Applications of High-Pressure Technology for High-Entropy Alloys: A Review
Abstract
:1. Introduction
2. High-Entropy Alloys (HEAs)
2.1. Concept
2.2. Four Core Effects
2.2.1. High-Entropy Effects
2.2.2. Sluggish Diffusion
2.2.3. Severe Lattice Distortion
2.2.4. Cocktail Effect
2.3. Research Status
3. High Pressure
4. HEAs under High Pressure
4.1. Dynamic High Pressure
4.2. Diamond Anvil Cells
4.3. High-Pressure Torsion
4.4. Hexahedron Anvils Press
5. Future Work
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, J.; Niu, S.Z.; Guo, T.; Kou, H.C.; Li, J.S. The FCC to BCC phase transformation kinetics in an Al0.5CoCrFeNi high entropy alloy. J. Alloy. Compd. 2017, 710, 144–150. [Google Scholar] [CrossRef]
- Otto, F.; Dlouhý, A.; Pradeep, K.G.; Kubenov, M.; Raabe, D.; Eggeler, G.; George, E.P. Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures. Acta Mater. 2016, 112, 40–52. [Google Scholar] [CrossRef] [Green Version]
- Stepanova, N.D.; Yurchenko, N.Y.; Panina, E.S.; Tikhonovsky, M.A.; Zherebtsov, S.V. Precipitation-strengthened refractory Al0.5CrNbTi2V0.5 high entropy alloy. Mater. Lett. 2017, 188, 162–164. [Google Scholar] [CrossRef]
- Yeh, J.W.; Chen, S.K.; Lin, S.J. Nano structured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Cantor, B.; Chang, I.T.H.; Knight, P. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2004, 375, 213–218. [Google Scholar] [CrossRef]
- Deng, Y.; Asan, C.C.; Pradeepk, G. Design of a twinning-induced plasticity high entropy alloy. Acta Mater. 2015, 94, 124–133. [Google Scholar] [CrossRef]
- Li, Z.; Pradeepk, G.; Deng, Y. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature 2016, 534, 227–230. [Google Scholar] [CrossRef]
- Senkov, O.N.; Wilks, G.B.; Miracle, D.B.; Chuang, C.P.; Liaw, P.K. Refractory high-entropy alloys. Intermetallics 2010, 18, 1758–1765. [Google Scholar] [CrossRef]
- Yurchenko, N.Y.; Stepanov, N.D.; Shaysultanov, D.G. Effect of Al content on structure and mechanical properties of the AlxCrNbTiVZr (x = 0; 0.25; 0.5; 1) high-entropy alloys. Mater. Charact. 2016, 121, 125–134. [Google Scholar] [CrossRef]
- Stepanov, N.D.; Yurchenko, N.Y.; Shaysultanov, D.G. Effect of Al on structure and mechanical properties of AlxNbTiVZr (x = 0, 0.5, 1, 1.5) high entropy alloys. J. Mater. Sci. Technol. 2015, 31, 1184–1193. [Google Scholar] [CrossRef]
- Ashby, M.F. Materials Selection in Mechanical Design; Elsevier: Oxford, UK, 2011. [Google Scholar]
- Yeh, J.W. Recent progress in high-entropy alloys. Ann. Chim. Sci. Mater. 2016, 31, 48–633. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, X.; Liaw, P.K. Alloy design and properties optimization of high-entropy alloys. J. Miner. Met. Mater. Soc. 2012, 64, 830–838. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Y.J.; Lin, J.P.; Chen, G.L.; Liaw, P.K. Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 2008, 10, 534–538. [Google Scholar] [CrossRef]
- Tsai, K.Y.; Tsai, M.H.; Yeh, J.W. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys. Acta Mater. 2013, 61, 4887–4897. [Google Scholar] [CrossRef]
- Juan, C.C.; Hsu, C.Y.; Tsai, C.W. On microstructure and mechanical performance of AlCoCrFeMo0.5Nix high-entropy alloys. Intermetallics 2013, 32, 401–407. [Google Scholar] [CrossRef]
- Ranganathan, S. Alloyed pleasures: Multimetallic cocktails. Curr. Sci. 2003, 85, 1404–1406. [Google Scholar]
- Takeuchi, A.; Amiya, K.; Wada, T. High-entropy alloys with a hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams. J. Miner. Met. Mater. Soc. 2014, 66, 1984–1992. [Google Scholar] [CrossRef]
