Next Article in Journal
Effect of Heat Input and Undermatched Filler Wire on the Microstructure and Mechanical Properties of Dissimilar S700MC/S960QC High-Strength Steels
Next Article in Special Issue
Oxidative Leaching of Zinc and Alkalis from Iron Blast Furnace Sludge
Previous Article in Journal
Influence of Heat Treatments on Heat Affected Zone Cracking of Gas Tungsten Arc Welded Additive Manufactured Alloy 718
Previous Article in Special Issue
Copper Dissolution from Black Copper Ore under Oxidizing and Reducing Conditions
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Use of the Swebrec Function to Model Particle Size Distribution in an Industrial-Scale Ni-Co Ore Grinding Circuit

by
Alfredo L. Coello-Velázquez
1,
Víctor Quijano Arteaga
1,
Juan M. Menéndez-Aguado
2,*,
Francisco M. Pole
3,4 and
Luis Llorente
5
1
CETAM, Universidad de Moa Dr. Antonio Núñez Jiménez, Bahía de Moa 83300, Cuba
2
Escuela Politécnica de Mieres, Universidad de Oviedo, Mieres 33600, Spain
3
Escola Superior Politécnica da Lunda Sul, Universidade Lueji A’Nkonde, Saurimo 161, Angola
4
Sociedade Mineira de Catoca Lda., Luanda 10257, Angola
5
Empresa Comandante Ernesto Ché Guevara., Punta Gorda 83310, Cuba
*
Author to whom correspondence should be addressed.
Metals 2019, 9(8), 882; https://doi.org/10.3390/met9080882
Submission received: 9 July 2019 / Revised: 7 August 2019 / Accepted: 8 August 2019 / Published: 10 August 2019
(This article belongs to the Special Issue Advances in Mineral Processing and Hydrometallurgy)

Abstract

:
Mathematical models of particle size distribution (PSD) are necessary in the modelling and simulation of comminution circuits. In order to evaluate the application of the Swebrec PSD model (SWEF) in the grinding circuit at the Punta Gorda Ni-Co plant, a sampling campaign was carried out with variations in the operating parameters. Subsequently, the fitting of the data to the Gates-Gaudin-Schumann (GGS), Rosin-Rammler (RRS) and SWEF PSD functions was evaluated under statistical criteria. The fitting of the evaluated distribution models showed that these functions are characterized as being sufficiently accurate, as the estimation error does not exceed 3.0% in any of the cases. In the particular case of the Swebrec function, reproducibility for all the products is high. Furthermore, its estimation error does not exceed 2.7% in any of the cases, with a correlation coefficient of the ratio between experimental and simulated data greater than 0.99.

Graphical Abstract

1. Introduction

The particle size distribution (PSD) in granular materials is one of the quality indicators of many transformation processes. In the particular case of mining, it is a measure of effectiveness [1] from blasting operations through to comminution. It is a crucial element of control in the processing of materials. In the specific case of the Punta Gorda milling plant (Moa, Cuba), P80 governs the quality of the final product, together with P95 and P70, product sizes which should correspond to 149 μm, 74 μm and 44 μm, respectively.
The Punta Gorda industrial plant processes lateritic minerals from deposits in northeastern Cuba by means of the ammonium-carbonate technology to obtain nickel and cobalt concentrates. Grinding plays an important role in this technological context, ensuring an adequate contact surface of the ore to allow the reduction of nickel and cobalt to their metallic phases and the subsequent solution of these elements in the leaching process [2,3,4,5]
The mathematical representation of the PSD is a mandatory tool in the modelling and simulation of processes, in addition to being crucial for controlling efficiency in comminution circuits. In most existing PSD models, the particle size is plotted against the cumulative undersize [6], p representing the probability that a fragment is smaller than x, the particle size.
In ore processing, PSD can be obtained directly through sieve analysis, or indirectly via the processing of a digital image and the use of sensors based on artificial neural networks [7,8,9].
Ouchterlony [10,11] argues that these techniques based on image processing have many drawbacks, one of which is the tendency to provide incorrect shapes of the size distribution curves. Therefore, the integration of PSD models in the different ways in which particle sizes are experimentally determined and the determination of the parameters of these functions is both a straightforward and satisfactory means of characterization, control and automation in comminution processes.
In comminution and mechanical separation processes, the PSD is limited to the determination of the F80 feed size and P80 product size diameters, as likewise occurs in the standard tests to determine the Bond index [12]. In many cases, the process engineer uses the graphic method for this purpose. This behaviour can have serious consequences in decision-making in the operation and control of comminution and mechanical concentration processes.
The aim of the present study is to present the potential advantages of applying the Swebrec (SWEF) function [10] in the modelling of the PSD of the products of the dry grinding circuit of lateritic minerals.

