Size Effects of High Strength Steel Wires
Abstract
:1. Introduction
2. Survey of General Size Effects
3. Size Effects of Pearlitic Steels
4. Discussion
4.1. Diameter Dependence
4.2. Weibull Size Effects
4.3. Strength Partition
4.4. Pearlite Spacings
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. An Approximate Method of Estimating Weibull Shape Parameter, m
m | m est | TS GPa | SD GPa | TS est GPa | SD est GPa | σo GPa | σo/TS | Sample Counts | Ref. |
---|---|---|---|---|---|---|---|---|---|
9.1 | 9.1 | 1.3830 | 0.1815 | 1.3830 | 0.1820 | 1.4600 | 1.0557 | 15 | [26] |
13.7 | 15.3 | 1.0920 | 0.0878 | 1.0920 | 0.0876 | 1.1300 | 1.0348 | 35 | [11] |
16.0 | 16.0 | 1.4990 | 0.1130 | 1.5000 | 0.1150 | 1.5500 | 1.0340 | 160 | [4] |
N/A | 30.0 | 1.6390 | 0.0773 | 1.6400 | 0.0680 | 1.6700 | 1.0189 | N/A | [79] |
33.4 | 33.4 | 1.5950 | 0.0600 | 1.5950 | 0.0600 | 1.6215 | 1.0166 | 15 | [26] |
52.4 | 52.4 | 1.6280 | 0.0393 | 1.6270 | 0.0393 | 1.6450 | 1.0104 | 15 | [26] |
70.6 | 70.6 | 1.6490 | 0.0297 | 1.6490 | 0.0296 | 1.6620 | 1.0079 | 20 | [26] |
N/A | 110 | 1.6530 | 0.0192 | 1.6540 | 0.0192 | 1.6630 | 1.0060 | 38470 | [80] |
N/A | 124 | 1.6600 | 0.0171 | 1.6600 | 0.0170 | 1.6680 | 1.0048 | 45 | [81] |
References
- Sluszka, P. Studies on the Longevity of Suspension Bridge Cables; Transportation Research Record 1290; National Academy of Sciences: Washington, DC, USA, 1990; pp. 272–278. [Google Scholar]
- Nippon Steel Sumitomo Metal Corp. Current Conditions of the Development and Practical Application of Wire Rods for Bridge Cable Use That Have the Highest Level of Strength Worldwide. Available online: http://www.nssmc.com/en/steelinc/information/20150423_100.html (accessed on 18 April 2018).
- Li, Y.J.; Raabe, D.; Herbig, M.; Choi, P.; Goto, S.; Kostka, A. Segregation stabilizes nanocrystalline bulk steel with near theoretical strength. Phys. Rev. Lett. 2014, 113, 106104. [Google Scholar] [CrossRef] [PubMed]
- Ono, K. Structural materials: Metallurgy of bridges. In Metallurgical Design and Industry, Prehistory to the Space Age; Kaufman, B., Briant, C.L., Eds.; Springer: Cham, Switzerland, 2018; pp. 193–269. [Google Scholar]
- Plowden, D. Bridges, the Spans of North America; Viking Press: New York, NY, USA, 1974; p. 328. [Google Scholar]
- Pan, H.X. Famous Ancient Bridges of China; Shanghai Cultural Publishing House: Shanghai, China, 1985. (In Chinese) [Google Scholar]
- Pan, H.X. Study of Yunnan Lanjin and Ji Hong bridges. J. Tongji Univ. 1981, 1, 108–116. (In Chinese) [Google Scholar]
- Pope, T. A Treatise on Bridge Architecture, in Which the Superior Advantages of the Flying Pendent Lever Bridge Are Fully Proved; Self-published: New York, NY, USA, 1811; p. 279. [Google Scholar]
- Peters, T.F. Transitions in Engineering; Birkhauser Verlag: Basel, Switzerland, 1987; p. 244. [Google Scholar]
- Dodge, A. Pianos and Their Makers; Covina Publ. Co.: Covina, CA, USA, 1911; pp. 123–126. [Google Scholar]
- Percy, J. On steel wire of high strength. J. Iron Steel Inst. 1886, 29, 62–80. [Google Scholar]
