Effect of Surface Treatment of Multi-Directionally Forged (MDF) Titanium Implant on Bone Response
Abstract
:1. Introduction
2. Materials and Methods
2.1. Titanium Specimens
2.2. Surface Treatment
2.3. Surface Roughness Measurements
2.4. Contact Angle Measurements
2.5. Simulated Body Fluid (SBF) Immersion
2.6. Implantation Procedure
2.7. Histological and Histomorphometrical Observations
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wennerberg, A.; Albrektsson, T. On implant surfaces: A review of current knowledge and opinions. Int. J. Oral Maxillofac. Implant. 2009, 25, 63–74. [Google Scholar]
- Domingo, J.L. Vanadium: A review of the reproductive and developmental toxicity. Reprod. Toxicol. 1996, 10, 175–182. [Google Scholar] [CrossRef]
- Bondy, S.C. The neurotoxicity of environmental aluminum is still an issue. Neurotoxicology 2010, 31, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Long, M.; Rack, H.J. Titanium alloys in total joint replacement—A materials science perspective. Biomaterials 1998, 19, 1621–1639. [Google Scholar] [CrossRef]
- Niinomi, M. Mechanical biocompatibilities of titanium alloys for biomedical applications. J. Mech. Behav. Biomed. Mater. 2008, 1, 30–42. [Google Scholar] [CrossRef] [PubMed]
- Santos, P.F.; Niinomi, M.; Cho, K.; Nakai, M.; Liu, H.; Ohtsu, N.; Hirano, M.; Ikeda, M.; Narushima, T. Microstructures, mechanical properties and cytotoxicity of low cost beta Ti-Mn alloys for biomedical applications. Acta Biomater. 2015, 26, 366–376. [Google Scholar] [CrossRef]
- Stenlund, P.; Omar, O.; Brohede, U.; Norgren, S.; Norlindh, B.; Johansson, A.; Lausmaa, J.; Thomsen, P.; Palmquist, A. Bone response to a novel Ti-Ta-Nb-Zr alloy. Acta Biomater. 2015, 20, 165–175. [Google Scholar] [CrossRef]
- Niinomi, M.; Hattori, T.; Morikawa, K.; Kasuga, T.; Suzuki, T.; Fukui, H.; Niwa, S. Development of low rigidity β-type titanium alloy for biomedical applications. Mater. Trans. 2002, 43, 2970–2977. [Google Scholar] [CrossRef]
- Glassman, A.H.; Bobyn, J.D.; Tanzer, M. New femoral designs: Do they influence stress shielding? Clin. Orthop. 2006, 453, 64–74. [Google Scholar] [CrossRef]
- Sumitomo, N.; Noritake, K.; Hattori, T.; Morikawa, K.; Niwa, S.; Sato, K.; Niinomi, M. Experiment study on fracture fixation with low rigidity titanium alloy: Plate fixation of tibia fracture model in rabbit. J. Mater. Sci. Mater. Med. 2008, 19, 1581–1586. [Google Scholar] [CrossRef]
- Hao, Y.L.; Yang, R.; Niinomi, M.; Kuroda, D.; Zhou, Y.L.; Fukunaga, K.; Suzuki, A. Young’s modulus and mechanical properties of Ti-29Nb-13Ta-4.6Zr in relation to α″ martensite. Met. Mater. Trans. 2002, 33, 3137–3144. [Google Scholar] [CrossRef]
- Majumdar, P.; Singh, S.B.; Chakraborty, M. Elastic modulus of biomedical titanium alloys by nano-indentation and ultrasonic techniques—A comparative study. Mater. Sci. Eng. A 2008, 489, 419–425. [Google Scholar] [CrossRef]
- Niinomi, M.; Nakai, M. Titanium-Based Biomaterials for Preventing Stress Shielding between Implant Devices and Bone. Int. J. Biomate. 2011, 2011, 836587. [Google Scholar] [CrossRef] [PubMed]
- Rack, H.J.; Qazi, J.I. Titanium alloys for biomedical applications. Mater. Sci. Eng. C 2006, 26, 1269–1277. [Google Scholar] [CrossRef]
- Pande, C.S.; Cooper, K.P. Nanomechanics of Hall–Petch relationship in nanocrystalline materials. Prog. Mater. Sci. 2009, 54, 689–706. [Google Scholar] [CrossRef]