1.1. Models of Particle Size Distribution

In practice, the most widespread PSD models in ore processing are two-parameter mathematical functions, one parameter being the size coefficient and the other, the distribution coefficient [13].
The Rosin-Rammler model (RRS) is usually considered the best size distribution model for ore processing applications, although the Gates-Gauss-Schumann distribution (GGS) is preferred in certain applications such as coal processing, especially in North America [9]. Álvarez Rodríguez et al. [12] concluded that it is preferable to use the RRS model to determine the F80 and P80 diameters in the Bond ball mill test.
For the characterization of the PSD of blast fragmentation, Blair [14] obtained excellent results with the two-parameter logarithmic function for particles smaller than 0.1 mm; however, the worst results were obtained using the RRS function. For this case, the fragmentation function that provided the best fit was based on the Kuz-Ram model [15]. Other models exist, such as the two-parameter model proposed by Djordjevic [16] and the crush zone model [17], which were developed for the particle size characterization of blast fragmentation [6]. There are no known applications of these models in ore processing.
The main drawbacks of the larger models in ore processing (GGS and RRS) reside in the respective expansions and contractions of certain regions of the curve.

1.2. Swebrec Function

The Swebrec function (SWEF), proposed by Ouchterlony [10,18], is given by Equation (1):
P ( x ) = 1 1 + [ ln ( x m a x x ) ln ( x m a x x 50 ) ] b
where:
  • P(x), cumulative undersize, u
  • xmax, maximum size of ore particles, mm.
  • x, size, mm.
  • x50, sieve size that retains 50% of the material, mm.
Unlike the most commonly used models in ore processing, this is a three-parameter size distribution model. The parameters are: xmax, x50 and b. When b = 1, the inflection point tends towards x = xmax and when b increases to 2, the inflection point tends towards x = x50.

2. Methodology

Data were obtained by carrying out a full factorial experiment in the dry grinding circuit at the Punta Gorda plant. In this experiment, eight trials were devised with different operating conditions. Three operational variables were studied: ore feed flow (t/h), air flow rate to the mill (m3/h) and the position of the air separator vanes (u), with a 45% ball load in all cases. The base levels of the variables were: 100 t/h; 68700 m3, and 5, respectively.
Primary samples were taken every 15 min in each operating mode, which had a duration of 8 h. The samples were subjected to sieving analysis to determine the particle size composition: up to 1 mm dry, and below 1 mm wet. The following sieves were used for the fresh feed material: 40.0, 25.0, 18.0, 12.0, 10.0, 6.0, 4.75, 3.5, 2.0, 1.25, 1.0, 0.6, 0.4, 0.2, 0.1, and 0.074 mm. For the recirculated product in the mill, the product discharged from the mill and final product of the circuit, the following sieve sizes were used: 0.149; 0.074, and 0.044 mm.
The resulting data were subjected to the Coello procedure [19] in order to avoid the effect of fluctuations in the characteristics and properties of the fresh material, and errors and anomalous variations in the size class balance. Results are shown in Appendix A (Table A1, Table A2 and Table A3).
The experimentally obtained PSDs of the different products of the milling circuit were fitted to the GGS, RRS and SWEF models according to the procedures set out in [6,9,11]. The coefficient of determination, the estimation error and Cochran’s criterion were used as quality criteria for the fitting. The procedures were run with the help of Excel software templates prepared for such purposes. Considering the results of the values of the Cochran and Chi-Square criteria, the average values of the experiment were presented for each size distribution function.