- Armstrong, R.W. Plasticity: Grain Size Effects III. In Reference Module in Materials Science and Engineering; Hashmi, S., Ed.; Elsevier: New York, NY, USA, 2016; pp. 1–23. [Google Scholar]
- Wright, R.N. Wire Technology: Process Engineering and Metallurgy; Butterworth-Heinemann: New York, NY, USA, 2014; p. 340. [Google Scholar]
- Griffith, A.A. The phenomenon of rupture and flow in solids. Philos. Trans. R. Soc. Lond. 1921, A221, 163–198. [Google Scholar] [CrossRef]
- Ochiai, I.; Nishida, S.; Ohba, H.; Kawana, A. Application of Hypereutectoid Steel for Development of High Strength Steel Wire. Tetsu-to-Hagane 1993, 79, 1101–1107. [Google Scholar] [CrossRef] [Green Version]
- Klingsporn, P.E. Characterization of Optical Fiber Strength under Applied Tensile Stress and Bending Stress; KCP-613-6655; Honeywell: Kansas City, MO, USA, 2011; 44p. [Google Scholar]
- Karmarsch, I. Mittheilungen des gew Ver. für Hannover; Hahnschehof Publ: Hannover, Germany, 1858; pp. 138–155. [Google Scholar]
- Rubenstein, L.S. Effects of Size on Tensile Strength of Fine Polycrystalline Nickel Wires; NASA-TN-4884; National Aeronautics and Space Administration: Washington, DC, USA, 1968; 25p.
- Riesch, J.; Feichtmayer, A.; Fuhr, M.; Almanstötter, J.; Coenen, J.W.; Gietl, H.; Höschen, T.; Linsmeier, C.; Neu, R. Tensile behaviour of drawn tungsten wire used in tungsten fibre-reinforced tungsten composites. Phys. Scr. 2017, T170, 14032. [Google Scholar] [CrossRef]
- Report of the Tests of Metals and Other Materials for Industrial Purposes; US Testing Machine: Watertown Arsenal, Boston, MA, USA, 1895.
- Zhu, Y.T.; Butt, D.P.; Taylor, S.T.; Lowe, T.C. Evaluation of modified Weibull distribution for describing the strength of ceramic fibers and whiskers with varying diameters. J. Test. Eval. 1998, 26, 144–150. [Google Scholar] [CrossRef]
- Weibull, W. A statistical distribution function of wide applicability. J. Appl. Mech. 1951, 73, 293–297. [Google Scholar]
- Otto, W.H. Relationship of tensile strength of glass fibers to diameter. J. Am. Chem. Soc. 1955, 39, 122–124. [Google Scholar] [CrossRef]
- Flores, O.; Bordia, R.K.; Bernard, S.; Uhlemann, T.; Krenkel, W.; Motz, G. Processing and characterization of large diameter ceramic SiCN monofilaments from commercial oligosilazanes. RSC Adv. 2015, 5, 107001. [Google Scholar] [CrossRef]
- Catangiu, A.; Ungureanu, D.N.; Despa, V. Data scattering in strength measurement of steels and glass/epoxy composite. Mat. Mech. 2017, 15, 11–16. [Google Scholar] [CrossRef]
- Mayrbaurl, R.M.; Camo, S. Guidelines for Inspection and Strength Evaluation of Suspension Bridge Parallel Wire Cables; Report 534; National Cooperative Highway Research Program: Washington, DC, USA, 2004; p. 274. [Google Scholar]
- Waugh, A.R.; Paetke, S.; Edmonds, D.V. A study of segregation to the dislocation substructure in patented steel wire using atom-probe techniques. Metallography 1981, 14, 237–251. [Google Scholar] [CrossRef]
- Hong, M.H.; Reynolds, W.T., Jr.; Tarui, T.; Hono, K. Atom probe and transmission electron microscopy investigations of heavily drawn pearlitic steel wire. Metall. Mater. Trans. A 1999, 30A, 717–727. [Google Scholar] [CrossRef]
