Biomineralization of Platinum by Escherichia coli
Abstract
:1. Introduction
2. Materials and Methods
2.1. Growth and Column Experiments
2.2. Analyses of the Outlet Solution and Column Sands
2.3. Scanning Electron Microscopy (SEM)
3. Results
3.1. Optimization and Screening of Pt Concentration for Column Experiments
3.2. Column Experiments
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, L.K.; Chen, J.P.; Hung, Y.-T.; Shammas, N.K. Heavy Metals in the Environment; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Helmers, E.; Mergel, N. Platinum and rhodium in a polluted environment: Studying the emissions of automobile catalysts with emphasis on the application of csv rhodium analysis. Fresenius J. Anal. Chem. 1998, 362, 522–528. [Google Scholar] [CrossRef]
- Pawlak, J.; Lodyga-Chruscinska, E.; Chrustowicz, J. Fate of platinum metals in the environment. J. Trace Elem. Med. Biol. 2014, 28, 247–254. [Google Scholar] [CrossRef]
- Maes, S.; Props, R.; Fitts, J.P.; De Smet, R.; Vanhaecke, F.; Boon, N.; Hennebel, T. Biological recovery of platinum complexes from diluted aqueous streams by axenic cultures. PLoS ONE 2017, 12, e0169093. [Google Scholar] [CrossRef] [PubMed]
- Reith, F.; Campbell, S.G.; Ball, A.S.; Pring, A.; Southam, G. Platinum in earth surface environments. Earth Sci. Rev. 2014, 131, 1–21. [Google Scholar] [CrossRef]
- Wiseman, C.L.; Zereini, F. Airborne particulate matter, platinum group elements and human health: A review of recent evidence. Sci. Total Environ. 2009, 407, 2493–2500. [Google Scholar] [CrossRef] [PubMed]
- Sobrova, P.; Zehnalek, J.; Adam, V.; Beklova, M.; Kizek, R. The effects on soil/water/plant/animal systems by platinum group elements. Cent. Eur. J. Chem. 2012, 10, 1369–1382. [Google Scholar] [CrossRef] [Green Version]
- Southam, G.; Saunders, J.A. The geomicrobiology of ore deposits. Econ. Geol. 2005, 100, 1067–1084. [Google Scholar] [CrossRef]
- Reith, F.; Dürr, M.; Welch, C.; Rogers, S.L. The Geomicrobiology of the Regolith; CSIRO Press: Melbourne, Australia, 2008. [Google Scholar]
- Gadd, G.M. Metals, minerals and microbes: Geomicrobiology and bioremediation. Microbiology 2010, 156, 609–643. [Google Scholar] [CrossRef]
- Macaskie, L.E. An immobilized cell bioprocess for the removal of heavy metals from aqueous flows. J. Chem. Technol. Biotechnol. 1990, 49, 357–379. [Google Scholar] [CrossRef]
- Nakajima, A. Accumulation of gold by microorganisms. World J. Microbiol. Biotechnol. 2003, 19, 369–374. [Google Scholar] [CrossRef]
- Lustig, S.; Zang, S.; Michalke, B.; Schramel, P.; Beck, W. Transformation behaviour of different platinum compounds in a clay-like humic soil: Speciation investigations. Sci. Total Environ. 1996, 188, 195–204. [Google Scholar] [CrossRef]
- Lustig, S.; Zang, S.L.; Beck, W.; Schramel, P. Dissolution of metallic platinum as water soluble species by naturally occurring complexing agents. Microchim. Acta 1998, 129, 189–194. [Google Scholar] [CrossRef]
- Plyusnina, L.P.; Kyz’mina, T.V.; Likhoidov, G.G.; Narnov, G.A. Experimental modeling of platinum sorption on organic matter. Appl. Geochem. 2000, 15, 777–784. [Google Scholar] [CrossRef]