- Chen, J.; Niu, P.; Liu, Y. Effect of Zr content on microstructure and mechanical properties of AlCoCrFeNi high entropy alloy. J. Mater. Des. 2016, 94, 39–44. [Google Scholar] [CrossRef]
- Hsu, C.Y.; Yeh, J.W.; Chen, S.K. Wear resistance and high-temperature compression strength of fcc CuCoNiCrAl0.5Fe alloy with boron addition. Metall. Mater. Trans. A 2004, 35, 1465–1469. [Google Scholar] [CrossRef]
- Chen, M.; Lin, S.; Yeh, J.W. Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al0.5CoCrCuFeNi high-entropy alloy. Metall. Mater. Trans. A 2006, 37, 1363–1369. [Google Scholar] [CrossRef]
- Hsu, C.Y.; Sheu, T.S.; Yeh, J.W. Effect of iron content on wear behavior of AlCoCrFexMo0.5Ni high-entropy alloys. Wear 2010, 268, 653–659. [Google Scholar] [CrossRef]
- Zhu, J.M.; Zhang, H.F.; Fu, H.M. Microstructures and compressive properties of multicomponent AlCoCrCuFeNiMox alloys. J. Alloy. Compd. 2010, 497, 52–56. [Google Scholar] [CrossRef]
- Takeuchi, A.; Chen, N.; Wada, T. Pd20Pt20Cu20Ni20P20 high-entropy alloy as a bulk metallic glass in the centimeter. Intermetallics 2011, 19, 1546–1554. [Google Scholar] [CrossRef]
- Gao, X.Q.; Zhao, K.; Ke, H.B. High mixing entropy bulk metallic glasses. J. Non-Cryst. Solids 2011, 357, 3557–3560. [Google Scholar] [CrossRef]
- Ma, L.; Wang, L.; Zhang, T. Bulk glass formation of Ti-Zr-Hf-Cu-M (M=Fe, Co, Ni) alloys. Mater. Trans. 2002, 43, 277–280. [Google Scholar] [CrossRef]
- Christian, J.W.; Mahajan, S. Deformation twinning. Prog. Mater. Sci. 1995, 39, 1–157. [Google Scholar] [CrossRef]
- Jain, J.; Poole, W.J.; Sinclair, C.W.; Gharghouri, M.A. Reducing the tension- compression yield asymmetry in a Mg-8Al-0.5Zn alloy via precipitation. Scr. Mater. 2010, 62, 301–304. [Google Scholar] [CrossRef]
- Wang, H.; Lee, S.Y.; Gharghouri, M.A.; Wu, P.D.; Yoon, S.G. Deformation behavior of Mg-8.5wt.%Al alloy under reverse loading investigated by in-situ neutron diffraction and elastic viscoplastic self-consistent modeling. Acta Mater. 2016, 107, 404–414. [Google Scholar] [CrossRef] [Green Version]
- Murty, B.S.; Yeh, J.W.; Ranganathan, A.S. Chapter 2—High-entropy alloys: Basic concepts. High. Entropy Alloy. 2014, 13–35. [Google Scholar]
- Gludovatz, B.; Hohenwarter, A.; Catoor, D. A fracture-resistant high-entropy alloy for cryogenic applications. Science 2014, 345, 1153–1158. [Google Scholar] [CrossRef] [Green Version]
- Chuang, M.H.; Tsai, M.H.; Wang, W.R. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater. 2011, 59, 6308–6317. [Google Scholar] [CrossRef]
- Zhang, F.; Wu, Y.; Lou, H.B.; Zeng, Z.D.; Prakapenka, V.B.; Greenberg, E.; Ren, Y.; Yan, J.Y.; Okasinski, J.S.; Liu, X.J.; et al. Polymorphism in a high-entropy alloy. Nat. Commun. 2017, 8, 15687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miracle, D.B.; Senkov, O.N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zuo, T.T.; Tang, Z.; Gao, M.C.; Dahmen, K.A.; Liaw, P.K.; Lu, Z.P. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 2014, 61, 1–93. [Google Scholar] [CrossRef]
- Porter, D.A.; Easterling, K.E.; Sherif, M.Y. Phase Transformations in Metals Andalloys; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Hemley, R.J.; Ashcroft, N.W. The revealing role of pressure in the condensed matter sciences. Phys. Today 1998, 8, 26–27. [Google Scholar] [CrossRef]
- Bundy, F.P.; Hall, H.T.; Strong, H. Man-made diamonds. Nature 1955, 176, 51–55. [Google Scholar] [CrossRef]
- Chen, K.W.; Jian, S.R.; Wei, P.J. A study of the relationship between semi-circular shear bands and pop-ins induced by indentation in bulk metallic glasses. Intermetallics 2010, 18, 1572–1578. [Google Scholar] [CrossRef]
