Extraction of Rare Earth Elements from Chloride Media with Tetrabutyl Diglycolamide in 1-Octanol Modified Carbon Dioxide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Phase Equilibrium of 1-Octanol at Room Temperature Liquid CO2
2.2. Extraction of Eu from 8 M HCl Varying Mole Percent 1-Octanol
2.3. Extraction of Eu from 8 M HCl Varying Temperature
2.4. Extraction of Eu in 8 M HCl Varying Pressure
2.5. Extraction with Varying Eu Concentration
2.6. Extraction of Eu from 8 M HCl with Varying TBDGA Concentration
2.7. Extraction of Eu from Varying HCl Concentration and Cl− Concentration Solutions
2.8. Extraction on Phosphor Leachate
2.9. Extraction on Magnet Leachate
3. Results and Discussion
3.1. Phase Equilibria of 1-Octanol in CO2
3.2. Effect of 1-Octanol Concentration on Eu Extraction Efficiency from Aqueous HCl Solution
3.3. The Effect of Temperature on 1-Octanol/TBDGA-Mediated Extraction of Eu from HCl Solution
3.4. The Effect of Pressure on Eu Extraction from HCl Media Using 1-Octanol/TBDGA in CO2
3.5. The Effect of Initial Eu Concentration in the HCl Phase on Extraction Efficiency
3.6. Effect of TBDGA Concentration on Eu Extraction Efficiency from 8 M HCl
3.7. Effect of Varying HCl Concentration and Cl− Concentration on Eu Extraction Efficiency from Chloride Solution
3.8. Comparison of Extraction into 1-Octanol Modified CO2 vs. 1-Octanol
3.9. Solubility of Ho-TBDGA in 1-Octanol-Modified CO2
3.10. Extraction from Phosphor Material Leachate
3.11. Extraction from Magnet Material Leachate
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Haxel, G.B.; Hedrick, J.B.; Orris, G.J.; Stauffer, P.H.; Hendley, J.W., II. Rare Earth Elements—Critical Resources for High Technology; USGS: Reston, VA, USA, 2002.
- Binnemans, K.; Jones, P.T.; Blanpain, B.; Van Gerven, T.; Pontikes, Y. Towards zero-waste valorization of rare-earth-containing industrial process residues: A critical review. J. Clean. Prod. 2015, 99, 17–38. [Google Scholar]
- Lian, H.; Hou, Z.; Shang, M.; Geng, D.; Zhang, Y.; Lin, J. Rare earth ions doped phosphors for improving efficiencies of solar cells. Energy 2013, 57, 270–283. [Google Scholar]
- Binnemans, K.; Jones, P.T.; Blanpain, B.; Van Gerven, T.; Yang, Y.; Walton, A.; Buchert, M. Recycling of rare earth: A critical review. J. Clean. Prod. 2013, 51, 1–22. [Google Scholar] [CrossRef]
- Humphries, M. Rare Earth Elements: The Global Supply Chain; Congressional Research Service: Washington, DC, USA, 2010.
- Gambogi, J. Mineral Commodity Summaries 2018—Rare Earths; USGS: Reston, VA, USA, 2018; p. 132.
- Schuler, D.; Bucher, M.; Liu, R.; Dittrich, S.; Cornelia, M. Study on Rare Earth and Their Recycling; The Greens European Free Alliance: Darmstadt, Germany, 2011. [Google Scholar]
- Bauer, D.; Diamond, D.; Li, J.; Sandalow, D.; Telleen, P.; Wanner, B. Critical Materials Strategy; U.S. Department of Energy: Washington, DC, USA, 2010; p. 104.
- Brunner, P.H. Urban Mining: A Contribution to Reindustrializing the City. J. Ind. Ecol. 2011, 15, 339–341. [Google Scholar]
- Chang, H.; Li, M.; Liu, Z.; Hu, Y.; Zhang, F. Study on separation of rare earth elements in complex system. J. Rare Earths 2010, 28, 116–119. [Google Scholar] [CrossRef]
- Wang, X.; Li, W.; Li, D. Extraction and stripping of rare earths using mixtures of acidic phosphorus-based reagents. J. Rare Earths 2011, 29, 412–415. [Google Scholar]
- Ministry of Environmental Protection. The Explanation of Compiling Emission Standards of Pollutants from Rare Earths Industry; Ministry of Environmental Protection: Beijing, China, 2009.