- Kalbitz, K.; Schwesig, D.; Wang, W. Effects of platinum from vehicle exhaust catalyst on carbon and nitrogen mineralization in soils. Sci. Total Environ. 2008, 405, 239–245. [Google Scholar] [CrossRef]
- Ljubomirova, V.; Djingova, R.; van Elteren, J.T.; Veber, M.; Kowalkowski, T.; Buszewski, B. Investigation of the solubilization of car-emitted pt, pd and rh in street dust and spiked soil samples. Int. J. Environ. Anal. Chem. 2008, 88, 499–512. [Google Scholar] [CrossRef]
- Yee, N.; Fein, J.B. Does metal adsorption onto bacterial surfaces inhibit or enhance aqueous metal transport? Column and batch reactor experiments on cd-Bacillus subtilis-quartz systems. Chem. Geol. 2002, 185, 303–319. [Google Scholar] [CrossRef]
- Brandl, H.; Lehmann, S.; Faramarzi, M.A.; Martinelli, D. Biomobilization of silver, gold, and platinum from solid waste materials by hcn-forming microorganisms. Hydrometallurgy 2008, 94, 14–17. [Google Scholar] [CrossRef]
- Maes, S.; Props, R.; Fitts, J.P.; Smet, R.D.; Vilchez-Vargas, R.; Vital, M.; Pieper, D.H.; Vanhaecke, F.; Boon, N.; Hennebel, T. Platinum recovery from synthetic extreme environments by halophilic bacteria. Environ. Sci. Technol. 2016, 50, 2619–2626. [Google Scholar] [CrossRef] [PubMed]
- Monsieurs, P.; Moors, H.; Van Houdt, R.; Janssen, P.J.; Janssen, A.; Coninx, I.; Mergeay, M.; Leys, N. Heavy metal resistance in Cupriavidus metallidurans ch34 is governed by an intricate transcriptional network. Biometals 2011, 24, 1133–1151. [Google Scholar] [CrossRef] [PubMed]
- Campbell, S.G. The Weathering of Platinum From Nuggets and Platinum Immobilisation by Cupriavidus metallidurans. Master’s Thesis, The University of Western Ontario, London, ON, Canada, 2012. [Google Scholar]
- McCloskey, D.; Palsson, B.O.; Feist, A.M. Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli. Mol. Syst. Biol. 2013, 9, 661. [Google Scholar] [CrossRef]
- Rensing, C.; Grass, G. Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol. Rev. 2003, 27, 197–213. [Google Scholar] [CrossRef]
- Rosenberg, B.; Van Camp, L.; Grimley, E.B.; Thomson, A.J. The inhibition of growth or cell division in Escherichia coli by different ionic species of platinum(iv) complexes. J. Biol. Chem. 1967, 242, 1347–1352. [Google Scholar] [PubMed]
- Vijayadeep, C.; Sastry, P. Effect of heavy metal uptake by E. Coli and Bacillus sps. J. Biorem. Biodegrad. 2014, 5, 238. [Google Scholar] [CrossRef]
- Brocklehurst, K.R.; Morby, A.P. Metal-ion tolerance in Escherichia Coli: Analysis of transcriptional profiles by gene-array technology. Microbiology 2000, 146, 2277–2282. [Google Scholar] [CrossRef] [PubMed]
- Nies, D.H. Microbial heavy-metal resistance. Appl. Microbiol. Biotechnol. 1999, 51, 730–750. [Google Scholar] [CrossRef] [PubMed]
- Giller, K.E.; Witter, E.; McGrath, S.P. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: A review. Soil Biol. Biochem. 1998, 30, 1389–1414. [Google Scholar] [CrossRef]
- Mergeay, M.; Nies, D.; Schlegel, H.G.; Gerits, J.; Charles, P.; Vangijsegem, F. Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy-metals. J. Bacteriol. 1985, 162, 328–334. [Google Scholar]
