Computational Methods for Lifetime Prediction of Metallic Components under High-Temperature Fatigue
Abstract
:1. Introduction
2. Incremental Lifetime Models
2.1. Deformation Models
2.2. Incremental Lifetime Rules
2.3. Application to an Austenitic Cast Iron under TMF
2.3.1. Experimental Procedure
2.3.2. Results and Analysis
2.4. Extension of the Incremental Lifetime Rules to Single Crystals
3. Parametric Lifetime Models Based on the Fracture Mechanics Concepts
3.1. Fatigue Lifetimes by Microcracks Growth
3.2. The Impact of Creep Deformation on Damage Due to Microcrack Growth
3.3. Application to the Austenitic Cast Iron under TMF
4. Accelerated Cyclic Integration in Time
4.1. Review of Approaches
4.2. Benchmark Example of the Viscoplastic Cyclic Response Treated by FTTI
5. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
LCF | Low-Cycle Fatigue |
HCF | High-Cycle Fatigue |
TMF | Thermo-Mechanical Fatigue |
IP | In Phase |
OP | Out Of Phase |
ODE | Ordinary Differential Equation |
FEM | Finite Element Method |
FTTI | Fourier Transformation-Based Integration |
WATMUS | WAvelet Transformation MUlti-time Scaling |
References
- Vardar, N.; Ekerim, A. Failure analysis of gas turbine blades in a thermal power plant. Eng. Fail. Anal. 2007, 14, 743–749. [Google Scholar] [CrossRef]
- Williams, J.C.; Starke, E.A. Progress in structural materials for aerospace systems. The Golden Jubilee Issue—Selected topics in Materials Science and Engineering: Past, Present and Future, edited by S. Suresh. Acta Mater. 2003, 51, 5775–5799. [Google Scholar] [CrossRef]
- Kumari, S.; Satyanarayana, D.; Srinivas, M. Failure analysis of gas turbine rotor blades. Eng. Fail. Anal. 2014, 45, 234–244. [Google Scholar] [CrossRef]
- Reed, R. The Superalloys: Fundamentals and Applications; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Pineau, A.; Antolovich, S.D. High temperature fatigue: Behaviour of three typical classes of structural materials. Mater. High Temp. 2015, 32, 298–317. [Google Scholar] [CrossRef]
- Sun, Z.; Benabou, L.; Dahoo, P. Prediction of thermo-mechanical fatigue for solder joints in power electronics modules under passive temperature cycling. Eng. Fract. Mech. 2013, 107, 48–60. [Google Scholar] [CrossRef]
- Lee, W.; Nguyen, L.; Selvaduray, G. Solder joint fatigue models: Review and applicability to chip scale packages. Microelectron. Reliab. 2000, 40, 231–244. [Google Scholar] [CrossRef]
- Lee, K.O.; Hong, S.G.; Lee, S.B. A new energy-based fatigue damage parameter in life prediction of high-temperature structural materials. Mater. Sci. Eng. 2008, 496, 471–477. [Google Scholar] [CrossRef]
- Benoit, A.; Maitournam, M.; Rémy, L.; Oger, F. Cyclic behaviour of structures under thermomechanical loadings: Application to exhaust manifolds. Int. J. Fatigue 2012, 38, 65–74. [Google Scholar] [CrossRef]
- Mahtabi, M.J.; Shamsaei, N. A modified energy-based approach for fatigue life prediction of superelastic NiTi in presence of tensile mean strain and stress. Int. J. Mech. Sci. 2016, 117, 321–333. [Google Scholar] [CrossRef] [Green Version]
- Radaj, D.; Sonsino, C.; Fricke, W. Fatigue Assessment of Welded Joints by Local Approaches, 2nd ed.; Woodhead Publishing Series in Welding and Other Joining Technologies; Woodhead Publishing: Sawston, UK, 2006. [Google Scholar] [CrossRef]
- Lemaitre, J.; Desmorat, R. Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Citarella, R.; Cricrí, G.; Lepore, M.; Perrella, M. Thermo-mechanical Crack Propagation in Aircraft Engine Vane by Coupled FEM-DBEM Approach. Adv. Eng. Softw. 2014, 67, 57–69. [Google Scholar] [CrossRef]