- Faupel, F.; Rätzke, K.; Ehmler, H. Diffusion in metallic glasses and supercooled melts. Rev. Mod. Phys. 2000, 644, 237–280. [Google Scholar] [CrossRef]
- Zhang, F.; Lou, H.B.; Cheng, B.Y.; Zeng, Z.D.; Zeng, Q.S. High-pressure induced phase transitions in high-entropy alloys: A review. Entropy 2019, 21, 239. [Google Scholar] [CrossRef]
- Buras, B.; Olsen, J.S.; Gerward, L. X-ray energy-dispersive diffractometry using synchrotron radiation. J. Appl. Crystallogr. 1977, 10, 431–438. [Google Scholar] [CrossRef]
- Dubrovinsky, L.; Dubrovinskaia, N.; Bykova, E. The most incompressible metal osmium at static pressures above 750 gigapascals. Nature 2015, 525, 226. [Google Scholar] [CrossRef] [PubMed]
- Bridgman, P.W. Effects of high shearing stress combined with high hydrostatic pressure. Phys. Rev. 1935, 48, 825–847. [Google Scholar] [CrossRef]
- Zhilyaev, A.P.; Langdon, T.G. Using high-pressure torsion for metal processing: Fundamentals and applications. Prog. Mater. Sci. 2008, 53, 893–979. [Google Scholar] [CrossRef]
- Yao, Y.G.; Huang, Z.N.; Xie, P.F.; Lacey, S.D.; Jacob, R.J.; Xie, H.; Chen, F.; Nie, A.; Pu, T.; Rehwoldt, M. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 2018, 359, 1489–1494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, P.F.; Zhang, L.J.; Ning, J.L. Pressure-induced phase transitions in HoDyYGdTb high-entropy alloy. Mater. Lett. 2014, 196, 137–140. [Google Scholar] [CrossRef]
- Francis, B. Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300 K. J. Geophys. Res. Solid Earth 1978, 83, 1258–1263. [Google Scholar]
- Dubrovinsky, L.; Dubrovinskaia, N.; Crichton, W.A.; Mikhaylushkin, A.S.; Simak, S.I.; Abrikosov, I.A.; Almeida, J.S.; Ahuja, R.; Luo, W.; Johansson, B. Noblest of all metals is structurally unstable at high pressure. Phys. Rev. Lett. 2007, 98, 045503. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.X.; Zhao, S.J.; Jin, K.; Bei, H.; Popov, D.; Park, C.; Neuefeind, J.C.; Weber, W.J.; Zhang, Y.W. Pressure-induced fcc to hcp phase transition in Ni-based high entropy solid solution alloys. Appl. Phys. Lett. 2017, 110, 011902. [Google Scholar] [CrossRef]
- Takahashi, T.; Bassett, W.A. High-pressure polymorph of iron. Science 1964, 145, 483–486. [Google Scholar] [CrossRef] [PubMed]
- Saxena, S.K.; Shen, G.; Lazor, P. Experimental evidence for a new iron phase and implications for earth’s core. Science 1993, 260, 1312–1314. [Google Scholar] [CrossRef] [PubMed]
- Andrault, D.; Fiquet, G.; Kunz, M.; Visocekas, F.; Hausermann, D. The orthorhombic structure of iron: An in situ study at high-temperature and high-pressure. Science 1997, 278, 831–834. [Google Scholar] [CrossRef]
- Yoo, C.S.; Cynn, H.; Soderlind, P.; Iota, V. New beta (fcc)—Cobalt to 210 GPa. Phys. Rev. Lett. 2000, 84, 4132. [Google Scholar] [CrossRef] [PubMed]
- Sergueev, I.; Dubrovinsky, L.; Ekholm, M.; Yekilova, O.Y.; Chumakov, A.I.; Zajac, M.; Potapkin, V.; Kantor, I.; Bornemann, S.; Ebert, H.; et al. Hyperfine splitting and room-temperature ferromagnetism of Ni at multimegabar pressure. Phys. Rev. Lett. 2013, 111, 157–601. [Google Scholar] [CrossRef] [PubMed]
- Huang, E.W.; Lin, C.M.; Juang, J.Y.; Chang, Y.J.; Chang, Y.W.; Wu, C.S.; Tsai, C.W.; Yeh, A.C.; Shieh, S.R. Deviatoric deformation kinetics in high entropy alloy under hydrostatic compression. J. Alloy. Compd. 2019, 349, 50113. [Google Scholar] [CrossRef]
- Li, G.; Xiao, D.H.; Yu, P.F.; Zhang, L.J.; Liaw, P.K.; Li, Y.C.; Liu, R.P. Equation of state of an AlCoCrCuFeNi high-entropy alloy. JOM 2015, 67, 2310–2313. [Google Scholar] [CrossRef]