- Miles, A.A.; Misra, S.S.; Irwin, J.O. The estimation of the bactericidal power of the blood. Epidemiol. Infection 1938, 38, 732–749. [Google Scholar] [CrossRef]
- Wirth, R. Focused ion beam (fib) combined with sem and tem: Advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale. Chem. Geol. 2009, 261, 217–229. [Google Scholar] [CrossRef]
- Rosenberg, B. Some biological effects of platinum compounds. Platinum Met. Rev. 1971, 15, 42–51. [Google Scholar]
- Lengke, M.; Southam, G. Bioaccumulation of gold by sulfate-reducing bacteria cultured in the presence of gold (i)-thiosulfate complex. Geochim. Cosmochim. Acta 2006, 70, 3646–3661. [Google Scholar] [CrossRef]
- Fairbrother, L.; Etschmann, B.; Brugger, J.; Shapter, J.; Southam, G.; Reith, F. Biomineralization of gold in biofilms of Cupriavidus metallidurans. Environ. Sci. Technol. 2013, 47, 2628–2635. [Google Scholar] [CrossRef] [PubMed]
- Ahemad, M. Implications of bacterial resistance against heavy metals in bioremediation: A review. J. Inst. Integr. Omics Appl. Biotechnol. 2012, 3. [Google Scholar]
- Rashamuse, K.J.; Whiteley, C.G. Bioreduction of Pt(IV) from aqueous solution using sulphate-reducing bacteria. Appl. Microbiol. Biotechnol. 2007, 75, 1429–1435. [Google Scholar] [CrossRef] [PubMed]
- Reith, F.; Zammit, C.M.; Shar, S.S.; Etschmann, B.; Bottrill, R.; Southam, G.; Ta, C.; Kilburn, M.; Oberthur, T.; Ball, A.S.; et al. Biological role in the transformation of platinum-group mineral grains. Nat. Geosci. 2016, 9, 294. [Google Scholar] [CrossRef]
- Beveridge, T.J. Role of cellular design in bacterial metal accumulation and mineralization. Annu. Rev. Microbiol. 1989, 43, 147–171. [Google Scholar] [CrossRef] [PubMed]
- Frankel, R.B.; Bazylinski, D.A. Biologically induced mineralization by bacteria. Rev. Mineral. Geochem. 2003, 54, 95–114. [Google Scholar] [CrossRef]
- Reith, F.; Brugger, J.; Zammit, C.M.; Nies, D.H.; Southam, G. Geobiological cycling of gold: From fundamental process understanding to exploration solutions. Minerals 2013, 3, 367–394. [Google Scholar] [CrossRef]
Column Depth (mm) | E. coli (CFU mL−1) |
---|---|
100.00 | 2.23 × 104 ± 2.52 × 103 |
80.00 | 1.17 × 104 ± 1.53 × 103 |
60.00 | 7.00 × 103 ±1.73 × 103 |
40.00 | 4.67 × 103 ± 1.15 × 103 |
20.00 | 0.00 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shar, S.S.; Reith, F.; Shahsavari, E.; Adetutu, E.M.; Nurulita, Y.; Al-hothaly, K.; Haleyur, N.; Ball, A.S. Biomineralization of Platinum by Escherichia coli. Metals 2019, 9, 407. https://doi.org/10.3390/met9040407
Shar SS, Reith F, Shahsavari E, Adetutu EM, Nurulita Y, Al-hothaly K, Haleyur N, Ball AS. Biomineralization of Platinum by Escherichia coli. Metals. 2019; 9(4):407. https://doi.org/10.3390/met9040407
Chicago/Turabian StyleShar, Sahar S, Frank Reith, Esmaeil Shahsavari, Eric M Adetutu, Yuana Nurulita, Khalid Al-hothaly, Nagalakshmi Haleyur, and Andrew S. Ball. 2019. "Biomineralization of Platinum by Escherichia coli" Metals 9, no. 4: 407. https://doi.org/10.3390/met9040407
APA StyleShar, S. S., Reith, F., Shahsavari, E., Adetutu, E. M., Nurulita, Y., Al-hothaly, K., Haleyur, N., & Ball, A. S. (2019). Biomineralization of Platinum by Escherichia coli. Metals, 9(4), 407. https://doi.org/10.3390/met9040407