- Fellinger, J.; Citarella, R.; Giannella, V.; Lepore, M.; Sepe, R.; Czerwinski, M.; Herold, F.; Stadler, R. Overview of fatigue life assessment of baffles in Wendelstein 7-X. Fusion Eng. Des. 2018, 136, 292–297. [Google Scholar] [CrossRef]
- Cojocaru, D.; Karlsson, A. A simple numerical method of cycle jumps for cyclically loaded structures. Int. J. Fatigue 2006, 28, 1677–1689. [Google Scholar] [CrossRef] [Green Version]
- Chaboche, J. A review of some plasticity and viscoplasticity constitutive theories. Int. J. Plast. 2008, 24, 1642–1693. [Google Scholar] [CrossRef]
- Méric, L.L.; Poubanne, P.P.; Cailletaud, G.G. Single crystal modeling for structural calculations: Part 1—Model presentation. J. Eng. Mater. Technol. 1991, 113, 162–170. [Google Scholar] [CrossRef]
- Suresh, S. Fatigue of Materials, 2nd ed.; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Sangid, M.D. The physics of fatigue crack initiation. Int. J. Fatigue 2013, 57, 58–72. [Google Scholar] [CrossRef]
- Calì, C.; Cricrì, G.; Perrella, M. An Advanced Creep Model Allowing for Hardening and Damage Effects. Strain 2010, 46, 347–357. [Google Scholar] [CrossRef]
- Freed, A.D.; Walker, K.P. Viscoplasticity with creep and plasticity bounds. Int. J. Plast. 1993, 9, 213–242. [Google Scholar] [CrossRef]
- McLean, M.; Dyson, B.F. Modeling the effects of damage and microstructural evolution on the creep behavior of engineering alloys. J. Eng. Mater. Technol. 2000, 122, 273–278. [Google Scholar] [CrossRef]
- Frederick, C.; Armstrong, P. A mathematical representation of the multiaxial Bauschinger effect. Mater. High Temp. 2007, 24, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Sermage, J.P.; Lemaitre, J.; Desmorat, R. Multiaxial creep–fatigue under anisothermal conditions. Fatigue Fract. Eng. Mater. Struct. 2000, 23, 241–252. [Google Scholar] [CrossRef]
- Sommitsch, C.; Sievert, R.; Wlanis, T.; Günther, B.; Wieser, V. Modelling of creep-fatigue in containers during aluminium and copper extrusion. Comput. Mater. Sci. 2007, 39, 55–64. [Google Scholar] [CrossRef]
- Sommitsch, C.; Sievert, R.; Wlanis, T.; Redl, C. Lifetime evaluation of two different hot work tool steels in aluminium extrusion. Comput. Mater. Sci. 2008, 43, 82–91. [Google Scholar] [CrossRef]
- Satoh, M.; Kremp, E. An incremental life prediction law for creep–fatigue interaction. In Material Behaviour at Elevated Temperatures and Components Analysis; Yamada, Y., Cho, F., Roche, R., Eds.; American Society of Mechanical Engineers PVP: New York, NY, USA, 1982; Volume 10, pp. 71–79. [Google Scholar]
- Yeh, N.; Kremp, E. An incremental life prediction law for multiaxial creep-fatigue interaction and thermomechanical loading. In Advances in Multiaxial Fatigue; McDowell, D., Ellis, R., Eds.; American Society for Testing and Materials STP 1191; ASTM International: West Conshohocken, PA, USA, 1993; pp. 107–119. [Google Scholar]
- Majumdar, S.; Maiya, P. A mechanistic model for time-dependent fatigue. J. Eng. Mater. Technol. 1980, 102, 159–167. [Google Scholar] [CrossRef]
- Majumdar, S. Designing against low-cycle fatigue at elevated temperature. Nucl. Eng. Des. 1981, 63, 121–135. [Google Scholar] [CrossRef]
- Brown, M.W.; Miller, K.J. A theory for fatigue failure under multiaxial stress-strain conditions. Proc. Inst. Mech. Eng. 1973, 187, 745–755. [Google Scholar] [CrossRef]
- Robinson, E.L. Effect of temperature variation on the long-time rupture strength of steels. Trans. Am. Soc. Mech. Eng. 1952, 74, 777–780. [Google Scholar]
- Danzer, R.; Bressers, J. A new method to predict the life under high-temperature low cycle fatigue conditions. Fatigue Fract. Eng. Mater. Struct. 1986, 9, 151–168. [Google Scholar] [CrossRef]