- Wu, Y.; Yin, X.; Zhang, Q.; Wang, W.; Mu, X. The recycling of rare earths form waste tricolor phosphors in fluorescent lamps: A review of processes and technologies. Resour. Conserv. Recycl. 2014, 88, 21–31. [Google Scholar]
- Tan, Q.; Li, J.; Zeng, X. Rare earth elements recovery from waste fluorescent lamps: A review. Crit. Rev. Environ. Sci. Technol. 2014, 45, 749–776. [Google Scholar] [CrossRef]
- Tunsu, C.; Ekberg, C.; Foreman, M.; Retegan, T. Studies on the solvent extraction of rare earth metals from fluorescent lamp waste using Cyanex 923. Solvent Extr. Ion Exch. 2014, 32, 650–668. [Google Scholar] [CrossRef]
- Innocenzi, V.; De Michelis, I.; Kopacek, B.; Veglio, F. Yttrium recovery from primary and secondary sources: A review of main hydrometallurgical processes. Waste Manag. 2014, 34, 1237–1250. [Google Scholar] [PubMed]
- Innocenzi, V.; Ferella, F.; De Michelis, I.; Veglio, F. Treatment of fluid catalytic cracking spent catalysts to recover lanthanum and cerium: Comparison between selective precipitation and solvent extraction. J. Ind. Eng. Chem. 2015, 24, 92–97. [Google Scholar] [CrossRef]
- Santos, V.; Celante, V.; Lelis, M.; Frietas, M. Hydrometallurgical method for recycling rare earth metals, cobalt, nickel, iron, and manganese from negative electrodes of spent Ni-MH mobile phone batteries. Quím. Nova 2014, 37, 22–26. [Google Scholar] [CrossRef]
- Yoon, H.-S.; Kim, C.-J.; Chung, K.W.; Kim, S.-D.; Kumar, J.R. Recovery process development for the rare earths from permanent magnet scraps leach liquors. J. Braz. Chem. Soc. 2015, 26, 1143–1151. [Google Scholar] [CrossRef]
- Borra, C.R.; Pontikes, Y.; Binnemans, K.; Van Gerven, T. Leaching of rare earths from bauxite residue (red mud). Miner. Eng. 2015, 76, 20–27. [Google Scholar] [CrossRef] [Green Version]
- Laintz, K.E.; Wai, C.M.; Yonker, C.R.; Smith, R.D. Solubility of fluorinated metal diethyldithiocarbamates in supercritical carbon dioxide. J. Supercrit. Fluids 1991, 4, 194–198. [Google Scholar] [CrossRef]
- Laintz, K.E.; Wai, C.M.; Yonker, C.R.; Smith, R.D. Extraction of metal ions from liquid and solid materials by supercritical carbon dioxide. Anal. Chem. 1992, 64, 2875–2878. [Google Scholar]
- Mchugh, M.; Krukonis, V. Supercritical Fluid Extraction (Butterworth-Heinemann Series in Chemical Engineering), 2nd ed.; Butterworth-Heinemann: Oxford, UK, 1994; p. 4. [Google Scholar]
- Mowafy, E.A.; Mohamed, D. Extraction behavior of trivalent lanthanides from nitric acid medium by selected structurally related diglycolamides as novel extractants. Sep. Purif. Technol. 2014, 128, 18–24. [Google Scholar] [CrossRef]
- Mincher, M.E.; Quach, D.L.; Liao, Y.J.; Mincher, B.J.; Wai, C.M. The Partitioning of Americium and the Lanthanides Using Tetrabutyldiglycolamide (TBDGA) in Octanol and in Ionic Liquid Solution. Solvent Extr. Ion Exch. 2012, 30, 735–747. [Google Scholar] [CrossRef]
