Effect of Graphene and Carbon Nanotubes on the Thermal Conductivity of WC–Co Cemented Carbide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Testing of WC–Co Cemented Carbide Samples
3. Results and Discussion
3.1. Thermal Conductivity of WC–Co Cemented Carbide
3.2. Hardness Testing of WC–Co Cemented Carbide
3.3. Bending Strength Test of WC–Co Cemented Carbide
3.4. Fracture Toughness Test of WC–Co Cemented Carbide
3.5. Metallographic Structure of WC–Co Cemented Carbide
3.6. SEM Analysis of WC–Co Cemented Carbide
3.6.1. Backscattered and Secondary Electron Images of WC–Co Cemented Carbide Samples
3.6.2. EDS Analysis of WC–Co Cemented Carbide Samples
3.7. Finite Element Simulation of Heat Transfer Process of Gear Cutter of Shield Machine
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yu, B.; Li, Y.; Lei, Q.; Nie, Y. Microstructures and mechanical properties of WC–Co-xCr-Mo cement carbides. J. Alloy. Compd. 2019, 771, 636–642. [Google Scholar] [CrossRef]
- Liu, X.H.; Zou, A.Z. Analysis and application of shield cemented carbide. Superhard Mater. Eng. 2016, 28, 24–26. [Google Scholar] [CrossRef]
- Chu, K.; Wang, X.H.; Wang, F.; Li, Y.B.; Huang, D.J.; Liu, H.; Ma, W.L.; Liu, F.X.; Zhang, H. Largely enhanced thermal conductivity of graphene /copper composites with highly aligned graphene network. Carbon 2018, 127, 102–112. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, L.; He, J.; Wu, X. The Status and Prospect of Shield Cutters Industry. Cem. Carbide 2015, 32, 340–346. [Google Scholar]
- Heinrichs, J.; Olsson, M.; Yvell, K.; Jacobson, S. On the deformation mechanisms of cemented carbide in rock drilling. Fundamental studies involving sliding contact against a rock crystal tip. Int. J. Refract. Met. Hard Mater. 2018, 77, 141–151. [Google Scholar] [CrossRef]
- Mikado, H.; Ishihara, S.; Oguma, N.; Kawamura, S. On the short surface fatigue crack growth behavior in a fine-grained WC–Co cemented carbide. Metals 2017, 7, 254. [Google Scholar] [CrossRef]
- Wu, X.; Li, L.; He, N.; Zhao, G.; Shen, J. Experimental Investigation on Direct Micro Milling of Cemented Carbide. Micromachines 2019, 10, 147. [Google Scholar] [CrossRef] [PubMed]
- Gallardo, J.M.; Agote, I.; Astacio, R.; Schubert, T.; Cintas, J.; Montes, J.M.; Torres, Y.; Cuevas, F.G. Hard Metal Production by ERS: Processing Parameter Roles in Final Properties. Metals 2019, 9, 172. [Google Scholar] [CrossRef]
- Sribalaji, M.; Islam, A.; Mukherjee, B.; Pandey, M.K.; Keshri, A.K. Tailoring the thermal shock resistance of titanium carbide by reinforcement with tungsten carbide and carbon nanotubes. Ceram. Int. 2018, 44, 2552–2562. [Google Scholar] [CrossRef]
- Beste, U.; Coronel, E.; Jacobson, S. Wear induced material modifications of cemented carbide rock drill buRons. Int. J. Refract. Met. Hard Mater. 2006, 24, 168–176. [Google Scholar] [CrossRef]
- Yan, M. Study on Creep-Thermal Fatigue Life Prediction; Northeastern University: Boston, MA, USA, 2008. [Google Scholar]
- Pop, E.; Mann, D.; Wang, Q.; Goodson, K.; Dai, H. Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 2005, 6, 96–100. [Google Scholar] [CrossRef]
- Balandin, A.A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N. Superior thermal conductivity of single-layer grapheme. Nano Lett. 2008, 8, 902–907. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F. SPS Synthesis and Toughening Mechanism of Nano-WC/Co-Based Carbon Nanotube Composites; Harbin Institute of Technology: Harbin, China, 2005. [Google Scholar]
- Huang, Z.Q.; Li, W.; Li, Q.; Guo Eh Qiu, C.S. Experimental Research on the Composite Material of Nano-Al2O3/Cemented Carbide. Rare Met. Cem. Carbides 2011, 39, 16. [Google Scholar]
- Özbek, N.A.; Çiçek, A.; Gülesin, M.; Özbek, O. Investigation of the effects of cryogenic treatment applied at different holding times to cemented carbide inserts on tool wear. Int. J. Mach. Tools Manuf. 2014, 86, 34–43. [Google Scholar] [CrossRef]
- Yan, S.; Chen, X.; Hong, Q. Research Progress of Graphene Reinforced Aluminum Matrix Nanocomposites. J. Aeronaut. Mater. 2016, 36, 57–70. [Google Scholar]
- Zhao, T.; Ji, X.; Jin, W.; Yang, W.; Hu, J.; Dang, A.; Li, H.; Li, T. The preparation and electrochemical performance of graphene/carbon nanotube composite. Carbon Tech 2017, 36, 21–26. [Google Scholar]
- Boccarusso, L.; Scherillo, F.; Prisco, U. Effects of Cr3C2 addition on wear behaviour of WC-Co based cemented carbides. Metals 2018, 8, 895. [Google Scholar] [CrossRef]
