Covellite (CuS) Production from a Real Acid Mine Drainage Treated with Biogenic H2S
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sulfidogenic Bioreactor Assemble
2.2. Covellite Synthesis
2.3. Characterization
3. Results and Discussion
3.1. Covellite Qualitative Analysis
3.2. Physical and Chemical Characterization
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Skousen, J.G.; Ziemkiewicz, P.F.; McDonald, L.M. Acid mine drainage formation, control and treatment: Approaches and strategies. Extr. Ind. Soc. 2018, 6, 214–249. [Google Scholar] [CrossRef]
- Kefeni, K.K.; Msagati, T.A.M.; Mamba, B.B. Acid mine drainage: Prevention, treatment options, and resource recovery: A review. J. Clean. Prod. 2017, 151, 475–493. [Google Scholar] [CrossRef]
- Nancucheo, I.; Bitencourt, J.A.P.; Sahoo, P.K.; Alves, J.O.; Siqueira, J.O.; Oliveira, G. Recent developments for remediating acidic mine waters using sulfidogenic bacteria. Biomed. Res. Int. 2017, 2017, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Świerczek, L.; Cieślik, B.M.; Konieczka, P. The potential of raw sewage sludge in construction industry–A review. J. Clean. Prod. 2018, 200, 342–356. [Google Scholar] [CrossRef]
- Rückert, C. Sulfate reduction in microorganisms—Recent advances and biotechnological applications. Curr. Opin. Microbiol. 2016, 33, 140–146. [Google Scholar] [CrossRef] [PubMed]
- da Costa, J.P.; Girão, A.V.; Lourenço, J.P.; Monteiro, O.C.; Trindade, T.; Costa, M.C. Green synthesis of covellite nanocrystals using biologically generated sulfide: Potential for bioremediation systems. J. Environ. Manag. 2013, 128, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Basheer, A.A. New generation nano-adsorbents for the removal emerging contaminants in water. J. Mol. Liquids 2018, 261, 583–593. [Google Scholar] [CrossRef]
- Singh, A.; Manivannan, R.; Noyel, V.S. Simple one-pot sonochemical synthesis of copper sulphide nanoparticles for solar cell applications. Arab. J. Chem. 2015, 8, 1–9. [Google Scholar] [CrossRef]
- Qu, X.; Alvarez, P.J.J.; Li, Q. Applications of nanotechnology in water and wastewater treatment. Water Res. 2013, 47, 3931–3946. [Google Scholar] [CrossRef] [PubMed]
- da Coutinho, M.G.N. Geologia do craton Amazônico. In Província Miner do Tapajós: Geologia, Metalogenia e Mapa Previsional Para Ouro; CPRM: Rio de Janeiro, Brazil, 2008; Volume 428, pp. 15–31. [Google Scholar]
- Grainger, C.J.; Groves, D.I.; Tallarico, F.H.B.; Fletcher, I.R. Metallogenesis of the Carajás mineral province, southern Amazon craton, Brazil: Varying styles of archean through Paleoproterozoic to Neoproterozoic base- and precious-metal mineralisation. Ore Geol. Rev. 2008, 33, 451–489. [Google Scholar] [CrossRef]
- Pinheiro, W.F.; Filho, O.B.F.; Neves, C.A.R. Anuário Mineral Brasileiro, Departamento Nacional de Produção Mineral. DNPM. Available online: http://www.anm.gov.br/dnpm/publicacoes/serie-estatisticas-e-economia-mineral/anuario-mineral/anuario-mineral-brasileiro (accessed on 5 November 2019).
- Ňancucheo, I.; Johnson, D.B. Selective removal of transition metals from acidic mine waters by novel consortia of acidophilic sulfidogenic bacteria. Microb. Biotechnol. 2012, 5, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.L.; Johnson, D.B. The effects of temperature and pH on the kinetics of an acidophilic sulfidogenic bioreactor and indigenous microbial communities. Hydrometallurgy 2016, 168, 116–120. [Google Scholar] [CrossRef]
- Shea, D.; Helz, G.R. Solubility product constants of covellite and a poorly crystalline copper sulfide precipitate at 298 K. Geochim. Cosmochim. Acta 1989, 53, 229–236. [Google Scholar] [CrossRef]
- Ajibade, P.A.; Botha, N.L. Synthesis and structural studies of copper sulfide nanocrystals. Results Phys. 2016, 2016, 581–589. [Google Scholar] [CrossRef]
- Yoshimura, M. Hydrothermal Processing of Materials: Past, Present and Future. J. Mat. Sci. 2017, 43, 2085–2103. [Google Scholar] [CrossRef]
- Rask, H.; Frøkiær, M.; Warner, T.E. A morphological study of the sulfurisation of digenite to covellite using re fl ected polarised light microscopy. Solid State Sci. 2017, 70, 74–80. [Google Scholar] [CrossRef]
- Lewis, A.E. Review of metal sulphide precipitation. Hydrometallurgy 2010, 104, 222–234. [Google Scholar] [CrossRef]
