Characterization of Double Leached Waelz Oxide for Identification of Fluoride Mineral
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation and Reagents
2.1.1. Sample Preparation
2.1.2. Reagents
2.2. Particle Size
2.3. Elemental Analysis
2.4. Wet High-Intensity Magnetic Separators (WHIMS)
2.5. Mineralogical Characterization
3. Results and Discussion
3.1. Particle Size
3.2. Elemental Analysis and Magnetic Separation
3.3. XRD
3.4. SEM
3.5. 19F SS-MAS FT-NMR
4. Conclusions
- The characterization of DLWO showed that 90% of the particles were <20 µm and mainly consisted of zincite (ZnO), cerussite (PbCO3) and spinel with zinc, iron and manganese.
- The only identified fluoride mineral was CaF2 in the non-magnetic fraction of DLWO.
- Fluoride was mainly present together with calcium and oxygen in larger grains.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- International Lead and Zinc Study Group. Available online: http://www.ilzsg.org/static/statistics.aspx?from=3 (accessed on 16 May 2018).
- Antuñano, N.; Cambra, J.F.; Arias, P.L. Fluoride removal from Double Leached Waelz Oxide leach solutions as alternative feeds to Zinc Calcine leaching liquors in the electrolytic zinc production process. Hydrometallurgy 2016, 161, 65–70. [Google Scholar] [CrossRef]
- Dutra, A.J.; Paiva, P.R.; Tavares, L.M. Alkaline leaching of zinc from electric arc furnace steel dust. Miner. Eng. 2006, 19, 478–485. [Google Scholar] [CrossRef]
- Da Silva, M.C.; Bernardes, A.M.; Bergmann, C.P.; Tenório, J.; Espinosa, D. Characterisation of electric arc furnace dust generated during plain carbon steel production. Ironmak. Steelmak. 2008, 35, 315–320. [Google Scholar] [CrossRef]
- Sofilić, T.; Rastovčan-Mioč, A.; Cerjan-Stefanović, Š.; Novosel-Radović, V.; Jenko, M. Characterization of steel mill electric-arc furnace dust. J. Hazard. Mater. 2004, 109, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Machado, J.G.; Brehm, F.A.; Moraes, C.A.; Dos Santos, C.A.; Vilela, A.C.; Da Cunha, J.B. Chemical, physical, structural and morphological characterization of the electric arc furnace dust. J. Hazard. Mater. 2006, 136, 953–960. [Google Scholar] [CrossRef] [PubMed]
- Havlík, T.; e Souza, B.V.; Bernardes, A.M.; Schneider, I.A.H.; Miškufová, A. Hydrometallurgical processing of carbon steel EAF dust. J. Hazard. Mater. 2006, 135, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Antrekowitsch, J.; Antrekowitsch, H. Hydrometallurgically recovering zinc from electric arc furnace dusts. JOM 2001, 53, 26–28. [Google Scholar] [CrossRef]
- Mordogan, H.; Cicek, T.; Isik, A. Caustic soda leach of electric arc furnace dust. Turk. J. Eng. Environ. Sci. 1999, 23, 199–208. [Google Scholar]
- Orhan, G. Leaching and cementation of heavy metals from electric arc furnace dust in alkaline medium. Hydrometallurgy 2005, 78, 236–245. [Google Scholar] [CrossRef]
- Ruiz, O.; Clemente, C.; Alonso, M.; Alguacil, F.J. Recycling of an electric arc furnace flue dust to obtain high grade ZnO. J. Hazard. Mater. 2007, 141, 33–36. [Google Scholar] [CrossRef] [PubMed]
- Nyirenda, R.L. The processing of steelmaking flue-dust: A review. Miner. Eng. 1991, 4, 1003–1025. [Google Scholar] [CrossRef]
- Youcai, Z.; Stanforth, R. Integrated hydrometallurgical process for production of zinc from electric arc furnace dust in alkaline medium. J. Hazard. Mater. 2000, 80, 223–240. [Google Scholar] [CrossRef]
- Xia, D.K.; Pickles, C.A. Caustic roasting and leaching of electric arc furnace dust. Can. Met. Q. 1999, 38, 175–186. [Google Scholar] [CrossRef]
- Lindblom, B.; Samuelsson, C.; Sandstrom, Å.; Ye, G. Fine-particle characterization—An important recycling tool. JOM 2002, 54, 35–38. [Google Scholar] [CrossRef]
- Ruetten, J. Application of the waelz technology on resource recycling of steel mill dust. Baosteel Tech. Res. 2010, 1, 137–140. [Google Scholar]