- Franklin, C. Cyclic creep and fatigue life time prediction. In High Temperature Alloys for Gas Turbines; Coutsouradis, D., Felix, P., Fischmeister, H., Habraken, L., Lindblom, Y., Speidel, M.O., Eds.; Applied Science: London, UK, 1978; pp. 513–547. [Google Scholar]
- Rémy, L.; Rezai-Aria, F.; Danzer, R.; Hoffelner, W. Evaluation of life prediction methods in high temperature fatigue. In Low Cycle Fatigue; Solomon, H.D., Halford, G.R., Kaisand, L.R., Leis, B.N., Eds.; American Society for Testing and Materials STP 942; ASTM International: West Conshohocken, PA, USA, 1988; pp. 1115–1132. [Google Scholar]
- Vöse, F.; Becker, M.; Fischersworring-Bunk, A.; Hackenberg, H.P. An approach to life prediction for a nickel-base superalloy under isothermal and thermo-mechanical loading conditions. Int. J. Fatigue 2013, 53, 49–57. [Google Scholar] [CrossRef]
- Inoue, T.; Okazaki, M.; Igari, T.; Sakane, M.; Kishi, S. Evaluation of fatigue-creep life prediction methods in multiaxial stress state: The second report of the benchmark project (B) by the Subcommittee on Inelastic Analysis and Life Prediction of High Temperature Materials, JSMS. Nucl. Eng. Des. 1991, 126, 13–21. [Google Scholar] [CrossRef]
- Tinga, T.; Brekelmans, W.; Geers, M. Time-incremental creep–fatigue damage rule for single crystal Ni-base superalloys. Mater. Sci. Eng. 2009, 508, 200–208. [Google Scholar] [CrossRef]
- Charles, C.M.; Drew, G.A.; Bagnall, S.; Rae, C.M. Dislocation deformation mechanisms during fatigue of the nickel-based superalloy CMSX-4. In Materials Science Forum; Progress in Light Metals, Aerospace Materials and Superconductors; Trans Tech Publications: Zurich, Switzerland, 2007; Volume 546, pp. 1211–1218. [Google Scholar] [CrossRef]
- Chan, K.S.; Hack, J.E.; Leverant, G.R. Fatigue crack growth in MAR-M200 single crystals. Metall. Mater. Trans. 1987, 18, 581–591. [Google Scholar] [CrossRef]
- Telesman, J.; Ghosn, L.J. Fatigue crack growth behavior of PWA 1484 single crystal superalloy at elevated temperatures. J. Eng. Gas Turbines Power 1996, 118, 399–405. [Google Scholar] [CrossRef]
- Kagawa, H.; Mukai, Y. The effect of crystal orientation and temperature on fatigue crack growth of Ni-based single crystal superalloy. In Superalloys 2012; Wiley-Blackwell: Hoboken, NJ, USA, 2012; pp. 225–233. [Google Scholar] [CrossRef]
- MacLachlan, D.W.; Knowles, D.M. Fatigue behaviour and lifing of two single crystal superalloys. Fatigue Fract. Eng. Mater. Struct. 2011, 24, 503–521. [Google Scholar] [CrossRef]
- Hong, H.U.; Choi, B.G.; Kim, I.S.; Yoo, Y.S.; Jo, C.Y. Characterization of deformation mechanisms during low cycle fatigue of a single crystal nickel-based superalloy. J. Mater. Sci. 2011, 46, 5245–5251. [Google Scholar] [CrossRef]
- Chen, Q.; Liu, H.W. Resolved shear stress intensity coefficient and fatigue crack growth in large crystals. Theor. Appl. Fract. Mech. 1988, 10, 111–122. [Google Scholar] [CrossRef] [Green Version]
- Qiu, W.; Ma, X.; Rui, S.; Shi, H.J. Crystallographic analysis on small fatigue crack propagation behaviour of a nickel-based single crystal superalloy. Fatigue Fract. Eng. Mater. Struct. 2016, 40, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Levkovitch, V.; Sievert, R.; Svendsen, B. Simulation of deformation and lifetime behavior of a fcc single crystal superalloy at high temperature under low-cycle fatigue loading. Int. J. Fatigue 2006, 28, 1791–1802. [Google Scholar] [CrossRef]
- Staroselsky, A.; Cassenti, B.N. Creep, plasticity, and fatigue of single crystal superalloy. Int. J. Solids Struct. 2011, 48, 2060–2075. [Google Scholar] [CrossRef]