3. Results and Discussion

3.1. Balance of the Size Class Distribution of the Grinding Circuit Minimizing Residual Errors

A simplified closed circuit scheme of lateritic ore comminution similar to that used in the grinding plant at the Punta Gorda nickel processing plant is presented in [19,20].
The results of calculating the circulating load per equation by means of the conventional equation appear in Table A1. As a result of the inherent fluctuations in the technological process, above all at the scale at which the sampling took place, the values of the residuals vary considerably (Table A2), by both excess and defect.
Table A3 shows the recalculated values of the circulating load and the PSD whose residual in the class balance is zero. This means that the newly found values of the particle size distribution better satisfy the calculation of the circulating load and hence the general balance of the particle size distribution of the size classes.

3.2. Fresh Feed to the Mill

Figure 1 shows the results of the particle size distribution of the fresh feed product to the mill.
In general, the experimental PSD occupies an intermediate position between the RRS and SWEF distributions. A more detailed analysis shows that for particles larger than 10 mm, the experimental data is closer to the RRS distribution; i.e., this function provides a better fit to the experimental data in this region of the curve. The mass fraction corresponding to this coarse class (>10 mm) is approximately 8%.
The region of the experimental distribution between sizes below 6–8 mm behaves very differently, however. This region is closer to the distribution of the SWEF, and accounts up to 87% of particles. In short, the RRS function best describes the coarse size ranges, while the SWEF better fits the experimental data in the fine fractions.
According to the R2 values, the SWEF provides the best fit, the value of its coefficient of determination, R2, being lower than those presented by Ouchterlony [1] for products of fragmentation by blasting and crushing. It should be noted that the fresh feed to the mill did not undergo any comminution operation after it was mined, although this product was influenced by the operations of mining, loading, transport, unloading and drying. Therefore, it may be considered a run-of-mine material. As to the value of coefficient b, in this case it does fit the range of values reported by Sanchidrián et al. [6], although it is slightly higher than the values of b reported for crushing.
It can be seen in Figure 2 that only four values are separated to some extent from the zero error line, which is an indicator of a good fit of the experimental data to the Swebrec function.

3.3. Mill Discharge

Figure 3 shows the particle size distribution of the mill discharge fitted to the PSD models studied in this paper. As can be seen in the figure, the SWEF occupies an intermediate position between the GGS and RRS distributions for sizes between 35 and 7 microns. For sizes below 7 μm and between 35 μm and 149 μm, the SWEF distribution respectively approaches the GGS and RRS distribution functions.
The reported value of b (Table 1) falls within the range of values reported in [6], although it is somewhat lower than the value of b reported for fresh feed to the mill. The R2 is higher than that obtained for the latter product. Considering the value of the estimation error (σ), the best fit corresponds to the SWEF model. The coefficient of determination for the experimental data and those simulated by the SWEF model is 0.9999 (Figure 4).
The calculated Cochran criterion (0.2858) is lower than the critical criterion (0.6798), which indicates good homogeneity in the error made in the experimentation and the absence of significant differences between the series of experimental data and the data simulated by this function. It was similar for the other distributions under study.

3.4. Recirculated Product in the Mill

Figure 5 shows the size distribution of the product recirculated in the grinding circuit at the Punta Gorda plant fitted to the GGS, RRS and SWEF models.
The configuration of the particle size distribution curve is similar to that of the mill discharge, the value of b = 1.3206 being very similar (see Table 1 and Table 2).
The curve of the Swebrec function is always above the other distribution models, tending to approach the curve of the RRS distribution. This function occupies precisely the intermediate position.
For this product, the SWEF distribution shows the best-fit parameter value, although the estimation error is greater than in the other two distributions. However, the error is lower than 2.7% and it may be stated that the SWEF characterizes the particle size distribution of the mill discharge with sufficient accuracy.
Figure 6 shows the zero error graph for the case of the recirculated product. It includes the coefficient of determination, which in this case is 0.9925, thus confirming the model’s suitability. The calculated Cochran criterion is lower than the critical criterion (0.6088 versus 0.6798).

