Analysis of Heat Insulation for Coil in the Electromagnetic Induction Controlled Automated Steel-Teeming System
Abstract
:1. Introduction
2. Research Methods
2.1. Numerical Simulation
2.1.1. Model and Mesh
2.1.2. Assumption
2.1.3. Governing Equations
2.1.4. Physical Parameters
2.1.5. Boundary Conditions
2.2. Experiment
2.3. Validation of Numerical Simulation
3. Results and Discussion
3.1. Simulation Study on Effect of Heat Insulation Material Thickness
3.2. Simulation Study on the Effect of Heat Insulation Material Arrangement Methods
3.3. Simulation Study on the Effect of Heat Insulation Materials
3.4. Experimental Study on Different Heat Insulation Methods of Induction Coil
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, L.F.; Thomas, B.G. State of the art in evaluation and control of steel cleanliness. ISIJ Int. 2003, 43, 271–291. [Google Scholar] [CrossRef]
- Deng, Z.Y.; Glaser, B.; Bombeck, M.A.; Sichen, D. Effects of temperature and holding time on the sintering of ladle filler sand with liquid steel. Steel Res. Int. 2016, 87, 921–929. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Todoroki, H.; Kirihara, F.; Nishijima, W.; Komatsubara, H. Sintering behavior of silica filler sands for sliding nozzle in a ladle. ISIJ Int. 2014, 54, 1823–1829. [Google Scholar] [CrossRef]
- Yang, J. A Device for Preventing Nozzle Sand Entering into Continuous Casting Tundish. Chinese Patent Appl. 201410634602.2, 27 October 2014. [Google Scholar]
- Liu, W.D. A Method for Eliminating Nozzle Sand Used in Ladle. Chinese Patent Appl. 201110122547.5, 12 May 2011. [Google Scholar]
- Liu, Z.Y.; Liu, G.X.; Sun, H.Y.; Song, L.F.; Chen, Z.Y.; Chen, X.L.; Wang, D.; Fan, S.W. External Connection Device for Big Ladle Drainage and Big Ladle Drainage Method of External Connection Device. Chinese Patent Appl. 201510972071.2, 2 December 2015. [Google Scholar]
- Li, D.J.; Wang, Q.; Liu, X.A.; Gao, A.; Wang, X.B.; Dong, J.; Marukawa, M.K.; He, J.C. A new steel teeming technology by using electromagnetic induction heating system in ladle. J. Iron Steel Res. Int. 2012, 19, 766–770. [Google Scholar] [CrossRef]
- Wang, Q.; Li, D.J.; Liu, X.A.; Wang, X.B.; Dong, J.; He, J.C. Effects of steel teeming in new slide gate system with electromagnetic induction. J. Iron Steel Res. Int. 2015, 22, 30–35. [Google Scholar] [CrossRef]
- Wang, Q.; He, M.; Zhu, X.W.; Li, X.L.; Wu, C.L.; Dong, S.L.; Liu, T. Study and development on numerical simulation for application of electromagnetic field technology in metallurgical processes. Acta Metall. Sin. 2018, 54, 228–246. [Google Scholar] [CrossRef]
- He, M.; Wang, Q.; Liu, X.A.; Shi, C.Y.; Liu, T.; He, J.C. Analysis of power supply heating effect during high temperature experiments based on the electromagnetic steel teeming technology. High Temp. Mater. Proc. 2017, 36, 441–445. [Google Scholar] [CrossRef]
- He, J.C.; Marukawa, K.; Wang, Q. Ladle with Steel Heating and Tapping Set and Its Tapping Method. Chinese Patent Appl. 200610045875.9, 2 August 2006. [Google Scholar]
- Suzuki, H.; Kanno, M.; Maeda, T. Effects of small amounts of additive elements on softening temperature and electrical resistivity of cold-worked pure copper. J. Jpn. Inst. Met. 1983, 47, 794–801. [Google Scholar] [CrossRef]
- He, M.; Li, X.L.; Liu, X.A.; Zhu, X.W.; Liu, T.; Wang, Q. Coil Ambient Temperature and Its Influence on the Formation of Blocking Layer in the Electromagnetic Induction-Controlled Automated Steel-Teeming System. Acta Metall. Sin-Engl. 2019, 32, 391–400. [Google Scholar] [CrossRef]
- Liu, X.A.; Wang, Q.; Liu, T.; He, J.C. Analysis of working temperature of coil used in electromagnetic induction controlled automatic steel-teeming system. J. Northeast. Univ. 2014, 35, 51–55. [Google Scholar] [CrossRef]
- Cheng, E.J.; Sakamoto, J.; Salvador, J.; Wang, H.; Maloney, R.; Thompson, T. Cast-in-place, ambiently-dried, silica-based, high-temperature insulation. Acta Mater. 2017, 127, 450–462. [Google Scholar] [CrossRef]