- Antolovich, S.D.; Liu, S.; Baur, R. Low cycle fatigue behavior of René 80 at elevated temperature. Metall. Trans. 1981, 12, 473–481. [Google Scholar] [CrossRef]
- Reuchet, J.; Remy, L. Fatigue oxidation interaction in a superalloy—Application to life prediction in high temperature low cycle fatigue. Metall. Trans. 1983, 14, 141–149. [Google Scholar] [CrossRef]
- Neu, R.W.; Sehitoglu, H. Thermomechanical fatigue, oxidation, and creep: Part II—Life prediction. Metall. Trans. A 1989, 20A, 1769–1783. [Google Scholar] [CrossRef]
- Neumann, P. The geometry of slip processes at a propagating fatigue crack-II. Acta Metall. 1974, 22, 1167–1178. [Google Scholar] [CrossRef]
- Gross, D.; Seelig, T. Fracture Mechanics: With an Introduction to Micromechanics; Mechanical Engineering Series; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Shih, C.F. Relationships between the J-integral and the crack opening displacement for stationary and extending cracks. J. Mech. Phys. Solids 1981, 29, 305–326. [Google Scholar] [CrossRef]
- Schmitt, W.; Mohrmann, R.; Riedel, H.; Dietsche, A.; Fischersworring-Bunk, A. Modelling of the fatigue life of automobile exhaust components. In Proceedings of the 8th International Fatigue Congress, Stockholm, Sweden, 3–7 June 2002; Blom, A., Ed.; Engineering Materials Advisory Services: Stockholm, Sweden, 2002; Volume 2, pp. 781–788. [Google Scholar]
- Heitmann, H.; Vehoff, H.; Neumann, P. Life prediction for random load fatigue based on the growth behavior of microcracks. In Fracture 84; Valluri, S., Taplin, D., Rama Rao, P., Knott, J., Dubey, R., Eds.; Pergamon Press: Oxford, UK, 1984; pp. 3599–3606. [Google Scholar] [CrossRef]
- Vormwald, M.; Seeger, T. The consequences of short crack closure on fatigue crack growth under variable amplitude loading. Fatigue Fract. Eng. Mater. Struct. 1991, 14, 205–225. [Google Scholar] [CrossRef]
- Schijve, J. Some formulas for the crack opening stress level. Eng. Fract. Mech. 1981, 14, 461–465. [Google Scholar] [CrossRef] [Green Version]
- Newman, J.C. A crack opening stress equation for fatigue crack growth. Int. J. Fract. 1984, 24, R131–R135. [Google Scholar] [CrossRef]
- Pippan, R.; Hohenwarter, A. Fatigue crack closure: A review of the physical phenomena. Fatigue Fract. Eng. Mater. Struct. 2017, 40, 471–495. [Google Scholar] [CrossRef]
- Gruetzner, S.; Fedelich, B.; Rehmer, B.; Buchholz, B. Material modelling and lifetime prediction of Ni-Base gas turbine blades under TMF conditions. In Advanced Materials Research; Trans Tech Publications: Zurich, Switzerland, 2014; Volume 891, pp. 1277–1282. [Google Scholar] [CrossRef]
- Riedel, H. Fracture at High Temperatures; Materials Research and Engineering; Springer: Berlin/Heidelberg, Germany, 1987. [Google Scholar]
- Miller, M.P.; McDowell, D.L.; Oehmke, R.L.T. A creep-fatigue-oxidation microcrack propagation model for thermomechanical fatigue. J. Eng. Mater. Technol. 1992, 114, 282–288. [Google Scholar] [CrossRef]
- Christ, H.J. Effect of environment on thermomechanical fatigue life. Mater. Sci. Eng. A 2007, 468–470, 98–108. [Google Scholar] [CrossRef]
- Vöse, F.; Becker, M.; Fischersworring-Bunk, A.; Hackenberg, H.P. A mechanism-based approach to life prediction for a nickel-base alloy subjected to cyclic and creep-fatigue. Tech. Mech. 2012, 32, 595–607. [Google Scholar]
- Metzger, M.; Nieweg, B.; Schweizer, C.; Seifert, T. Lifetime prediction of cast iron materials under combined thermomechanical fatigue and high cycle fatigue loading using a mechanism-based model. Int. J. Fatigue 2013, 53, 58–66. [Google Scholar] [CrossRef]