- Cheng, B.Y.; Zhang, F.; Lou, H.b.; Chen, X.H.; Liaw, P.K.; Yan, J.Y.; Zeng, Z.D.; Ding, Y.; Zeng, Q.S. Pressure-induced phase transition in the AlCoCrFeNi high-entropy alloy. Scr. Mater. 2019, 161, 82–92. [Google Scholar] [CrossRef]
- Yusenko, K.V.; Riva, S.; Carvalho, P.A.; Yusenko, M.V.; Arnaboldi, S.; Sukhikh, A.S.; Hanfland, M.; Gromilov, S.A. First hexagonal close packed high-entropy alloy with outstanding stability under extreme conditions and electrocatalytic activity for methanol oxidation. Scr. Mater. 2017, 138, 22–27. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, A.S.; Su, Y.; Liu, S.Y.; Ståhl, K.; Wu, Y.D.; Hui, X.D.; Ruett, U.; Gutowski, O.; Glazyrin, K.; Liermann, H.P.; et al. Structural stability of high entropy alloys under pressure and temperature. J. Appl. Phys. 2017, 121, 235901. [Google Scholar] [CrossRef] [Green Version]
- Valiev, R.Z.; Estrin, Y.; Horita, Z. Producing bulk ultrafine-grained materials by severe plastic deformation. J. Miner. Met. Mater. Soc. 2010, 58, 33–39. [Google Scholar] [CrossRef]
- Zhilyaev, A.P.; Lee, S.; Nurislamova, G.V. Microhardness and microstructural evolution in pure nickel during high-pressure torsion. Scr. Mater. 2001, 44, 2753–2758. [Google Scholar] [CrossRef]
- Révész, A.; Hóbor, S.; Lábár, J.L. Partial amorphization of a Cu–Zr–Ti alloy by high pressure torsion. J. Appl. Phys. 2006, 100, 103522. [Google Scholar] [CrossRef]
- Sabirov, I.; Pippan, R. Formation of a W-25%Cu nanocomposite during high pressure torsion. Scr. Mater. 2005, 52, 1293–1298. [Google Scholar] [CrossRef]
- Tang, Q.H.; Huang, Y.; Huang, Y.Y. Hardening of an Al0.3CoCrFeNi high entropy alloy via high-pressure torsion and thermal annealing. Mater. Lett. 2015, 151, 126–129. [Google Scholar] [CrossRef]
- Schuh, B.; Mendez-Martin, F.; Völker, B.; George, E.P.; Clemens, H.; Pippan, R.; Hohenwarter, A. Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation. Acta Mater. 2015, 96, 258–268. [Google Scholar] [CrossRef] [Green Version]
- Yu, P.F.; Cheng, H.; Zhang, L.J.; Zhang, H. Effects of high pressure torsion on microstructures and properties of an Al0.1CoCrFeNi high-entropy alloy. Mater. Sci. Eng. 2016, 655, 283–291. [Google Scholar] [CrossRef]
- Moon, J.; Qi, Y.; Tabachnikova, E.; Estrin, Y.; Choi, W.M. Deformation-induced phase transformation of Co20Cr26Fe20Mn20Ni14 high-entropy alloy during high-pressure torsion at 77 K. Mater. Lett. 2017, 202, 86–88. [Google Scholar] [CrossRef]
- Yu, P.F.; Zhang, L.J.; Cheng, H.; Zhang, H.; Ma, M.Z.; Li, Y.C.; Li, G.; Liaw, P.K.; Liu, R.P. The high-entropy alloys with high hardness and soft magnetic property prepared by mechanical alloying and high-pressure sintering. Intermetallics 2016, 70, 82–87. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, W.; Zhou, Z.; Zhang, M.; Ma, Y.; Yu, P.; Liaw, P.K.; Li, G. Applications of High-Pressure Technology for High-Entropy Alloys: A Review. Metals 2019, 9, 867. https://doi.org/10.3390/met9080867
Dong W, Zhou Z, Zhang M, Ma Y, Yu P, Liaw PK, Li G. Applications of High-Pressure Technology for High-Entropy Alloys: A Review. Metals. 2019; 9(8):867. https://doi.org/10.3390/met9080867
Chicago/Turabian StyleDong, Wanqing, Zheng Zhou, Mengdi Zhang, Yimo Ma, Pengfei Yu, Peter K. Liaw, and Gong Li. 2019. "Applications of High-Pressure Technology for High-Entropy Alloys: A Review" Metals 9, no. 8: 867. https://doi.org/10.3390/met9080867
APA StyleDong, W., Zhou, Z., Zhang, M., Ma, Y., Yu, P., Liaw, P. K., & Li, G. (2019). Applications of High-Pressure Technology for High-Entropy Alloys: A Review. Metals, 9(8), 867. https://doi.org/10.3390/met9080867