Effects of MoO3 + C on Crystallization and Radiative Heat Transfer of CaO–SiO2–B2O3-Based Glassy Fluoride-Free Mold Fluxes
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Sample Preparation
2.2. Radiation Experiment
2.3. Crystallization Experiments
3. Results and Discussion
3.1. Microstructure of Samples
3.2. Radiation Properties of Samples
3.3. Crystallization of Samples
4. Conclusions
- (1)
- Particles of MoB, Mo2BC and Mo2C with very high melting temperatures could be generated by carbon reduction in mold fluxes. The particles collided and agglomerated into clusters.
- (2)
- Transmittances in all wavenumber ranges were heavily reduced by the introduction of Mo-containing particles. With the addition of Mo-containing particles, the calculated extinction coefficients were enhanced.
- (3)
- Both the Mo-free sample and the sample with MoO3 = 2% precipitated CaSiO3 crystals. The crystallization of fluxes was promoted by the introduction of Mo-containing particles.
- (4)
- The crystallization mechanism for the Mo-free sample is mainly surface nucleation and growth. The introduction of Mo-containing particles facilitates heterogeneous nucleation, and the crystallization mechanism changes from surface nucleation and growth to internal nucleation and growth.
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Mills, K.C.; Fox, A.B. The Role of Mould Fluxes in Continuous Casting-So Simple yet So Complex. ISIJ Int. 2007, 43, 1479–1486. [Google Scholar] [CrossRef]
- Hanao, M.; Kawamoto, M.; Yamanaka, A. Influence of mold flux on initial solidification of hypo-peritectic steel in a continuous casting mold. ISIJ Int. 2012, 52, 1310–1319. [Google Scholar] [CrossRef]
- Cho, J.W.; Emi, T.; Shibata, H.; Suzuki, M. Heat transfer across mold flux film in mold during initial solidification in continuous casting of steel. ISIJ Int. 1998, 38, 834–842. [Google Scholar] [CrossRef]
- Cho, J.; Shibata, H.; Emi, T.; Suzuki, M. Radiative heat transfer through mold flux film during initial solidification in continuous casting of steel. ISIJ Int. 1998, 38, 268–275. [Google Scholar] [CrossRef]
- Nakada, H.; Susa, M.; Seko, Y.; Hayashi, M.; Nagata, K. Mechanism of heat transfer reduction by crystallization of mold flux for continuous casting. ISIJ Int. 2008, 48, 446–453. [Google Scholar] [CrossRef]
- Tsutsumi, K.; Nagasaka, T.; Hino, M. Surface roughness of solidified mold flux in continuous casting process. ISIJ Int. 1999, 39, 1150–1159. [Google Scholar] [CrossRef]
- Yamauchi, A.; Sorimachi, K.; Sakuraya, T.; Fujii, T. Heat transfer between mold and strand through mold flux film in continuous casting of steel. ISIJ Int. 1993, 33, 140–147. [Google Scholar] [CrossRef]
- Taylor, R.; Mills, K.C. Physical properties of casting powders: Part 3. Thermal conductivities of casting powders. Ironmak. Steelmak. 1988, 15, 187–194. [Google Scholar]
- Susa, M.; Li, F.; Nagata, K. Determination of refractive index and absorption coefficient of iron- oxide-bearing slags. Metall. Trans. B 1992, 23, 331–337. [Google Scholar] [CrossRef]
- Ozawa, S.; Susa, M.; Goto, T.; Endo, R.; Mills, K.C. Lattice and radiation conductivities for mould fluxes from the perspective of degree of crystallinity. ISIJ Int. 2006, 46, 413–419. [Google Scholar] [CrossRef]