3.5. Final Product of the Circuit

The fitting of the size distribution functions evaluated in this paper is presented in Figure 7. The SWEF occupies an intermediate position between the other two studied distributions, tending to parallel the GGS model to a certain extent. Here, the RRS distribution behaves quite differently from the other two models towards the finer fractions, although all of the functions converge from 37 μm to the coarser classes. The estimation error does not exceed 2.5% for any of the functions.
The value of coefficient b is somewhat greater than coefficient b of the size distributions of the products discharged from and recirculated in the mill. This justifies the similar behaviour of the SWEF distribution model for these products.
As expected, the maximum size in the distribution is lower than that of the other products. Something similar occurs with the x50 size, which constitutes the cut-off size of the pneumatic separator.
The zero error graph (Figure 8) confirms the reproducibility of the SWEF model. The coefficient of determination of the experimental data and the data simulated by this model is 0.9925. The values of the calculated Cochran criterion and the critical criterion (0.2858 versus 0.6798) confirm the high quality of the model.
Figure 9 shows the PSDs of the different products of the grinding circuit simulated by the Swebrec function for normalized sizes with a sieving scale of 2 . The shape of the distribution for the products inside the circuit is similar, the tendency following the logic of the x m a x and x 50 sizes reported in Table 1, Table 2, Table 3 and Table 4.

4. Conclusions

The results of applying the Coello procedure [19] allowed us to obtain the particle size distribution of the different products of the milling circuit suitably balanced with zero residual values.
For all the size distributions, no significant differences were found between the experimental data and the data simulated by the size distribution models. In combination with the values obtained from the coefficient of determination and the estimation error, this means that all the studied models are reproducible. The Cochran criterion and Chi-square values confirm the above: the calculated values are always better than the critical values of the considered statistics.
The Swebrec function characterizes the particle size distribution of the products of the grinding circuit very accurately. The coefficient of determination for the experimental data and those simulated by the model is greater than 0.9900. The average error of its fitting to the size distribution of the products of the grinding circuit does not exceed 3%, demonstrating the versatility of its use. The coefficient of determination values for the experimental data and those simulated by this function are predominantly very high.
The b value for the products inside the grinding circuit ranges between 1.32 and 1.4. The b value for the fresh feed (crushed product) coincides with the values reported by Sanchidrián et al. [6] for crushing.

Author Contributions

Conceptualization, J.M.M.-A., A.L.C.-V.; Formal analysis, V.Q.A. and F.M.P.; Investigation, F.M.P. and R.M.A.; Methodology, A.L.C.-V. and J.M.M.-A.; Resources, V.Q.A. and F.M.P.; Supervision, V.Q.A. and A.L.C.-V.; Validation, L.L.; Writing – original draft, A.L.C.-V.;Writing—review & editing, J.M.M.-A.

Funding

This research received no external funding.

Acknowledgments

The authors are grateful to Alexis García for his support during the carrying out of the industrial tests and to the Technical Board of the ECCG company for the trust placed in the research team.