- Aleksandrov Fabijanić, T.; Jakovljević, S.; Franz, M.; Jeren, I. Influence of Grain Growth Inhibitors and Powder Size on the Properties of Ultrafine and Nanostructured Cemented Carbides Sintered in Hydrogen. Metals 2016, 6, 198. [Google Scholar] [CrossRef]
- Konyashin, I.; Zaitsev, A.; Meledin, A.; Mayer, J.; Loginov, P.; Levashov, E.; Ries, B. Interfaces between Model Co-W-C Alloys with Various Carbon Contents and Tungsten Carbide. Materials 2018, 11, 404. [Google Scholar] [CrossRef]
- Armstrong, R.W. The hardness and strength properties of WC-Co composites. Materials 2011, 4, 1287–1308. [Google Scholar] [CrossRef]
- Ocak, B.C.; Yavas, B.; Akin, I.; Sahin, F.; Goller, G. Spark plasma sintered Zr C-Ti C-GNP composites: Solid solution formation and mechanical properties. Ceram. Int. 2018, 44, 2336–2344. [Google Scholar] [CrossRef]
- Ling, Z.C.; Yan, C.X.; Shi, Q.N.; Feng, Z.X.; Qu, Y.D.; Li, T.; Yang, Y.X. Effect of Ball Milling Time on Microstructure and Properties of Graphene/Copper Composites. Rare Met. Mater. Eng. 2017, 46, 207–212. [Google Scholar]
- Chen, Z.; Qian, J.; Ye, Y. Theoretical Calculation of Equivalent Thermal Conductivity of Composites. J. Univ. Sci. Technol. China 1992, 4, 416–424. [Google Scholar]
- Wang, H.; Webb, T.; Bitler, J.W. Study of thermal expansion and thermal conductivity of cemented WC–Co composite. Int. J. Refract. Met. Hard Mater. 2015, 49, 170–177. [Google Scholar] [CrossRef]
- Lin, F.; Bhatia, G.S.; Ford, J.D. Thermal conductivities of powder-filled epoxy resins. J. Appl. Polym. Sci. 2010, 49, 1901–1908. [Google Scholar] [CrossRef]
- Agari, Y.; Uno, T. Thermal conductivity of polymer filled with carbon materials: Effect of conductive particle chains on thermal conductivity. J. Appl. Polym. Sci. 2010, 30, 2225–2235. [Google Scholar] [CrossRef]
- Jin, P.; Peng, W. Research on Thermal Conductivity of Cemented Carbide. Cem. Carbide 2015, 32, 300–305. [Google Scholar]
- Zhou, G.; Ye, Z.; Shi, W. Application of three-dimensional, 3D, graphene and Its Composites. Prog. Chem. 2014, 26, 950–960. [Google Scholar]
- Xing, Y.; Yu, K.; Liu, Y.; Zhang, L. Research on the progress of high thermal conduction mechanism and heat transfer enhancenment application of graphene. Chem. Eng. 2015, 29, 54–60. [Google Scholar]
- Schubert, W.D.; Neumeister, H.; Kinger, G.; Lux, B. Hardness to Toughness Relationship of Fine Grained WC–Co. Int. J. Refract. Met. Hard Mater. 1998, 16, 133–142. [Google Scholar] [CrossRef]
- Hu, S. Understanding the Fracture Toughness Testing Method and Toughness Evaluation of WC–Co Based Cenmented Carbides; Hunan University: Changsha, China, 2013. [Google Scholar]
Sample Group Number | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Graphene | 0% | 0.06% | 0% | 0.12% |
Carbon nanotubes | 0% | 0.06% | 0.12% | 0% |
Sample Group Number | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Thermal diffusivity (mm2/s) | 16.74 | 16.22 | 17.56 | 18.02 |
Sample Group Number | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Mass (g) | 1.90 | 2.94 | 2.89 | 2.68 |
Volume (cm3) | 0.13 | 0.19 | 0.20 | 0.18 |
Density (g/cm3) | 14.62 | 15.48 | 14.47 | 14.91 |
Sample Group Number | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Thermal diffusivity | 16.74 | 16.22 | 17.56 | 18.02 |
Density (g/cm3) | 14.62 | 15.48 | 14.47 | 14.91 |
Thermal Conductivity (W/(m·K)) | 56.28 | 57.76 | 58.41 | 61.83 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, K.; Xiao, W.; Li, Z.; Wu, J.; Hong, K.; Ruan, X. Effect of Graphene and Carbon Nanotubes on the Thermal Conductivity of WC–Co Cemented Carbide. Metals 2019, 9, 377. https://doi.org/10.3390/met9030377
Chen K, Xiao W, Li Z, Wu J, Hong K, Ruan X. Effect of Graphene and Carbon Nanotubes on the Thermal Conductivity of WC–Co Cemented Carbide. Metals. 2019; 9(3):377. https://doi.org/10.3390/met9030377
Chicago/Turabian StyleChen, Kui, Wenkai Xiao, Zhengwu Li, Jiasheng Wu, Kairong Hong, and Xuefeng Ruan. 2019. "Effect of Graphene and Carbon Nanotubes on the Thermal Conductivity of WC–Co Cemented Carbide" Metals 9, no. 3: 377. https://doi.org/10.3390/met9030377
APA StyleChen, K., Xiao, W., Li, Z., Wu, J., Hong, K., & Ruan, X. (2019). Effect of Graphene and Carbon Nanotubes on the Thermal Conductivity of WC–Co Cemented Carbide. Metals, 9(3), 377. https://doi.org/10.3390/met9030377