- Hanao, M. Influence of basicity of mold flux on its crystallization rate. ISIJ Int. 2013, 53, 648–654. [Google Scholar] [CrossRef]
- Shilov, A.; Holappa, L. Mass Spectrometric Measurements of the Gas Phase Composition over Mould Powder Samples in Vacuum Conditions at 50–1550 °C. Steel Res. Int. 2006, 77, 803–808. [Google Scholar] [CrossRef]
- Nakada, H.; Nagata, K. Crystallization of CaO–SiO2–TiO2 slag as a candidate for fluorine free mold flux. ISIJ Int. 2006, 46, 441–449. [Google Scholar] [CrossRef]
- Wen, G.; Sridhar, S.; Tang, P.; Qi, X.; Liu, Y. Development of fluoride-free mold powders for peritectic steel slab casting. ISIJ Int. 2007, 47, 1117–1125. [Google Scholar] [CrossRef]
- Wang, Z.; Shu, Q.; Chou, K. Crystallization Kinetics of CaO-SiO2 (CaO/SiO2 = 1)-TiO2-10 mass% B2O3 Glassy Slag by Differential Thermal Analysis. ISIJ Int. 2015, 55, 709–716. [Google Scholar] [CrossRef]
- Wang, Q.; Lu, Y.J.; He, S.P.; Mills, K.C.; Li, Z.S. Formation of TiN and Ti (C, N) in TiO2 containing, fluoride free, mould fluxes at high temperature. Ironmak. Steelmak. 2011, 38, 297–301. [Google Scholar] [CrossRef]
- Choi, S.Y.; Lee, D.H.; Shin, D.W.; Choi, S.Y.; Cho, J.W.; Park, J.M. Properties of F-free glass system as a mold flux: Viscosity, thermal conductivity and crystallization behavior. J. Non-Cryst. Solids 2004, 345–346, 157–160. [Google Scholar] [CrossRef]
- Fox, A.B.; Mills, K.C.; Lever, D.; Bezerra, C.; Valadares, C.; Unamuno, I.; Laraudogoitia, J.J.; Gisby, J. Development of fluoride-free fluxes for billet casting. ISIJ Int. 2005, 45, 1051–1058. [Google Scholar] [CrossRef]
- Klug, J.L.; Pereira, M.M.; Nohara, E.L.; Freitas, S.L.; Ferreira, G.T.; Jung, D. F-free mould powders for low carbon steel slab casting–technological parameters and industrial trials. Ironmak. Steelmak. 2016, 43, 559–563. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, W.; Wei, J.; Zhou, K. Melting and heat transfer behavior of fluorine-free mold fluxes for casting medium carbon steels. ISIJ Int. 2015, 55, 821–829. [Google Scholar] [CrossRef]
- Shu, Q.; Wang, Z.; Klug, J.L.; Chou, K.; Scheller, P.R. Effects of B2O3 and TiO2 on Crystallization Behavior of Slags in Al2O3–CaO–MgO–Na2O–SiO2 System. Steel Res. Int. 2013, 84, 1138–1145. [Google Scholar] [CrossRef]
- Holand, W.; Beall, G.H. Glass Ceramic Technology; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Yoon, D.W.; Cho, J.W.; Kim, S.H. Scattering Effect of Iron Metallic Particles on the Extinction Coefficient of CaO-SiO2-B2O3 -Na2O-Fe2O3 -CaF2, Glasses. Metall. Mater. Trans. B 2016, 47, 1–8. [Google Scholar] [CrossRef]
- Yoon, D.W.; Cho, J.W.; Kim, S.H. Controlling radiative heat transfer across the mold flux layer by the scattering effect of the borosilicate mold flux system with metallic iron. Metall. Mater. Trans. B 2017, 48, 1951–1961. [Google Scholar] [CrossRef]
- Spear, K.E.; Liao, P.K. The B−Mo (Boron-Molybdenum) system. J. Phase Equilib. 1988, 9, 457–466. [Google Scholar] [CrossRef]
- Predel, B. C-Mo (Carbon-Molybdenum). In B-Ba–C-Zr. Landolt-Börnstein-Group IV Physical Chemistry (Numerical Data and Functional Relationships in Science and Technology); Madelung, O., Ed.; Springer: Berlin/Heidelberg, Germany, 1992; Volume 5b. [Google Scholar]