- Freeda, A.M.; Madhav, R.N. Synthesis and characterization of nano-structured materials CuS (covellite) for their applications. Nanotechnol. Nanosci. 2010, 1, 976–7630. [Google Scholar] [CrossRef]
- Torrecillas, C.M.; Halbert, G.W.; Lamprou, D.A. A novel methodology to study polymodal particle size distributions produced during continuous wet granulation. Int. J. Pharm. 2017, 519, 230–239. [Google Scholar] [CrossRef]
- Yadav, S.; Bajpai, P.K. Synthesis of copper sulfide nanoparticles: pH dependent phase stabilization. Nano-Struct. Nano-Objects 2017, 10, 151–158. [Google Scholar] [CrossRef]
- Gramp, J.P.; Sasaki, K.; Bigham, J.M.; Karnachuk, O.V.; Tuovinen, O.H. Formation of covellite (CuS) under biological sulfate-reducing conditions. J. Geomicrobiol. 2006, 23, 613–619. [Google Scholar] [CrossRef]
- Tailor, J. Existing Information on Covellite Copper Sulphide (CuS). Ph.D. Thesis, Sardar Patel University, Gujarat, India, 2014. [Google Scholar]
- Ayodhya, D.; Veerabhadram, G. A review on recent advances in photodegradation of dyes using doped and heterojunction based semiconductor metal sulfide nanostructures for environmental protection. Mater. Today Energy 2018, 9, 83–113. [Google Scholar] [CrossRef]
- Fang, J.; Zhang, P.; Chang, H.; Wang, X. Hydrothermal synthesis of nanostructured CuS for broadband efficient optical absorption and high-performance photo-thermal conversion. Sol. Energy Mater. Sol. Cells 2018, 185, 456–463. [Google Scholar] [CrossRef]
- Colipai, C.; Southam, G.; Oyarzúm, P.; González, D.; Díaz, V.; Contreras, B.; Nancucheo, I. Synthesis of copper sulfide nanoparticles using biogenic H2S produced by a low-pH sulfidogenic bioreactor. Minerals 2018, 8, 35. [Google Scholar] [CrossRef]
- Tezuka, K.; Sheets, W.C.; Kurihara, R.; Shan, Y.J.; Imoto, H.; Marks, T.J. Synthesis of covellite (CuS) from the elements. Solid State Sci. 2007, 9, 95–99. [Google Scholar] [CrossRef]
- Khalid, H.; Shamaila, S.; Zafar, N. Synthesis of copper nanoparticles by chemical reduction method. Sci. Int. 2015, 27, 3085–3088. [Google Scholar] [CrossRef]
- Nascimento, D.N.O.; Lucheta, A.R.; Palmieri, M.C.; Carmo, A.L.V.; Silva, P.M.P.; Ferreira, R.V.P.; Junca, E.; Grillo, F.F.; Alves, J.O. Bioleaching for copper extraction of marginal ores from the Brazilian Amazon Region. Metals 2019, 9, 81. [Google Scholar] [CrossRef]
Ion Solution | Concentration (mM) |
---|---|
Ca2+ | 7.00 |
Mg2+ | 4.00 |
Na+ | 2.10 |
K+ | 0.28 |
Ni2+ | 0.27 |
Mn2+ | 0.15 |
Co2+ | 0.04 |
Zn2+ | 0.02 |
SO42− | 13.86 |
Cl− | 0.04 |
Parameter | CuS48 | Theoretical | CuS96 | Theoretical |
---|---|---|---|---|
a = b(Å) | 3.77 ± 0.02 | 3.76 | 3.78 ± 0.004 | 3.78 |
c(Å) | 16.28 ± 0.07 | 16.27 | 16.37 ± 0.02 | 16.33 |
v(Å3) | 199.9 ± 1.78 | 200.05 | 202.9 ± 0.58 | 202.98 |
wt% | CuS48 | CuS96 |
---|---|---|
Cu | 87.67 | 70.97 |
S | 73.99 | 106.08 |
Si | 0.09 | 0.11 |
Al | 0.07 | 0.09 |
Others * | - | - |
Samples | Dv10 | Dv50 | Dv90 | Dv4.3 | Span |
---|---|---|---|---|---|
CuS48 | 0.42 | 10.5 | 43.4 | 27.2 | 4.08 |
CuS96 | 0.37 | 3.05 | 22 | 12.3 | 7.09 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, P.M.P.; Lucheta, A.R.; Bitencourt, J.A.P.; Carmo, A.L.V.d.; Cuevas, I.P.Ñ.; Siqueira, J.O.; Oliveira, G.C.d.; Alves, J.O. Covellite (CuS) Production from a Real Acid Mine Drainage Treated with Biogenic H2S. Metals 2019, 9, 206. https://doi.org/10.3390/met9020206
Silva PMP, Lucheta AR, Bitencourt JAP, Carmo ALVd, Cuevas IPÑ, Siqueira JO, Oliveira GCd, Alves JO. Covellite (CuS) Production from a Real Acid Mine Drainage Treated with Biogenic H2S. Metals. 2019; 9(2):206. https://doi.org/10.3390/met9020206
Chicago/Turabian StyleSilva, Patricia Magalhães Pereira, Adriano Reis Lucheta, José Augusto Pires Bitencourt, Andre Luiz Vilaça do Carmo, Ivan Patricio Ñancucheo Cuevas, José Oswaldo Siqueira, Guilherme Corrêa de Oliveira, and Joner Oliveira Alves. 2019. "Covellite (CuS) Production from a Real Acid Mine Drainage Treated with Biogenic H2S" Metals 9, no. 2: 206. https://doi.org/10.3390/met9020206
APA StyleSilva, P. M. P., Lucheta, A. R., Bitencourt, J. A. P., Carmo, A. L. V. d., Cuevas, I. P. Ñ., Siqueira, J. O., Oliveira, G. C. d., & Alves, J. O. (2019). Covellite (CuS) Production from a Real Acid Mine Drainage Treated with Biogenic H2S. Metals, 9(2), 206. https://doi.org/10.3390/met9020206