Conflicts of Interest

The authors declare no conflict of interest

Appendix A

Table A1. Calculation of the circulating load in the grinding circuit.
Table A1. Calculation of the circulating load in the grinding circuit.
Flow of Material, m3/hAir Flow, m3/hSlope AngleSize Class, mmContent of the Class, %Circulating Load, C (i)
Mill Discharge, fRecirculated Product, cFine Product, p
+++−0.149 + 0.07487.5854.6695.660.25
−0.074 + 0.04479.2239.7085.080.15
−0.044 + 0.064.1339.2075.710.46
+−0.149 + 0.07467.6764.0097.098.01
−0.074 + 0.04450.4144.6686.926.35
−0.044 + 0.044.9139.0379.385.86
+−0.149 + 0.07481.0362.7197.670.91
−0.074 + 0.04461.3148.5488.162.10
−0.044 + 0.050.242.0680.343.70
+−0.149 + 0.07485.2849.40594.060.24
−0.074 + 0.04469.2138.4187.30.59
−0.044 + 0.060.5637.9373.560.57
++−0.149 + 0.07485.3465.6097.410.61
−0.074 + 0.04476.8946.1287.170.33
−0.044 + 0.053.4938.7378.771.71
++−0.149 + 0.07470.6361.0495.922.64
−0.074 + 0.04452.5846.4684.25.16
−0.044 + 0.046.5139.9471.333.78
++−0.149 + 0.07481.9351.5196.290.47
−0.074 + 0.04466.1743.8686.90.93
−0.044 + 0.059.7733.4674.840.57
−0.149 + 0.07479.4660.0897.020.91
−0.074 + 0.04461.3722.3785.10.61
−0.044 + 0.053.1317.1878.770.71
Table A2. Calculation of residuals.
Table A2. Calculation of residuals.
Recalculated Circulating LoadResidual, εLagrange Multiplier, λ
p-ff-c(f-c)2(p-f)*(f-c)C (i)
8.0832.921083.73265.99 −0.16−0,06
5.8639.531562.23231.62 3.651.41
11.5824.93621.50288.69 −5.58−2.15
Sum Total3267.46786.300.24
29.423.6813.51108.12 −5.84−0,06
36.515.7533.06209.93 0.390.00
34.475.8834.57202.68 3.270.03
Sum Total81.14520.736.42
16.6418.33335.81304.93 12.321.21
26.8512.77163.07342.87 −6.67−0.66
30.148.1466.26245.34 −17.28−1.70
Sum Total565.14893.141.58
8.7835.8751287.02314.98 6.452.01
18.0930.8948.64557.17 −5.02−1.56
1322.63512.12294.19 -3.39−1.06
Sum Total2747.771166.340.42
12.0719.74389.67238.26 −0.29−0.07
10.2830.775947.10316.37 8.092.07
25.2814.76217.86373.13 −16.47−4.22
Sum Total1554.63927.760.60
25.299.5991.97242.53 8.000.24
31.626.12537.52193.67 −10.36−0.31
24.826.5743.16163.07 −2.02−0.06
Sum Total172.65599.273.47
14.3630.42925.38436.83 4.271.07
20.7322.315497.96462.59 −7.06−1.78
15.0726.315692.48396.57 1.050.26
Sum Total2115.811295.990.61
17.5619.385375.78340.40 −4.26−0.99
23.7339.0051521.39925.59 3.020.70
25.6435.9551292.76921.89 −0.98−0.23
Sum Total3189.932187.880.69
Table A3. Recalculated values of the particle size distribution for the grinding circuit products.
Table A3. Recalculated values of the particle size distribution for the grinding circuit products.
Recalculated Class Content, %Recalculated Residual, ε
Mill Discharge, f.Recirculated Product, cFine Product, p
87.6654.6595.600
77.4840.0386.490
66.8038.6873.560
68.163.697.030
50.444.786.920
44.739.279.410
77.964.698.880
63.047.587.500
54.639.478.640
82.450.396.070
71.437.785.740
62.137.572.500
85.565.697.340
73.647.489.240
60.236.274.550
69.561.996.160
54.045.483.890
46.839.771.270
80.252.297.360
69.042.885.120
59.333.675.100
81.159.496.030
60.222.885.800
53.517.078.540

