Dynamic Bath Mixing during an Ingot Casting Process
Abstract
:1. Introduction
2. Experimental Apparatus and Procedure
3. Results and Discussions
3.1. Mixing Phenomena Analyses Method
3.2. Effects of Gas Flowrate on the Flow Behavior in the Bath
3.3. Mixing Time Investigation with Different Bottom Blowing Schemes
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, M.J.; Gu, H.Z.; Huang, A.; Zhu, H.X.; Deng, C.J. Physical and mathematical modeling of inclusion removal with gas bottom-blowing in continuous casting tundish. J. Min. Metall. Sect. B. 2011, 47, 37–44. [Google Scholar] [CrossRef]
- Wang, L.T.; Zhang, Q.Y.; Deng, C.H.; Li, Z.B. Mathematical model for removal of inclusion in molten steel by injecting gas at ladle shroud. ISIJ Int. 2005, 45, 1138–1144. [Google Scholar] [CrossRef]
- Zhang, L.F.; Aoki, J.; Thomas, B.G. Inclusion removal by bubble floateation in a continuous casting mold. Metall. Mater. Trans. B 2006, 37B, 361–379. [Google Scholar] [CrossRef]
- Eriksson, R.; Jonsson, L.; Jönsson, P.G. Effect of entrance nozzle design on the fluid flow in an ingot mold during filling. ISIJ Int. 2004, 44, 1358–1365. [Google Scholar] [CrossRef]
- Hallgren, L.; Takagi, S.; Tillliander, A.; Yokoya, S.; Jönsson, P.G. Effect of nozzle type and swirl on flow pattern for initial filling conditions in the mould for uphill teeming. Steel Res. Int. 2007, 78, 254–259. [Google Scholar] [CrossRef]
- Tan, Z.; Ersson, M.; Jönsson, P.G. Modeling of initial mold filling with utilization of swirl blades. ISIJ Int. 2012, 52, 1066–1071. [Google Scholar] [CrossRef]
- Bai, H.; Ersson, M.; Jönsson, P.G. An Experimental and numerical study of swirling flow generated by turboswirl in an uphill teeming ingot casting process. ISIJ Int. 2016, 56, 1404–1412. [Google Scholar] [CrossRef]
- Singh, V.; Kumar, J.; Bhanu, C.; Ajmani, S.K.; Dash, S.K. Optimisation of the bottom tuyeres. ISIJ Int. 2007, 47, 1605–1612. [Google Scholar] [CrossRef]
- Murthy, G.G.K.; Mehrotra, S.P.; Ghosh, A. Experimental investigation of mixing phenomena in a gas stirred liquid bath. Metall. Mater. Trans. B 1988, 19, 839–850. [Google Scholar] [CrossRef]
- Komarov, S.V.; Itoh, K.; Sano, M.; Blinov, K.A. Mixing phenomena in a ladle bath stirred by gas jets through side and inclined nozzles. ISIJ Int. 1993, 33, 740–747. [Google Scholar] [CrossRef]
- Yeoh, S.L.; Papadakis, G.; Yianneskis, M. Determination of mixing time and degree of homogeneity in stirred vessels with large eddy simulation. Chem. Eng. Sci. 2005, 60, 2293–2302. [Google Scholar] [CrossRef]
- Vichare, N.P.; Gogate, P.R.; Dindore, V.Y.; Pandit, A.B. Mixing time analysis of a sonochemical reactor. Ultrason. Sonochem. 2001, 8, 23–33. [Google Scholar] [CrossRef]
- Ascanio, G. Mixing time in stirred vessels: A review of experimental techniques. Chin. J. Chem. Eng. 2015, 23, 1065–1076. [Google Scholar] [CrossRef]
- Kouda, T.; Yano, H.; Yoshinaga, F.; Kaminoyama, M.; Kamiwan, A.M. Characterization of non-newtonian behavior during mixing of bacterial cellulose in a bioreactor. J. Ferment. Bioeng. 1996, 82, 382–386. [Google Scholar] [CrossRef]
- Arratia, P.E.; Muzzio, F.J. Planar laser-induced fluorescence method for analysis of mixing in laminar flows. Ind. Eng. Chem. Res. 2004, 43, 6557–6568. [Google Scholar] [CrossRef]
- Holmes, D.B.; Voncken, R.M.; Dekker, J.A. Fluid flow in turbine-stirred, baffled tanks—I: Circulation time. Chem. Eng. Sci. 1964, 19, 201–208. [Google Scholar] [CrossRef]
- Poulsen, B.R.; Iversen, J.J.L. Mixing determinations in reactor vessels using linear buffers. Chem. Eng. Sci. 1997, 52, 979–984. [Google Scholar] [CrossRef]
- Zhou, X.; Ersson, M.; Zhong, L.; Jönsson, P.G. Optimization of combined blown converter process. ISIJ Int. 2014, 54, 2255–2262. [Google Scholar] [CrossRef]
- Zhou, X.; Ersson, M.; Zhong, L.; Yu, J.; Jönsson, P.G. Mathematical and physical simulation of a top blown converter. Steel Res. Int. 2014, 85, 273–281. [Google Scholar] [CrossRef]
- Zhang, Q.; Yong, Y.; Mao, Z.-S.; Yang, C.; Zhao, C. Experimental determination and numerical simulation of mixing time in a gas—Liquid stirred tank. Chem. Eng. Sci. 2009, 64, 2926–2933. [Google Scholar] [CrossRef]
- Zhong, L.; Zhou, X.; Jiang, P.; Wang, H.; Pang, L.; Hao, P. Physical and mathematical simulations for molten steel flow in a large ingot casting process with double bottom argon bubbling porous beams. Ironmak. Steelmak. 2017. [CrossRef]
Teeming flowrate, m3/h | 0.8 | ||
Gas flowrate, Nm3/h | 0.025, 0.045, 0.065 | ||
Initial bath depth, mm | 300 | 500 | 700 |
Tracer, mL | 100 | 170 | 240 |
ΔH, mm | 50 | 80 | 120 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Zhong, L.; Ni, P.; Deng, N. Dynamic Bath Mixing during an Ingot Casting Process. Metals 2019, 9, 238. https://doi.org/10.3390/met9020238
Zhou X, Zhong L, Ni P, Deng N. Dynamic Bath Mixing during an Ingot Casting Process. Metals. 2019; 9(2):238. https://doi.org/10.3390/met9020238
Chicago/Turabian StyleZhou, Xiaobin, Liangcai Zhong, Peiyuan Ni, and Nanyang Deng. 2019. "Dynamic Bath Mixing during an Ingot Casting Process" Metals 9, no. 2: 238. https://doi.org/10.3390/met9020238
APA StyleZhou, X., Zhong, L., Ni, P., & Deng, N. (2019). Dynamic Bath Mixing during an Ingot Casting Process. Metals, 9(2), 238. https://doi.org/10.3390/met9020238