- Takahashi, J.; Tarui, T.; Kawakami, K. Three-dimensional atom probe analysis of heavily drawn steel wires by probing perpendicular to the pearlitic lamellae. Ultramicroscopy 2009, 109, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Embury, J.D.; Fisher, R.M. The structure and properties of drawn pearlite. Acta Metall. 1966, 14, 147–152. [Google Scholar] [CrossRef]
- Langford, G. A study of the deformation of patented steel wire. Metall. Trans. 1970, 1, 465–477. [Google Scholar] [CrossRef]
- Langford, G. Deformation of pearlite. Metall. Trans. A 1977, 8, 861–875. [Google Scholar] [CrossRef]
- Langford, G.; Cohen, M. Calculation of cell-size strengthening of wire drawn iron. Metall. Trans. 1970, 1, 1478–1480. [Google Scholar] [CrossRef]
- Marder, A.R.; Bramfitt, B.L. The effects of morphology on the strength of pearlite. Metall. Trans. A 1976, 7A, 365–372. [Google Scholar] [CrossRef]
- Borchers, C.; Kirchheim, R. Cold-drawn pearlitic steel wires. Prog. Mater. Sci. 2016, 82, 405–444. [Google Scholar] [CrossRef]
- Tashiro, H. The challenge for maximum tensile strength steel cord. Nippon Steel Tech. Rep. 1999, 80, 6–8. [Google Scholar]
- Kanetsuki, Y.; Ibaraki, N.; Ashida, S. Effect of cobalt addition on transformation behavior and drawability of hypereutectoid steel wire. ISIJ Int. 1991, 31, 304–311. [Google Scholar] [CrossRef]
- Choi, H.C.; Park, K.T. The effect of C content on the Hall-Petch parameters in the cold-drawn hypereutectoid steels. Scr. Mater. 1996, 34, 857–862. [Google Scholar] [CrossRef]
- Maruyama, N.; Tarui, T.; Tashiro, H. Atom probe study on the ductility of drawn pearlitic steels. Scr. Mater. 2002, 46, 599–603. [Google Scholar] [CrossRef]
- Zhang, X.D.; Godfrey, A.; Huang, X.X.; Hansen, N.; Liu, Q. Microstructure and strengthening mechanisms in cold-drawn pearlitic steel wire. Acta Mater. 2011, 59, 3422–3430. [Google Scholar] [CrossRef]
- Nam, W.J.; Bae, C.M. Void initiation and microstructural changes during wire drawing of pearlitic steels. Mater. Sci. Eng. 1995, 203, 278–285. [Google Scholar] [CrossRef]
- Zelin, M. Microstructure evolution in pearlitic steels during wire drawing. Acta Mater. 2002, 50, 4431–4447. [Google Scholar] [CrossRef]
- Kim, D.K.; Shemenski, R.M. Alloy Steel Tire Cord and Its Heat Treatment Process. US Patent 5,167,727, 1 December 1992. [Google Scholar]
- Goto, S.; Kirchheim, R.; Al-Kassab, T.; Borchers, C. Application of cold drawn lamellar microstructure for developing ultra-high strength wires. Trans. Nonferr. Met. Soc. China 2007, 17, 1129–1138. [Google Scholar] [CrossRef]
- Pepe, J.J. Deformation structure and tensile fracture characteristics of a cold worked 1080 pearlitic steel. Metall. Trans. 1973, 4, 2455–2460. [Google Scholar] [CrossRef]
- Buono, V.T.L.; Gonzalez, B.L.; Lima, T.M.; Andrade, M.S. Measurement of fine pearlite interlamellar spacing by atomic force microscopy. J. Mater. Sci. 1997, 32, 1005–1008. [Google Scholar] [CrossRef]
- Yamakoshi, N.; Nakamura, Y.; Kaneda, T. Development of high strength steel wires. R D Kobe Steel Tech. Rep. 1973, 23, 20–27. [Google Scholar]