- Tsuji, N.; Ito, Y.; Saito, Y.; Minamino, Y. Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing. Scr. Mater. 2002, 47, 893–899. [Google Scholar] [CrossRef]
- Valiev, R.Z.; Maxim, M.Y.; Bobruk, E.V.; Raab, G.I. Grain refinement and mechanical behavior of the Al alloy, subjected to the new SPD technique. Mater. Trans. 2009, 50, 87–91. [Google Scholar] [CrossRef]
- Furukawa, M.; Horita, Z.; Nemoto, M.; Valiev, R.Z.; Langdon, T.G. Microstructural characteristics of an ultrafine grain metal processed with equal-channel angular pressing. Mater. Charact. 1996, 37, 277–283. [Google Scholar] [CrossRef]
- Miura, H.; Yu, G.; Yang, X. Multi-directional forging of AZ61Mg alloy under decreasing temperature conditions and improvement of its mechanical properties. Mater. Sci. Eng. A 2011, 528, 6981–6992. [Google Scholar] [CrossRef]
- Miura, H.; Kobayashi, M. Development of ultrafine grained and high strength MDF pure titanium, Expected applications as biocompatible implants. Titan. Jpn. 2014, 62, 31–33. [Google Scholar]
- Sabirov, I.; Valiev, R.Z.; Semenova, I.P.; Pippan, R. Effect of equal channel angular pressing on the fracture behavior of commercially pure titanium. Met. Mater. Trans. 2010, 41, 727–733. [Google Scholar] [CrossRef]
- Serra, G.; Morais, L.; Elias, C.N.; Semenova, I.P.; Valiev, R.; Salimgareeva, G.; Pithon, M.; Lacerda, R. Nanostructured severe plastic deformation processed titanium for orthodontic mini-implants. Mater. Sci. Eng. C 2013, 33, 4197–4202. [Google Scholar] [CrossRef] [PubMed]
- Zhilyaev, A.P.; Sergeev, S.N.; Popov, V.A.; Orlov, A.V. Evolution of Microstructure and microhardness in HPT titanium during annealing. Rev. Adv. Mater. Sci. 2014, 39, 15–19. [Google Scholar]
- Miura, H.; Kobayashi, M.; Aoba, H.; Aoyama, H.; Benjanarasuth, T. An approach for room-temperature multi-directional forging of pure titanium for strengthening. Mater. Sci. Eng. A 2018, 731, 603–608. [Google Scholar] [CrossRef]
- Hoshi, N.; Saita, M.; Kumasaka, T.; Banka, M.; Miura, H.; Kimoto, K. A new phase in the development of high strength pure titanium by Multi-Directional Forging. JJ Dent. Mater. 2013, 32, 403. [Google Scholar]
- de Jonge, L.T.; Leeuwenburgh, S.C.; Wolke, J.G.; Jansen, J.A. Organic-inorganic surface modifications for titanium implant surfaces. Pharm. Res. 2008, 25, 2357–2369. [Google Scholar] [CrossRef] [PubMed]
- Wennerberg, A.; Albrektsson, T. Effects of titanium surface topography on bone integration: A systematic review. Clin. Oral Implant. Res. 2009, 20, 172–184. [Google Scholar] [CrossRef]
- Beutner, R.; Michael, J.; Schwenzer, B.; Scharnweber, D. Biological nano-functionalization of titanium-based biomaterial surfaces: A flexible toolbox. J. R. Soc. Interface 2010, 7, S93–S105. [Google Scholar] [CrossRef]
- Hanawa, T. A comprehensive review of techniques for biofunctionalization of titanium. J. Periodontal Implant Sci. 2011, 41, 263–272. [Google Scholar] [CrossRef]
- Jemat, A.; Ghazali, M.J.; Razali, M.; Otsuka, Y. Surface Modifications and Their Effects on Titanium Dental Implants. Biomed. Res. Int. 2015, 2015, 791725. [Google Scholar] [CrossRef] [PubMed]
- Buser, D.; Broggini, N.; Wieland, M.; Schenk, R.K.; Denzer, A.J.; Cochran, D.L.; Hoffmann, B.; Lussi, A.; Steinemann, S.G. Enhanced bone apposition to a chemically modified SLA titanium surface. J. Dent. Res. 2004, 83, 529–533. [Google Scholar] [CrossRef] [PubMed]