- Rudy, E.; Benesovsky, F.; Toth, L. Studies of the ternary systems of the group Va and VIa metals with boron and carbon. Z. Metallkd. 1963, 54, 345–353. [Google Scholar]
- Abo-Naf, S.M. FTIR and UV–VIS optical absorption spectra of gamma-irradiated MoO3-doped lead borate glasses. J. Non-Crystall. Solids 2012, 358, 406–413. [Google Scholar] [CrossRef]
- Diao, J.; Xie, B.; Xiao, J.; Ji, C. Radiative heat transfer in transition metal oxides contained in mold fluxes. ISIJ Int. 2009, 49, 1710–1714. [Google Scholar] [CrossRef]
- Mie, G. Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions. Ann. Phys. 1908, 25, 377–445. [Google Scholar] [CrossRef]
- Kowalski, M.; Spencer, P.J.; Neuschutz, D. Phase diagrams. In ‘Slag Atlas’; Verlag Stahleisen GmbH: Duesseldorf, Germany, 1995; Volume 99, p. 119. [Google Scholar]
- Zanotto, E.D.; Fokin, V.M. Recent studies of internal and surface nucleation in silicate glasses. Philos. Trans. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci. 2003, 361, 591–613. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Shu, Q.; Chou, K. Crystallization kinetics and structure of mold fluxes with SiO2 being substituted by TiO2 for casting of titanium-stabilized Stainless Steel. Metall. Mater. Trans. B 2013, 44, 606–613. [Google Scholar] [CrossRef]
- Kurz, W.; Fisher, D.J. Fundamentals of Solidification; Trans Tech Publications: Aedermannsdorf, Switzerland, 1986. [Google Scholar]
- Turnbull, D.; Vonnegut, B. Nucleation catalysis. Ind. Eng Chem. 1952, 44, 1292–11298. [Google Scholar] [CrossRef]
- Bramfitt, B.L. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron. Metall. Trans. 1970, 1, 1987–1995. [Google Scholar] [CrossRef]
- Ray, C.S.; Huang, W.; Day, D.E. Crystallization kinetics of a lithia–silica glass: Effect of sample characteristics and thermal analysis measurement techniques. J. Am. Ceram. Soc. 1991, 74, 60–66. [Google Scholar] [CrossRef]
Sample No. | Chemical Composition (wt. %) | ||||||
---|---|---|---|---|---|---|---|
CaO | SiO2 | B2O3 | Na2O | Al2O3 | MoO3 | C | |
1 | 39.000 | 39.000 | 10.00 | 8.0 | 4.0 | 0 | 0.0 |
2 | 38.025 | 38.025 | 9.75 | 7.8 | 3.9 | 2 | 0.5 |
3 | 37.050 | 37.050 | 9.50 | 7.6 | 3.8 | 4 | 1.0 |
4 | 36.075 | 36.075 | 9.25 | 7.4 | 3.7 | 6 | 1.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shu, Q.; Li, Q.; Fabritius, T. Effects of MoO3 + C on Crystallization and Radiative Heat Transfer of CaO–SiO2–B2O3-Based Glassy Fluoride-Free Mold Fluxes. Metals 2019, 9, 516. https://doi.org/10.3390/met9050516
Shu Q, Li Q, Fabritius T. Effects of MoO3 + C on Crystallization and Radiative Heat Transfer of CaO–SiO2–B2O3-Based Glassy Fluoride-Free Mold Fluxes. Metals. 2019; 9(5):516. https://doi.org/10.3390/met9050516
Chicago/Turabian StyleShu, Qifeng, Qiangqi Li, and Timo Fabritius. 2019. "Effects of MoO3 + C on Crystallization and Radiative Heat Transfer of CaO–SiO2–B2O3-Based Glassy Fluoride-Free Mold Fluxes" Metals 9, no. 5: 516. https://doi.org/10.3390/met9050516
APA StyleShu, Q., Li, Q., & Fabritius, T. (2019). Effects of MoO3 + C on Crystallization and Radiative Heat Transfer of CaO–SiO2–B2O3-Based Glassy Fluoride-Free Mold Fluxes. Metals, 9(5), 516. https://doi.org/10.3390/met9050516