- Menad, N.; Ayala, J.N.; Garcia-Carcedo, F.; Ruiz-Ayucar, E.; Hernandez, A. Study of the presence of fluorine in the recycled fractions during carbothermal treatment of EAF dust. Waste Manag. 2003, 23, 483–491. [Google Scholar] [CrossRef]
- Iker, D.S.; Javier, V.O.D.A.; Nestor, G.G. Hydrometallurgical Treatment for the Purification of Waelz Oxides through Lixiviation with Sodium Carbonate. EP 0773301 A1, 4 October 1996. [Google Scholar]
- Ye, G.; White, J.; Wei, L.Y. Association of halogens in electric arc furnace dust and zinc oxide fume before and after leaching. In Global Symposium on Recycling, Waste Treatment and Clean Technology (REWAS 1999); Fundacion Inasmet: San Sebastian, Spain, 1999; Volume 2. [Google Scholar]
- Hu, Z.; Qi, L. 15.5—Sample Digestion Methods. In Treatise on Geochemistry; Elsevier Ltd.: Oxford, UK, 2014; pp. 87–109. [Google Scholar]
- Piekos, R.; Paslawska, S. Leaching characteristics of fluoride from coal fly ash. Fluoride 1998, 31, 188–192. [Google Scholar]
- Levitt, M.H. Spin Dynamics: Basics of Nuclear Magnetic Resonance; John Wiley & Sons, Ltd.: Chichester, UK, 2001; Ch 2 Magnetism pp. 23–38, Ch 10 Single spin-1/2 pp. 231–258. [Google Scholar]
- Bharti, S.K.; Roy, R. Quantitative 1H NMR spectroscopy. Trac Trends Anal. Chem. 2012, 35, 5–26. [Google Scholar] [CrossRef]
- Schmidt-Rohr, K.; Spiess, H.W. Multidimensional Solid-State NMR and Polymers; Academic Press: London, UK, 1994; Ch 3.9 Magic Angle Spinning (MAS), pp. 102–107. [Google Scholar]
- Antuñano, N.; Herrero, D.; Arias, P.L.; Cambra, J.F. Electrowinning studies for metallic zinc production from double leached Waelz oxide. Process Saf. Environ. Prot. 2013, 91, 495–502. [Google Scholar] [CrossRef]
- Miller, J.M. Fluorine-19 magic-angle spinning NMR. Prog. Nucl. Magn. Reson. Spectrosc. 1996, 28, 255–281. [Google Scholar] [CrossRef]
- Abdellatief, M.; Abele, M.; Leoni, M.; Scardi, P. Combined X-ray diffraction and solid-state 19F magic angle spinning NMR analysis of lattice defects in nanocrystalline CaF2. J. Appl. Crystallogr. 2013, 46, 1049–1057. [Google Scholar] [CrossRef]
- Kitano, Y.; Okumura, M. Coprecipitation of fluoride with calcium carbonate. Geochem. J. 1973, 7, 37–49. [Google Scholar] [CrossRef]
Elements | Zn | Fe | Pb | Cd | Mn | Ca | CaO | F | Cl |
---|---|---|---|---|---|---|---|---|---|
Weight % | 4–33 | 18–49 | 1–5 | 0.01–0.15 | 0.4–6 | 1.0–10.0 | 0.4–0.7 | 0.01–0.88 | 0.01–7 |
Elements | Zn | Pb | Fe | Ca | Cd | Mn | Mg | F | Cl |
---|---|---|---|---|---|---|---|---|---|
DLWO | 76.1 | 1.58 | 1.46 | 0.80 | 0.17 | 0.18 | 0.13 | 0.10 | 0.16 |
DLWO-NM | 76.6 | 1.59 | 1.17 | 0.68 | 0.17 | 0.15 | 0.11 | 0.09 | <0.010 |
DLWO-Mag | 63.4 | 1.16 | 8.03 | 3.36 | 0.21 | 0.79 | 0.44 | 0.38 | <0.010 |
Shift (ppm) | NaF | CaF2 | MgF2 | ZnF2 | PbF2 | KF | CdF2 |
−224 | −108 | −198 | −182 | −19 | −133 | −194 | |
- | - | - | −202 | −58 | - | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sar, S.; Sundqvist Öqvist, L.; Sparrman, T.; Engström, F.; Samuelsson, C. Characterization of Double Leached Waelz Oxide for Identification of Fluoride Mineral. Metals 2019, 9, 361. https://doi.org/10.3390/met9030361
Sar S, Sundqvist Öqvist L, Sparrman T, Engström F, Samuelsson C. Characterization of Double Leached Waelz Oxide for Identification of Fluoride Mineral. Metals. 2019; 9(3):361. https://doi.org/10.3390/met9030361
Chicago/Turabian StyleSar, Suchandra, Lena Sundqvist Öqvist, Tobias Sparrman, Fredrik Engström, and Caisa Samuelsson. 2019. "Characterization of Double Leached Waelz Oxide for Identification of Fluoride Mineral" Metals 9, no. 3: 361. https://doi.org/10.3390/met9030361
APA StyleSar, S., Sundqvist Öqvist, L., Sparrman, T., Engström, F., & Samuelsson, C. (2019). Characterization of Double Leached Waelz Oxide for Identification of Fluoride Mineral. Metals, 9(3), 361. https://doi.org/10.3390/met9030361