- Makii, K.; Tarui, T.; Tsuzaki, K. Improvements in the Strength and Reliability of Steels; The Iron and Steel Institute of Japan: Tokyo, Japan, 1997; p. 3. [Google Scholar]
- Tarui, T. On Enhancement of Strength and Ductility of High Carbon Steel Wires. Ph.D. Thesis, Tokyo Institute of Technology, Tokyo, Japan, 2010. [Google Scholar]
- Zhang, X.; Hansen, N.; Godfrey, A.; Huang, X. Dislocation-based plasticity and strengthening mechanisms in sub-20 nm lamellar structures in pearlitic steel wire. Acta Mater. 2016, 114, 176–183. [Google Scholar] [CrossRef] [Green Version]
- Glaesemann, G.S. Optical fiber failure probability predictions from long-length strength distributions. In Proceedings of the 40th International Wire and Cable Symposium, St. Louis, MO, USA, 18–21 November 1991; pp. 819–825. [Google Scholar]
- Tagawa, T.; Miyata, T. Size effect on tensile strength of carbon fibers. Mater. Sci. Eng. A 1997, A238, 336–342. [Google Scholar] [CrossRef]
- Nakagawa, S.; Morimoto, T.; Ogihara, S. The size effect of SiC fiber strength on the gauge length. In Proceedings of the 24th international congress of aeronautical sciences, Yokohama, Japan, 29 August–3 September 2004. [Google Scholar]
- Wagner, H.D. Stochastic concepts in the study of size effects in the mechanical strength of highly oriented polymeric materials. J. Polym. Sci. Polym. Phys. 1989, 27, 115–149. [Google Scholar] [CrossRef]
- Schwartz, P.; Netravali, A.; Sembach, S. Effects of strain rate and gauge length on the failure of ultra-high strength polyethylene fibers. Text. Res. J. 1986, 56, 502–508. [Google Scholar] [CrossRef]
- Smook, J.; Hamersma, W.; Pennings, A.J. The fracture process of ultra-high strength polyethylene fibres. J. Mater. Sci. 1984, 19, 1359–1373. [Google Scholar] [CrossRef]
- Wagner, H.D.; Steenbakkers, L.W. Stochastic strength and size effect in ultra-high strength polyethylene fibres. Philos. Mag. Lett. 1989, 59, 77–85. [Google Scholar] [CrossRef]
- Roffey, P. The fracture mechanisms of main cable wires from the forth road suspension. Eng. Fail. Anal. 2013, 31, 430–441. [Google Scholar] [CrossRef]
- Morgado, T.L.M.; Sousa e Brito, A. A failure analysis study of a prestressed steel cable of a suspension bridge. Case Studies Constr. Mater. 2015, 3, 40–47. [Google Scholar] [CrossRef] [Green Version]
- Mahmoud, K.M. Fracture strength for a high strength steel bridge cable wire with a surface crack. Theor. Appl. Fract. Mech. 2015, 48, 152–160. [Google Scholar] [CrossRef]
- Chida, T.; Hagihara, Y.; Akiyama, E.; Iwanaga, K.; Takagi, S.; Hayakawa, M.; Ohishi, H.; Hirakami, D.; Tarui, T. Comparison of constant load, SSRT and CSRT methods for hydrogen embrittlement evaluation using round bar specimens of high strength steels. ISIJ Int. 2016, 56, 1268–1275. [Google Scholar] [CrossRef]
- Mahmoud, K.; Hindshaw, W.; McCulloch, R. Management Strategies for Suspension Bridge Main Cables; Asset Management of Bridges; Mahmoud, K., Ed.; CRC Press: Leiden, The Netherland, 2017; pp. 3–12. [Google Scholar]
