Adsorption Energy Shifts for Oxygen and Hydroxyl on 4-atom Metal-Decorated Graphene Catalysts Via Solvation, pH, and Substrate Dopants: Effects on ORR Activity
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Further Understanding Bandwith and Correlations for Hydrogenation of O* and OH* on Graphene (Counter-Intuitive Trends Explanation)
3.2. Sensitivity of Correlations and Volcano Plot to effects of Solvation and/or pH
3.3. Effects of Element Dopants in Graphene Substrate under Catalytic NanoParticle
3.4. Candidate Material and Conditions for Optimal 4-atom MDG ORR Catalysts
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hu, M.; Yao, Z.; Wang, X. Graphene-based nanomaterials for catalysis. Ind. Eng. Chem. Res. 2017, 56, 3477–3502. [Google Scholar] [CrossRef]
- Wang, Z.; Ping, Y.; Fu, Q.; Pan, C. Preparation of metal nanoparticle decorated graphene hybrid composites: A review. MRS Adv. 2018, 3, 849–854. [Google Scholar] [CrossRef]
- Huang, X.; Qi, X.; Boey, F.; Zhang, H. Graphene-based composites. Chem. Soc. Rev. 2012, 41, 666–686. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Li, C.; Shi, G. Graphene based catalysts. Energy Environ. Sci. 2012, 5, 8848–8868. [Google Scholar] [CrossRef]
- Lozano, T.; Rankin, R.B. Computational predictive design for metal-decorated-graphene size-specific subnanometer to nanometer ORR catalysts. Catal. Today 2018, 312, 105–117. [Google Scholar] [CrossRef]
- Bandarenka, A.S.; Hansen, H.A.; Rossmeisl, J.; Stephens, I.E. Elucidating the activity of stepped Pt single crystals for oxygen reduction. Phys. Chem. Chem. Phys. 2014, 16, 13625–13629. [Google Scholar] [CrossRef] [PubMed]
- Greeley, J.; Rossmeisl, J.; Hellmann, A.; Nørskov, J.K. Theoretical trends in particle size effects for the oxygen reduction reaction. Z. Phys. Chem. 2007, 221, 1209–1220. [Google Scholar] [CrossRef]
- Nørskov, J.K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J.R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892. [Google Scholar] [CrossRef]
- Rankin, R.B.; Greeley, J. Trends in selective hydrogen peroxide production on transition metal surfaces from first principles. ACS Catal. 2012, 2, 2664–2672. [Google Scholar] [CrossRef]
- Greeley, J.; Stephens, I.E.L.; Bondarenko, A.S.; Johansson, T.P.; Hansen, H.A.; Jaramillo, T.F.; Rossmeisl, J.; Chorkendorff, I.; Nørskov, J.K. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 2009, 1, 552–556. [Google Scholar] [CrossRef]
- Deshpande, S.; Kitchin, J.R.; Viswanathan, V. Quantifying uncertainty in activity volcano relationships for oxygen reduction reaction. ACS Catal. 2016, 6, 5251–5259. [Google Scholar] [CrossRef]
- Wang, C.; Li, D.; Chi, M.; Pearson, J.; Rankin, R.B.; Greeley, J.; Duan, Z.; Wang, G.; van der Vliet, D.; More, K.L.; et al. Rational development of ternary alloy electrocatalysts. J. Phys. Chem. Lett. 2012, 3, 1668–1673. [Google Scholar] [CrossRef] [PubMed]
- Nørskov, J.K.; Scheffler, M.; Toulhoat, H. Density functional theory in surface science and heterogeneous catalysis. MRS Bull. 2006, 31, 669–674. [Google Scholar] [CrossRef]
- Stamenkovic, V.R.; Fowler, B.; Mun, B.S.; Wang, G.; Ross, P.N.; Lucas, C.A.; Marković, N.M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007, 315, 493–497. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 1993, 48, 13115–13118. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758. [Google Scholar] [CrossRef]
- Available online: https://www.materialsdesign.com/compute-engines (accessed on 5 February 2019).