- Chambrone, L.; Shibli, J.A.; Mercúrio, C.E.; Cardoso, B.; Preshaw, P.M. Efficacy of standard (SLA) and modified sandblasted and acid-etched (SLActive) dental implants in promoting immediate and/or early occlusal loading protocols: A systematic review of prospective studies. Clin. Oral Implants Res. 2015, 26, 359–370. [Google Scholar] [CrossRef] [PubMed]
- Gittens, R.A.; Scheideler, L.; Rupp, F.; Hyzy, S.L.; Geis-Gerstorfer, J.; Schwartz, Z.; Boyan, B.D. A review on the wettability of dental implant surfaces II: Biological and clinical aspects. Acta Biomater. 2014, 10, 2907–2918. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.Y.; Nie, F.L.; Zheng, Y.F.; Cheng, Y.; Wei, S.C.; Valiev, R.Z. Enhanced in vitro biocompatibility of ultrafine-grained titanium with hierarchical porous surface. Appl. Surf. Sci. 2011, 257, 5634–5640. [Google Scholar] [CrossRef]
- Pippenger, B.E.; Rottmar, M.; Kopf, B.S.; Stübinger, S.; Dalla Torre, F.H.; Berner, S.; Maniura-Weber, K. Surface modification of ultrafine-grained titanium: Influence on mechanical properties, cytocompatibility, and osseointegration potential. Clin. Oral Implants Res. 2019, 30, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Hirota, M.; Amemiya, T.; Ohkubo, C.; Hoshi, N.; Kimoto, K.; Hayakawa, T.; Miura, H. Cortical bone response of MDF titanium implant. J. Oral Tissue Eng. 2016, 13, 117–124. [Google Scholar]
- Arai, Y.; Hoshi, N.; Kumasaka, T.; Hayakawa, T.; Ohkubo, C.; Kimoto, K. Development of optimal new titanium for dental implant material. J. Jpn. Soc. Oral Implant 2017, 30, 152. [Google Scholar]
- Kim, H.M.; Miyaji, F.; Kokubo, T.; Nakamura, T. Effect of heat treatment on apatite-forming ability of Ti metal induced by alkali treatment. J. Mater. Sci. Mater. Med. 1997, 8, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Nishiguchi, S.; Fujibayashi, S.; Kim, H.M.; Kokubo, T.; Nakamura, T. Biology of alkali- and heat-treated titanium implants. J. Biomed. Mater. Res. A 2003, 67, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Tsukanaka, M.; Yamamoto, K.; Fujibayashi, S.; Pattanayak, D.K.; Matsushita, T.; Kokubo, T.; Matsuda, S.; Akiyama, H. Evaluation of bioactivity of alkali- and heat-treated titanium using fluorescent mouse osteoblasts. J. Bone Miner. Metab. 2014, 32, 660–670. [Google Scholar] [CrossRef] [PubMed]
- Kokubo, T.; Yamaguchi, S. Growth of Novel Ceramic Layers on Metals via Chemical and Heat Treatments for Inducing Various Biological Functions. Front. Bioeng. Biotechnol. 2015, 3, 176. [Google Scholar] [CrossRef] [PubMed]
- Wennerberg, A.; Albrektsson, T. Suggested Guidelines for the Topographic Evaluation of Implant Surfaces. Int. J. Oral Maxillofac. Implant. 2000, 15, 331–344. [Google Scholar] [PubMed]
- Hanawa, T.; Ota, M. Calcium phosphate naturally formed on titanium in electrolyte solution. Biomaterials 1991, 12, 767–774. [Google Scholar] [CrossRef]
- Raita, Y.; Komatsu, K.; Hayakawa, T. Pilot study of gingival connective tissue responses to 3-dimensional collagen nanofiber-coated dental implants. Dent. Mater. J. 2015, 34, 847–854. [Google Scholar] [CrossRef]
- Donath, K.; Breuner, G. A method for study of undecalcified bones and teeth with attached soft tissues: The Sage-Schliff (sawing and grinding) technique. J. Oral Pathol. 1982, 11, 318–326. [Google Scholar] [CrossRef]
- Suzuki, G.; Hoshi, N.; Kimoto, K.; Miura, H.; Hayakawa, T.; Ohkubo, C. Electrochemical property and corrosion behavior of multi-directionally forged titanium in fluoride solution. Dent. Mater. J. in press.