- Bennett, J.A.; Mindlin, H. Metallurgical aspects of the failure of the Point Pleasant Bridge. J. Test. Eval. 1973, 1, 152–161. [Google Scholar]
- Tarui, T.; Maruyama, N.; Eguchi, T.; Konno, S. High strength galvanized steel wire for bridge cables. Struct. Eng. Int. 2002, 12, 209–213. [Google Scholar] [CrossRef]
- Nakamura, S.; Suzumura, K.; Tarui, T. Mechanical properties and remaining strength of corroded bridge wires. Struct. Eng. Int. 2004, 14, 51–54. [Google Scholar] [CrossRef]
- Nakamura, S.; Suzumura, K. Hydrogen embrittlement and corrosion fatigue of corroded bridge wires. J. Constr. Steel Res. 2009, 65, 270–275. [Google Scholar] [CrossRef]
- Fang, F.; Zhao, Y.; Liu, P.; Zhou, L.; Hu, X.J.; Zhou, X.; Xie, Z.H. Deformation of cementite in cold drawn pearlitic steel wire. Mater. Sci. Eng. A 2014, 608, 11–15. [Google Scholar] [CrossRef]
- Takahashi, J.; Kosaka, M.; Kawakami, K.; Tarui, T. Change in carbon state by low-temperature aging in heavily drawn pearlitic steel wires. Acta Mater. 2012, 60, 387–395. [Google Scholar] [CrossRef]
- Ono, K.; Sommer, A.W. Peierls-Nabarro hardening in the presence of point obstacles. Metall. Trans. 1970, 1, 877–884. [Google Scholar] [CrossRef]
- Das, A. Calculation of ductility from pearlite microstructure. Mater. Sci. Technol. 2018, 34, 1046–1063. [Google Scholar] [CrossRef]
- Ohtsu, M.; Ono, K. Pattern recognition analysis of magnetomechanical acoustic emission signals. J. Acoust. Emiss. 1984, 3, 69–80. [Google Scholar]
- Gensamer, M.; Pearsall, E.B.; Smith, G.V. The mechanical properties of the isothermal decomposition products of austenite. Trans. ASM 1940, 28, 380–398. [Google Scholar]
- Gensamer, M.; Pearsall, E.B.; Pellini, W.S.; Low, J.R., Jr. The tensile properties of pearlite, bainite, and spheroidite. Metall. Microstruct. Anal. 2012, 1, 171–189, Reprinted from Trans. ASM 1942, 30, 983–1019. [Google Scholar] [CrossRef]
- Ridley, N. A review of the data on the interlaminar spacings of pearlite. Metall. Trans. A 1984, 15A, 1019–1036. [Google Scholar] [CrossRef]
- Dollar, M.; Bernstein, I.M.; Thompson, A.W. Influence of deformation substructure on flow and fracture of fully pearlitic steel. Acta Metall. 1988, 36, 311–320. [Google Scholar] [CrossRef]
- Vander Voort, G.F.; Roosz, A. Measurement of the interlamellar spacing of pearlite. Metallography 1984, 17, 1–17. [Google Scholar] [CrossRef]
- Tashiro, H.; Sato, H. Effect of alloying elements on the lamellar spacing and the degree of regularity of pearlite in eutectoid steel. J. Jpn. Inst. Met. 1991, 55, 1078–1085. [Google Scholar] [CrossRef]
- Perry, R.J. Estimating strength of the Williamsburg Bridge suspension cables. Am. Statistician 1998, 52, 211–217. [Google Scholar]
- Mahmoud, K.M. BTC Method for Evaluation of Remaining Strength and Service Life of Bridges; NYSDOT Report C-07-11; Bridge Technology Consulting: New York, NY, USA, 2011; pp. 21–24. [Google Scholar]
- Japan Bridge Engineering Center. High Strength (1.8 GPa Class) Galvanized Steel Wires for Bridge Cables; Report on Bridge Cable Design Methods; JBEC: Tokyo, Japan, 1988.