- Kühn, H.J.; Rehmer, B.; Skrotzki, B. Thermomechanical fatigue of heat-resistant austenitic cast iron EN-GJSA-XNiSiCr35-5-2 (Ni-Resist D-5S). Int. J. Fatigue 2017, 99, 295–302. [Google Scholar] [CrossRef]
- Maitournam, H.; Pommier, B.; Comte, F.; Nguyen-Tajan, T.M.L. Direct cyclic methods for structures under thermomechanical loading. In Proceedings of the European Conference on Computational Mechanics (ECCM 2010), Paris, France, 16–21 May 2010. [Google Scholar]
- Spiliopoulos, K.V.; Panagiotou, K.D. A direct method to predict cyclic steady states of elastoplastic structures. Comput. Methods Appl. Mech. Eng. 2012, 223–224, 186–198. [Google Scholar] [CrossRef]
- Fish, J.; Bailakanavar, M.; Powers, L.; Cook, T. Multiscale fatigue life prediction model for heterogeneous materials. Int. J. Numer. Methods Eng. 2012, 91, 1087–1104. [Google Scholar] [CrossRef]
- Crouch, R.; Oskay, C. Accelerated time integrator for multiple time scale homogenization. Int. J. Numer. Methods Eng. 2015, 101, 1019–1042. [Google Scholar] [CrossRef]
- Haouala, S.; Doghri, I. Modeling and algorithms for two-scale time homogenization of viscoelastic-viscoplastic solids under large numbers of cycles. Int. J. Plast. 2015, 70, 98–125. [Google Scholar] [CrossRef]
- Kindrachuk, V.M.; Unger, J.F. A Fourier transformation-based temporal integration scheme for viscoplastic solids subjected to fatigue deterioration. Int. J. Fatigue 2017, 100, 215–228. [Google Scholar] [CrossRef]
- Kindrachuk, V.M.; Titscher, T.; Unger, J.F. A Fourier transformation-based method for gradient-enhanced modeling of fatigue. Int. J. Numer. Methods Eng. 2018, 114, 196–214. [Google Scholar] [CrossRef]
- Chakraborty, P.; Ghosh, S. Accelerating cyclic plasticity simulations using an adaptive wavelet transformation based multitime scaling method. Int. J. Numer. Methods Eng. 2013, 93, 1425–1454. [Google Scholar] [CrossRef]
- Yaghmaie, R.; Guo, S.; Ghosh, S. Wavelet transformation-induced multi-time scaling (WATMUS) model for coupled transient electro-magnetic and structural dynamics finite element analysis. Comput. Methods Appl. Mech. Eng. 2016, 303, 341–373. [Google Scholar] [CrossRef]
- Schweizer, C.; Seifert, T.; Nieweg, B.; von Hartrott, P.; Riedel, H. Mechanisms and modelling of fatigue crack growth under combined low and high cycle fatigue loading. Int. J. Fatigue 2011, 33, 194–202. [Google Scholar] [CrossRef] [Green Version]
- Fedelich, B.; Kühn, H.J.; Rehmer, B.; Skrotzki, B. Experimental and analytical investigation of the TMF-HCF lifetime behavior of two cast iron alloys. Int. J. Fatigue 2017, 99, 266–278. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kindrachuk, V.; Fedelich, B.; Rehmer, B.; Peter, F. Computational Methods for Lifetime Prediction of Metallic Components under High-Temperature Fatigue. Metals 2019, 9, 390. https://doi.org/10.3390/met9040390
Kindrachuk V, Fedelich B, Rehmer B, Peter F. Computational Methods for Lifetime Prediction of Metallic Components under High-Temperature Fatigue. Metals. 2019; 9(4):390. https://doi.org/10.3390/met9040390
Chicago/Turabian StyleKindrachuk, Vitaliy, Bernard Fedelich, Birgit Rehmer, and Frauke Peter. 2019. "Computational Methods for Lifetime Prediction of Metallic Components under High-Temperature Fatigue" Metals 9, no. 4: 390. https://doi.org/10.3390/met9040390
APA StyleKindrachuk, V., Fedelich, B., Rehmer, B., & Peter, F. (2019). Computational Methods for Lifetime Prediction of Metallic Components under High-Temperature Fatigue. Metals, 9(4), 390. https://doi.org/10.3390/met9040390