Technol. 1987, 3, 923–935. [Google Scholar] [CrossRef]
- Dolan, G.P.; Flynn, R.J.; Tanner, D.A.; Robinson, J.S. Quench factor analysis of aluminium alloys using Jominy end quench technique. Mater. Sci. Technol. 2005, 21, 687–692. [Google Scholar] [CrossRef]
- Järvsträt, N.; Tjøtta, S. Modelling cooling of aluminium extrusions. In Proceedings of the Abaqus Users’ Conference, Newport, RI, USA, 19–22 May 1994; pp. 307–316. [Google Scholar]
- Robinson, J.S.; Cudd, R.L.; Tanner, D.A.; Dolan, G.P. Quench sensitivity and tensile property inhomogeneity in 7010 forgings. J. Mater. Process. Technol. 2001, 119, 261–267. [Google Scholar] [CrossRef] [Green Version]
- Güzel, A.; Jäger, A.; Ben Khalifa, N.; Tekkaya, A.E. Simulation of the quench sensitivity of the aluminum alloy 6082. Key Eng. Mater. 2010, 424, 51–56. [Google Scholar] [CrossRef]
- Box, G.E.P.; Lucas, H.L. Design of experiments in nonlinear situations. Biometrika 1959, 46, 77–90. [Google Scholar] [CrossRef]
Material | Chemical Composition in wt % | |||||||
---|---|---|---|---|---|---|---|---|
Al | Si | Mg | Mn | Fe | Cu | Others | ||
Samples alloy | bal. | 0.916 | 0.727 | 0.437 | 0.381 | 0.086 | <0.05 | |
DIN EN 573-3:2013-12 | min. | bal. | 0.7 | 0.6 | 0.40 | - | - | - |
max. | 1.3 | 1.2 | 1.0 | 0.50 | 0.10 | 0.15 |
Abbreviation | Parameters | Base | Selected Range |
---|---|---|---|
Ts | Solution temperature, °C | 530 | 500–560 |
ts | Solution time, h | 2.13 | 0.25–4 |
QM | Quenching medium | Water | Gas, Polymer, Water |
Ta | Aging temperature, °C | 170 | 100–240 |
ta | Aging time, h | 11 | 2–20 |
No. | Ts (°C) | ts (h) | QM | Ta (°C) | ta (h) |
---|---|---|---|---|---|
1 | 500 | 0.25 | Water | 100 | 20 |
2 | 500 | 0.25 | Water | 240 | 2 |
3 | 500 | 0.25 | Gas | 100 | 2 |
4 | 500 | 0.25 | Gas | 170 | 11 |
5 | 500 | 0.25 | Gas | 240 | 20 |
6 | 500 | 0.25 | Polymer | 240 | 20 |
7 | 500 | 2.13 | Polymer | 100 | 2 |
8 | 500 | 4 | Water | 100 | 2 |
9 | 500 | 4 | Water | 240 | 20 |
10 | 500 | 4 | Gas | 100 | 20 |
11 | 500 | 4 | Gas | 240 | 2 |
12 | 500 | 4 | Polymer | 100 | 20 |
13 | 500 | 4 | Polymer | 170 | 2 |
14 | 530 | 0.25 | Polymer | 100 | 11 |
15 | 530 | 2.13 | Gas | 170 | 20 |
16 | 530 | 4 | Gas | 100 | 2 |
17 | 530 | 4 | Polymer | 240 | 2 |
18 | 560 | 0.25 | Water | 100 | 2 |
19 | 560 | 0.25 | Water | 240 | 20 |
20 | 560 | 0.25 | Gas | 100 | 20 |
21 | 560 | 0.25 | Gas | 240 | 2 |
22 | 560 | 0.25 | Polymer | 170 | 20 |
23 | 560 | 0.25 | Polymer | 240 | 11 |
24 | 560 | 2.13 | Polymer | 240 | 11 |
25 | 560 | 4 | Water | 100 | 20 |
26 | 560 | 4 | Water | 240 | 2 |
27 | 560 | 4 | Gas | 100 | 11 |
28 | 560 | 4 | Gas | 240 | 20 |
29 | 560 | 4 | Polymer | 100 | 2 |
30 | 560 | 4 | Polymer | 240 | 20 |
Parameters | Hardness | Electrical Conductivity | Yield Strength | Tensile Strength | Elongation at Break |
---|---|---|---|---|---|
Constant | 0.009 | 0.000 | 1 × 10−4 | 0.001 | 0.073 |
Ts | 0.016 | 2 × 10−11 | 4 × 10−4 | 0.003 | 0.005 |
ts | 0.291 | 0.028 | 0.127 | 0.784 | 0.022 |
QM | 0.066 | 1 × 10−4 | 1 × 10−4 | 9 × 10−4 | 0.215 |
Ta | 0.000 | 0.457 | 0.000 | 0.000 | 0.879 |
ta | 3 × 10−6 | 0.019 | 0.771 | 1 × 10−3 | 0.155 |
Ts2 | 0.019 | 0.147 | 5 × 10−4 | 0.004 | 0.485 |
ts × Ts | 0.232 | 0.975 | 0.151 | 0.788 | 0.021 |
QM × Ts | 0.046 | 0.533 | 0.298 | 0.785 | 0.229 |
Ta × Ts | 0.670 | 0.334 | 0.418 | 0.167 | 0.016 |
ta × Ts | 0.213 | 0.478 | 0.276 | 0.334 | 0.773 |
ts2 | 0.486 | 0.037 | 0.120 | 0.797 | 0.229 |
QM × ts | 0.021 | 0.459 | 0.344 | 0.206 | 0.067 |
Ta × ts | 0.410 | 0.179 | 0.149 | 0.984 | 0.294 |
ta × ts | 0.805 | 0.708 | 0.613 | 0.428 | 0.058 |
QM × Ta | 0.923 | 0.114 | 0.852 | 0.253 | 0.158 |
QM × ta | 0.139 | 0.714 | 0.400 | 0.407 | 0.301 |
Ta2 | 0.000 | 0.092 | 0.000 | 0.000 | 0.003 |
ta × Ta | 5 × 10−6 | 0.965 | 5 × 10−7 | 1 × 10−4 | 0.064 |
ta2 | 0.104 | 0.231 | 0.033 | 0.390 | 0.011 |
Adj R-Square | 0.952 | 0.979 | 0.976 | 0.955 | 0.537 |
Legend: | 1st significance level | 2nd significance level | 3rd significance level | 4th significance level | out of the model |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toenjes, A.; von Hehl, A. A Fast Method for Predicting the Mechanical Properties of Precipitation-Hardenable Aluminum Alloys. Metals 2019, 9, 147. https://doi.org/10.3390/met9020147
Toenjes A, von Hehl A. A Fast Method for Predicting the Mechanical Properties of Precipitation-Hardenable Aluminum Alloys. Metals. 2019; 9(2):147. https://doi.org/10.3390/met9020147
Chicago/Turabian StyleToenjes, Anastasiya, and Axel von Hehl. 2019. "A Fast Method for Predicting the Mechanical Properties of Precipitation-Hardenable Aluminum Alloys" Metals 9, no. 2: 147. https://doi.org/10.3390/met9020147
APA StyleToenjes, A., & von Hehl, A. (2019). A Fast Method for Predicting the Mechanical Properties of Precipitation-Hardenable Aluminum Alloys. Metals, 9(2), 147. https://doi.org/10.3390/met9020147