- Japan Society. Steel Construction and Nippon Steel Sumitomo Metals, Standard for structural cable materials; Japanese Industrial Standards II, 03,04,05,06,11-1994; Japanese Industrial Standards Committee: Tokyo, Japan, 1994. [Google Scholar]
Authors | Year | Sample Count | n for TS Versus d−n | R2 for n | R2 for TS-exp(e/2) | R2 for TS-exp(e/4) | Notes | Ref. |
---|---|---|---|---|---|---|---|---|
Embury | 1966 | 12 | 0.551 | 0.975 | 0.969 | 0.981 | - | [30] |
Langford | 1970 | 17 | 0.469 | 0.995 | 0.971 | 0.995 | - | [31] |
Langford | 1970 | 13 | 0.482 | 0.990 | 0.990 | 0.990 | w/o e > 4 | [31] |
Yamakoshi | 1973 | 19 | 0.507 | 0.994 | 0.998 | 0.993 | steel B | [47] |
Yamakoshi | 1973 | 15 | 0.514 | 0.995 | 0.997 | 0.993 | steel C | [47] |
Yamakoshi | 1973 | 15 | 0.507 | 0.993 | 0.997 | 0.992 | steel F | [47] |
Langford | 1977 | 9 | 0.505 | 0.996 | 0.986 | 0.997 | strip | [32] |
Kanetsuki | 1991 | 10 | 0.397 | 0.980 | 0.991 | 0.982 | - | [37] |
Ochiai | 1993 | 18 | 0.485 | 0.987 | 0.990 | 0.987 | steel F | [16] |
Nam | 1995 | 13 | 0.504 | 0.978 | 0.978 | 0.986 | - | [41] |
Choi | 1996 | 10 | 0.562 | 0.972 | 0.965 | 0.968 | - | [38] |
Makii | 1997 | 22 | 0.459 | 0.989 | 0.994 | 0.992 | bridge cable | [48] |
Makii | 1997 | 15 | 0.396 | 0.976 | 0.973 | 0.974 | tire cord | [48] |
Tashiro | 1999 | 14 | 0.471 | 0.993 | 0.975 | 0.991 | 0.5 mm | [36] |
Tashiro | 1999 | 10 | 0.480 | 0.988 | 0.996 | 0.985 | w/o e > 5 | [36] |
Tashiro | 1999 | 12 | 0.468 | 0.987 | 0.996 | 0.985 | 1.0 mm | [36] |
Buono | 2002 | 9 | 0.488 | 0.994 | 0.991 | 0.994 | - | [46] |
Zelin | 2002 | 18 | 0.538 | 0.993 | 0.998 | 0.991 | - | [42] |
Tarui | 2010 | 16 | 0.507 | 0.992 | 0.964 | 0.990 | - | [49] |
Tarui | 2010 | 13 | 0.509 | 0.985 | 0.996 | 0.981 | w/o e > 4 | [49] |
Li | 2014 | 8 | 0.447 | 0.974 | 0.844 | 0.945 | - | [3] |
Average of n and R2 | - | - | 0.488 | 0.987 | 0.979 | 0.985 | - | - |
Std deviation | - | - | 0.042 | 0.008 | 0.033 | 0.012 | - | - |
Pepe | 1973 | 5 | Linear fit | - | 0.936 | 0.957 | - | [45] |
Kim | 1992 | 7 | 0.544 | 0.990 | 0.991 | 0.982 | - | [43] |
Maruyama | 2002 | 5 | 0.508 | 0.991 | 0.987 | 0.996 | w/o e > 4.5 | [39] |
Goto | 2007 | 3 | 0.439 | 0.995 | 0.984 | 0.996 | - | [44] |
Zhang | 2011 | 4 | 0.526 | 0.990 | 0.998 | 0.992 | - | [40] |
Zhang | 2016 | 4 | 0.755 | 0.983 | 0.985 | 0.988 | PS used | [50] |
Li | 2014 | 5 | 0.538 | 0.995 | 0.990 | 0.996 | w/o e > 5 | [3] |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ono, K. Size Effects of High Strength Steel Wires. Metals 2019, 9, 240. https://doi.org/10.3390/met9020240
Ono K. Size Effects of High Strength Steel Wires. Metals. 2019; 9(2):240. https://doi.org/10.3390/met9020240
Chicago/Turabian StyleOno, Kanji. 2019. "Size Effects of High Strength Steel Wires" Metals 9, no. 2: 240. https://doi.org/10.3390/met9020240
APA StyleOno, K. (2019). Size Effects of High Strength Steel Wires. Metals, 9(2), 240. https://doi.org/10.3390/met9020240