- Perdew, J.P.; Ruzsinszky, A.; Csonka, G.I.; Vydrov, O.A.; Scuseria, G.E.; Constantin, L.A.; Zhou, X.; Burke, K. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 2008, 100, 136406. [Google Scholar] [CrossRef]
- Hammer, B.H.L.B.; Hansen, L.B.; Nørskov, J.K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys. Rev. B 1999, 59, 7413–7421. [Google Scholar] [CrossRef] [Green Version]
- Adamo, C.; Barone, V. Physically motivated density functionals with improved performances: The modified Perdew–Burke–Ernzerhof model. J. Chem. Phys. 2002, 116, 5933–5940. [Google Scholar] [CrossRef]
- Klimeš, J.; David, R.B.; Angelos, M. Chemical accuracy for the van der Waals density functional. J. Phys. Condens. Matter 2010, 22, 022201. [Google Scholar] [CrossRef] [PubMed]
- Klimeš, J.; Bowler, D.R.; Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 2011, 83, 195131. [Google Scholar] [CrossRef]
- Thonhauser, T.; Cooper, V.R.; Li, S.; Puzder, A.; Hyldgaard, P.; Langreth, D.C. Van der Waals density functional: Self-consistent potential and the nature of the van der Waals bond. Phys. Rev. B 2007, 76, 125112. [Google Scholar] [CrossRef]
- Methfessel, M.; Paxton, A.T. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 1989, 40, 3616–3621. [Google Scholar] [CrossRef]
- Seo, M.G.; Kim, H.J.; Han, S.S.; Lee, K.Y. Direct synthesis of hydrogen peroxide from hydrogen and oxygen using tailored Pd nanocatalysts: A review of recent findings. Catal. Surv. Asia 2017, 21, 1–12. [Google Scholar] [CrossRef]
- Staszak-Jirkovský, J.; Ahlberg, E.; Panas, I.; Schiffrin, D.J. The bifurcation point of the oxygen reduction reaction on Au–Pd nanoalloys. Faraday Discuss. 2016, 188, 257–278. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, G.A.; Mehmood, F.; Rankin, R.B.; Greeley, J.P.; Vajda, S.; Curtiss, L.A. Exploring computational design of size-specific subnanometer clusters catalysts. Top. Catal. 2012, 55, 353–365. [Google Scholar] [CrossRef]
- Mehmood, F.; Rankin, R.B.; Greeley, J.; Curtiss, L.A. Trends in methanol decomposition on transition metal alloy clusters from scaling and Brønsted–Evans–Polanyi relationships. Phys. Chem. Chem. Phys. 2012, 14, 8644–8652. [Google Scholar] [CrossRef]
- Halder, A.; Curtiss, L.A.; Fortunelli, A.; Vajda, S. Perspective: Size selected clusters for catalysis and electrochemistry. J. Chem. Phys. 2018, 148, 110901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heiles, S.; Johnston, R.L. Global optimization of clusters using electronic structure methods. Int. J. Quantum Chem. 2013, 113, 2091–2109. [Google Scholar] [CrossRef] [Green Version]
- Hussein, H.A.; Johnston, R.L. Chapter 4—The DFT-genetic algorithm approach for global optimization of subnanometer bimetallic clusters. In Frontiers of Nanoscience; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Chirieac, A.; Dragoi, B.; Ungureanu, A.; Ciotonea, C.; Mazilu, I.; Royer, S.; Mamede, A.S.; Rombi, E.; Ferino, I.; Dumitriu, E. Facile synthesis of highly dispersed and thermally stable copper-based nanoparticles supported on SBA-15 occluded with P123 surfactant for catalytic applications. J. Catal. 2016, 339, 270–283. [Google Scholar] [CrossRef]
- Saha, S.; Ramanujachary, K.V.; Lofland, S.E.; Ganguli, A.K. Cu-Co-Ni alloys: An efficient and durable electrocatalyst in acidic media. Mater. Res. Express 2016, 3, 016501. [Google Scholar] [CrossRef]
- Shen, Y.; Lua, A.C.; Xi, J.; Qiu, X. Ternary platinum–copper–nickel nanoparticles anchored to hierarchical carbon supports as free-standing hydrogen evolution electrodes. ACS Appl. Mater. Interfaces 2016, 8, 3464–3472. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Zhou, Y.; Wang, D.; Wu, X.; Li, J.; Xi, J. Nickel–copper alloy encapsulated in graphitic carbon shells as electrocatalysts for hydrogen evolution reaction. Adv. Energy Mater. 2018, 8, 1701759. [Google Scholar] [CrossRef]
- Sidhaye, D.S.; Bala, T.; Srinath, S.; Srikanth, H.; Poddar, P.; Sastry, M.; Prasad, B.L.V. Preparation of nearly monodisperse nickel nanoparticles by a facile solution based methodology and their ordered assemblies. J. Phys. Chem. C 2009, 113, 3426–3429. [Google Scholar] [CrossRef]
- Yang, Y.; Reber, A.C.; Gilliland, S.E.; Castano, C.E.; Gupton, B.F.; Khanna, S.N. Donor/acceptor concepts for developing efficient suzuki cross-coupling catalysts using graphene-supported Ni, Cu, Fe, Pd, and bimetallic Pd/Ni clusters. J. Phys. Chem. C 2018, 122, 25396–25403. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rankin, R.B.; Lozano, T. Adsorption Energy Shifts for Oxygen and Hydroxyl on 4-atom Metal-Decorated Graphene Catalysts Via Solvation, pH, and Substrate Dopants: Effects on ORR Activity. Metals 2019, 9, 227. https://doi.org/10.3390/met9020227
Rankin RB, Lozano T. Adsorption Energy Shifts for Oxygen and Hydroxyl on 4-atom Metal-Decorated Graphene Catalysts Via Solvation, pH, and Substrate Dopants: Effects on ORR Activity. Metals. 2019; 9(2):227. https://doi.org/10.3390/met9020227
Chicago/Turabian StyleRankin, Rees B., and Tamara Lozano. 2019. "Adsorption Energy Shifts for Oxygen and Hydroxyl on 4-atom Metal-Decorated Graphene Catalysts Via Solvation, pH, and Substrate Dopants: Effects on ORR Activity" Metals 9, no. 2: 227. https://doi.org/10.3390/met9020227
APA StyleRankin, R. B., & Lozano, T. (2019). Adsorption Energy Shifts for Oxygen and Hydroxyl on 4-atom Metal-Decorated Graphene Catalysts Via Solvation, pH, and Substrate Dopants: Effects on ORR Activity. Metals, 9(2), 227. https://doi.org/10.3390/met9020227