- Yuan, K.K.; Wang, X.Q.; Liu, H.J.; Feng, C.; Liu, B.X.; Cai, N.N.; Lin, X.J.; Zhi, L.Y.; Zhang, G.H.; Xu, D. Formation of barium zirconate fibers for high-temperature thermal insulation applications. J. Am. Ceram. Soc. 2016, 99, 2913–2919. [Google Scholar] [CrossRef]
- Salomão, R.; Bôas, M.V.; Pandolfelli, V. Porous alumina-spinel ceramics for high temperature applications. Ceram. Int. 2011, 37, 1393–1399. [Google Scholar] [CrossRef]
- Xie, T.; He, Y.L.; Hu, Z.J. Theoretical study on thermal conductivities of silica aerogel composite insulating material. Int. J. Heat Mass Transf. 2013, 58, 540–552. [Google Scholar] [CrossRef]
- Ruckdeschel, P.; Philipp, A.; Retsch, M. Understanding thermal insulation in porous, particulate materials. Adv. Funct. Mater. 2017, 27, 1702256:1–1702256:11. [Google Scholar] [CrossRef]
- Shang, L.; Wu, D.F.; Pu, Y.; Wang, H.T.; Gao, Z.T. Experimental research on thermal insulation performance of lightweight ceramic material in oxidation environment up to 1700 °C. Ceram. Int. 2016, 42, 3351–3360. [Google Scholar] [CrossRef]
- Lee, J.K.; Gould, G.L.; Rhine, W. Polyurea based aerogel for a high performance thermal insulation material. J. Sol-Gel Sci. Technol. 2009, 49, 209–220. [Google Scholar] [CrossRef]
- Akamine, S.; Fujita, M. Controlling heat radiation for development of high-temperature insulating materials. J. Eur. Ceram. Soc. 2014, 34, 4031–4036. [Google Scholar] [CrossRef]
- Lee, S.C.; Cunnington, G.R. Conduction and radiation heat transfer in high-porosity fiber thermal insulation. J. Thermophys. Heat Transf. 2012, 14, 121–136. [Google Scholar] [CrossRef]
- Dai, L.; Feng, J.; Wang, Y.W. High-Temperature-Resisting Heat-Insulation Coating as well as Preparation Method and Application Thereof. Chinese Patent Appl. 201410004677.2, 6 January 2014. [Google Scholar]
- He, Y.L.; Xie, T. Advances of thermal conductivity models of nanoscale silica aerogel insulation material. Appl. Therm. Eng. 2015, 81, 28–50. [Google Scholar] [CrossRef]
Parameter | Value/mm |
---|---|
Diameter and height of top circular truncated cone | 128, 160 |
Diameter and height of middle circular truncated cone | 10, 050 |
Diameter and height of bottom circular truncated cone | 50, 140 |
Inner diameter of induction coil | 235 |
Height of induction coil | 150 |
Material | Density kg/m3 | Specific Heat Capacity J/(kg·°C) | Thermal Conductivity W/(m·°C) | |||
---|---|---|---|---|---|---|
400 °C | 600 °C | 800 °C | 1000 °C | |||
Nozzle brick | 3040 | 1130 | 2.9 | |||
Fe-C alloy | 7830 | 550 | 24 | |||
Induction coil (copper) | 8300 | 385 | 401 | |||
Air | 1.165 | 1005 | 0.052 | 0.062 | 0.072 | 0.081 |
Mullite fiber blanket | 128 | 800 | 0.09 | 0.13 | 0.176 | 0.22 |
Alumina fiber aerogel | 330 | 500 | 0.02 | 0.025 | 0.042 | 0.055 |
Heat insulation coating | 1200 | 500 | 0.038 | 0.049 | 0.061 | 0.068 |
Zirconium silicate porous felt | 430 | 800 | 0.035 | 0.045 | 0.055 | 0.065 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.-L.; He, M.; Zhu, X.-W.; Wang, Q.-W.; Wang, Q. Analysis of Heat Insulation for Coil in the Electromagnetic Induction Controlled Automated Steel-Teeming System. Metals 2019, 9, 434. https://doi.org/10.3390/met9040434
Li X-L, He M, Zhu X-W, Wang Q-W, Wang Q. Analysis of Heat Insulation for Coil in the Electromagnetic Induction Controlled Automated Steel-Teeming System. Metals. 2019; 9(4):434. https://doi.org/10.3390/met9040434
Chicago/Turabian StyleLi, Xian-Liang, Ming He, Xiao-Wei Zhu, Qing-Wei Wang, and Qiang Wang. 2019. "Analysis of Heat Insulation for Coil in the Electromagnetic Induction Controlled Automated Steel-Teeming System" Metals 9, no. 4: 434. https://doi.org/10.3390/met9040434
APA StyleLi, X. -L., He, M., Zhu, X. -W., Wang, Q. -W., & Wang, Q. (2019). Analysis of Heat Insulation for Coil in the Electromagnetic Induction Controlled Automated Steel-Teeming System. Metals, 9(4), 434. https://doi.org/10.3390/met9040434