- Kokubo, T.; Takamada, H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006, 27, 2907–2915. [Google Scholar] [CrossRef]
- Park, J.W.; Kim, Y.J.; Park, C.H.; Lee, D.H.; Ko, Y.G.; Jang, J.H.; Lee, C.S. Enhanced osteoblast response to an equal channel angular pressing-processed pure titanium substrate with microrough surface topography. Acta Biomater. 2009, 5, 3272–3280. [Google Scholar] [CrossRef]
- Aita, H.; Hori, N.; Takeuchi, M.; Suzuki, T.; Yamada, M.; Anpo, M.; Ogawa, T. The effect of ultraviolet functionalization of titanium on integration with bone. Biomaterials 2009, 30, 1015–1025. [Google Scholar] [CrossRef]
- Ogawa, T. Ultraviolet photofunctionalization of titanium implants. Int. J. Oral Maxillofac. Implant. 2014, 29, e95–e102. [Google Scholar] [CrossRef] [PubMed]
- Eguro, T.; Murata, I.; Ohashi, I.; Maekawa, S.; Yoshinari, M. Influence of surface topography and surface chemical modification on hydrophilicity of titanium. J. Jpn. Soc. Oral Implant 2011, 24, 215–224. [Google Scholar]
- Yamamura, K.; Miura, T.; Kou, I.; Muramatsu, T.; Furusawa, M.; Yoshinari, M. Influence of various superhydrophilic treatments of titanium on the initial attachment, proliferation, and differentiation of osteoblast-like cells. Dent. Mater. J. 2015, 34, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Matsuzaki, H.; Yamamoto, H.; Shibata, K.; Komiyama, Y.; Yoshinari, M. Effect of atmospheric pressure plasma treatment on surface properties of commercial titanium implants. J. Jpn. Soc. Oral Implant 2014, 27, 528–540. [Google Scholar]
- Albrektsson, T.; Eriksson, A.R.; Friberg, B.; Lekholm, U.; Lindahl, L.; Nevins, M.; Oikarinen, V.; Roos, J.; Sennerby, L.; Astrand, P. Histologic investigations on 33 retrieved Nobelpharma implants. Clin. Mater. 1993, 12, 1–9. [Google Scholar] [CrossRef]
Ion | Na+ | K+ | Mg2+ | Ca2+ | Cl− | HPO42− | SO42− | HCO3− |
---|---|---|---|---|---|---|---|---|
Concentration (mmol/L) | 142 | 5.81 | 0.811 | 1.26 | 145 | 0.778 | 0.811 | 4.17 |
Implants | Control | Acid | Alkali | Alkali-Heat |
---|---|---|---|---|
Ti | 0.27 ± 0.02 a,A | 0.75 ± 0.05 b,B | 0.56 ± 0.06 b,c,D | 0.42 ± 0.12 c,E |
MDF-Ti | 0.29 ± 0.08 a,A | 0.60 ± 0.06 b,C | 0.48 ± 0.06 b,c,D | 0.47 ± 0.12 b,E |
Implants | Control | Acid | Alkali | Alkali-Heat |
---|---|---|---|---|
Ti | 0.15 ± 0.06 a,A | 4.72 ± 0.51 b,B | 0.45 ± 0.08 a,E | 0.39 ± 0.03 a,G |
MDF-Ti | 0.14 ± 0.10 a,A | 3.54 ± 0.60 b,C | 0.30 ± 0.02 a,F | 0.68 ± 0.05 a,H |
Implants | Control | Acid | Alkali | Alkali-Heat |
---|---|---|---|---|
Ti | 59.9 ± 1.5 a,A | ≒0 b,B | ≒0 b,C | ≒0 b,D |
MDF-Ti | 54.5 ± 2.6 a,A | ≒0 b,B | ≒0 b,C | ≒0 b,D |
Implants | Control | Acid | Alkali | Alkali-Heat |
---|---|---|---|---|
Ti | 55.8 ± 2.3a, A | 75.3 ± 3.5 b, B | 68.9 ± 9.5 a, b, D | 75.9 ± 2.5 b, E |
MDF-Ti | 65.8 ± 10.4 a, A | 85.2± 4.6 b, C | 75.5 ± 6.5 a, b, D | 82.2 ± 3.0 b, F |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suzuki, G.; Hirota, M.; Hoshi, N.; Kimoto, K.; Miura, H.; Yoshinari, M.; Hayakawa, T.; Ohkubo, C. Effect of Surface Treatment of Multi-Directionally Forged (MDF) Titanium Implant on Bone Response. Metals 2019, 9, 230. https://doi.org/10.3390/met9020230
Suzuki G, Hirota M, Hoshi N, Kimoto K, Miura H, Yoshinari M, Hayakawa T, Ohkubo C. Effect of Surface Treatment of Multi-Directionally Forged (MDF) Titanium Implant on Bone Response. Metals. 2019; 9(2):230. https://doi.org/10.3390/met9020230
Chicago/Turabian StyleSuzuki, Ginga, Masatsugu Hirota, Noriyuki Hoshi, Katsuhiko Kimoto, Hiromi Miura, Masao Yoshinari, Tohru Hayakawa, and Chikahiro Ohkubo. 2019. "Effect of Surface Treatment of Multi-Directionally Forged (MDF) Titanium Implant on Bone Response" Metals 9, no. 2: 230. https://doi.org/10.3390/met9020230
APA StyleSuzuki, G., Hirota, M., Hoshi, N., Kimoto, K., Miura, H., Yoshinari, M., Hayakawa, T., & Ohkubo, C. (2019). Effect of Surface Treatment of Multi-Directionally Forged (MDF) Titanium Implant on Bone Response. Metals, 9(2), 230. https://doi.org/10.3390/met9020230