- Cui, Y.; Yang, J.; Yang, G.; Xia, G.; Nie, Y.; Sun, G. Effect of diluents on extraction behavior of rare earth elements with N,N,N′,N′-tetrabutyl-3-oxy-glutaramide from hydrochloric acid. Hydrometallurgy 2012, 121, 16–21. [Google Scholar]
- Yang, J.; Cui, Y.; Sun, G.; Nie, Y.; Xia, G.; Zheng, G. Extraction of Sm(III) and Nd(III) with N,N,N′N′-tetrabutyl-3-oxy-diglycolamide from hydrochloric acid. J. Serb. Chem. Soc. 2013, 78, 93–100. [Google Scholar]
- Tian, G.; Liao, W.; Wai, C.M.; Rao, L. Extraction of Trivalent Lanthanides with Oxa-Diamides in Supercritical Fluid Carbon Dioxide. Ind. Eng. Chem. Res. 2008, 47, 2803–2807. [Google Scholar]
- Case, M.E.; Fox, R.V.; Baek, D.L.; Mincher, B.J.; Wai, C.M. Extraction behavior of selected rare earth metals from acidic chloride media using tetrabutyl diglycolamide. Solvent Extr. Ion Exch. 2017, 35, 496–506. [Google Scholar]
- King, M.B.; Mubarak, A.; Kim, J.D.; Bott, T.R. The mutual solubilities of water with supercritical and liquid carbon dioxides. J. Supercrit. Fluids 1992, 5, 296–302. [Google Scholar] [CrossRef]
Mole Percent 1-Octanol in CO2 | Concentration TBDGA in 1-Octanol Solution (M) | Flow Rate of the 1-Octanol TBDGA Solution (mL/min) |
---|---|---|
0.5 | 0.072 | 0.077 |
1 | 0.036 | 0.153 |
2 | 0.018 | 0.307 |
3 | 0.012 | 0.460 |
Eu:TBDGA Mole Ratio | Eu Solution in 8 M HCl (mg/kg) |
---|---|
0.2 | 1000 |
1 | 5000 |
5 | 25,000 |
10 | 50,000 |
TBDGA:Eu Mole Ratio | Concentration TBDGA in 1-Octanol (M) |
---|---|
1 | 0.00281 |
0.4 | 0.00701 |
0.2 | 0.0140 |
0.1 | 0.0281 |
Aqueous Solution | Percent Extraction |
---|---|
5 M NaCl, 0.01 M HCl | 0% E |
5 M HCl | 0% E |
6 M HCl | 0% E |
7 M HCl | 0% E |
8 M HCl | 95 ± 2% E |
10 M HCl | 97 ± 2% E |
11 M HCl | 99 ± 3% E |
Identifier | 1-Octanol | CO2 Modified with 1-Octanol |
---|---|---|
Percent Extracted Eu | 94% (42%) | 95% |
Moles Eu:Moles TBDGA | ~8.0 × 10−5 (~0.2) | ~0.20 |
mL 1-octanol:mL aqueous | 1.0 | 0.462 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Case, M.; Fox, R.; Baek, D.; Wai, C. Extraction of Rare Earth Elements from Chloride Media with Tetrabutyl Diglycolamide in 1-Octanol Modified Carbon Dioxide. Metals 2019, 9, 429. https://doi.org/10.3390/met9040429
Case M, Fox R, Baek D, Wai C. Extraction of Rare Earth Elements from Chloride Media with Tetrabutyl Diglycolamide in 1-Octanol Modified Carbon Dioxide. Metals. 2019; 9(4):429. https://doi.org/10.3390/met9040429
Chicago/Turabian StyleCase, Mary, Robert Fox, Donna Baek, and Chien Wai. 2019. "Extraction of Rare Earth Elements from Chloride Media with Tetrabutyl Diglycolamide in 1-Octanol Modified Carbon Dioxide" Metals 9, no. 4: 429. https://doi.org/10.3390/met9040429
APA StyleCase, M., Fox, R., Baek, D., & Wai, C. (2019). Extraction of Rare Earth Elements from Chloride Media with Tetrabutyl Diglycolamide in 1-Octanol Modified Carbon Dioxide. Metals, 9(4), 429. https://doi.org/10.3390/met9040429