References

  1. Ouchterlony, F. Fragmentation characterization; the Swebrec function and its use in blast engineering. In Proceedings of the 9th International Symposium on Rock Fragmentation by Blasting—Fragblast 9, Granada, Spain, 13–17 August 2009; pp. 3–22. [Google Scholar]
  2. Coello-Velázquez, A.L. Sovershenstvovanie tecnologii izmilchenii lateritobij pud na zabode “Punta Gorda”. Ph.D. Thesis, IMS, Saint Petersburg, Russia, 1993. [Google Scholar]
  3. Aguado, J.M.M.; Velázquez, A.L.C.; Tijonov, O.N.; Díaz, M.A.R. Implementation of energy sustainability concepts during the comminution process of the Punta Gorda nickel ore plant (Cuba). Powder Technol. 2006, 170, 153–157. [Google Scholar] [CrossRef]
  4. Coello Velázquez, A.L.; Menéndez-Aguado, J.M.; Brown, R.L. Grindability of lateritic nickel ores in Cuba. Powder Technol. 2008, 182, 113–115. [Google Scholar] [CrossRef]
  5. Chalkley, M.E.; Collins, M.J.; Iglesias, C.; Tuffrey, N.E. Effect of magnesium on pressure leaching of Moa Laterite ore. Can. Metall. Q 2010, 49, 227–234. [Google Scholar] [CrossRef]
  6. Sanchidrián, J.A.; Ouchterlony, F.; Moser, P.; Segarra, P.; López, L.M. Performance of some distributions to describe rock fragmentation data. Int. J. Rock Mech. Min. Sci. 2012, 53, 18–31. [Google Scholar] [CrossRef]
  7. Sbarbaro, D.; Ascencio, P.; Espinoza, P.; Mujica, F.; Cortes, G. Adaptive soft-sensors for on-line particles estimation in wet grinding circuits. Control Eng. Practice. 2008, 16, 171–178. [Google Scholar] [CrossRef]
  8. Ko, Y.-D.; Shang, H. A neural network-based soft sensor for particle size distribution using image analysis. Powder Technol. 2011, 212, 359–366. [Google Scholar] [CrossRef]
  9. Wills, B.A.; Finch, J.A. Wills’ Mineral Processing Technology: An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery, 8th ed.; Elsevier: Amsterdam, The Netherlands, 2016; p. 498. [Google Scholar]
  10. Ouchterlony, F. The Swebrec function: Linking fragmentation by blasting and crushing. Institution of Mining and Metallurgy. Min. Technol. 2005, 114, 29–44. [Google Scholar] [CrossRef]
  11. Ouchterlony, F.; Moser, P. Likenesses and differences in the fragmentation of full-scale and model-scale blasts. In Proceedings of the 8th International Symposium on Rock Fragmentation by Blasting–Frag blast 8, Santiago, Chile, 7–11 May 2006; pp. 207–220. [Google Scholar]
  12. Álvarez Rodríguez, B.; González García, G.; Coello-Velázquez, A.L.; Menéndez-Aguado, J.M. Product size distribution function influence on interpolation calculations in the Bond ball mill grindability test. Int. J. Miner. Process. 2016, 157, 16–20. [Google Scholar] [CrossRef]
  13. Kelly, E.G.; Spottiswood, D.J. Introduction to Mineral Processing; John Willey and Sons: Hoboken, NJ, USA, 1982. [Google Scholar]
  14. Blair, D.P. Curve-fitting schemes for fragmentation data. Fragblast. Int. J. Blast. Fragment. 2004, 8, 137–150. [Google Scholar]
  15. Kuznetsov, V.M. The mean diameter of the fragments formed by blasting rock. Sov. Min. Sci. 1973, 9, 144–148. [Google Scholar] [CrossRef]
  16. Djordjevic, N. Two-component model of blast fragmentation. In Proceedings of the 6th International Symposium on Rock Fragmentation by Blasting, Johannesburg, South Africa, 8–12 August 1999; pp. 213–219. [Google Scholar]
  17. Kanchibotla, S.S.; Valery, W.; Morell, S. Modelling fines in blast fragmentation and its impact on crushing and grinding. In Proceedings of the Conference on Rock Breaking, Kalgoorlie, WA, USA, 7–11 November 1999; pp. 137–144. [Google Scholar]
  18. Osorio, A.M.; Menéndez-Aguado, J.M.; Bustamante, O.; Restrepo, G.M. Fine grinding size distribution analysis using the Swebrec function. Powder Technol. 2014, 258, 206–208. [Google Scholar] [CrossRef]
  19. Coello-Velázquez, A.L. Procedimiento para la determinación de la carga circulante en circuitos cerrados de trituración y molienda. Minería y Geología 2015, 31, 66–79. [Google Scholar]
  20. Menéndez-Aguado, J.M.; Coello, A.L.; Tikjonov, O.N.; Rodríguez, M. Implementation of sustainable concepts during comminution process in Punta Gorda nickel ore plant. Powder Technol. 2006, 170, 153–157. [Google Scholar] [CrossRef]
Figure 1. Size distribution of the ore particles of the fresh feed to the mill.
Figure 1. Size distribution of the ore particles of the fresh feed to the mill.
Metals 09 00882 g001
Figure 2. Zero error graph for the SWEF.
Figure 2. Zero error graph for the SWEF.
Metals 09 00882 g002
Figure 3. Particle size distribution simulated by the models under study.
Figure 3. Particle size distribution simulated by the models under study.
Metals 09 00882 g003
Figure 4. Zero error graph for the mill discharge.
Figure 4. Zero error graph for the mill discharge.
Metals 09 00882 g004
Figure 5. Particle size distribution of the product recirculated in the grinding circuit.
Figure 5. Particle size distribution of the product recirculated in the grinding circuit.
Metals 09 00882 g005
Figure 6. Zero error graph, recirculated product fitted to the SWEF model.
Figure 6. Zero error graph, recirculated product fitted to the SWEF model.
Metals 09 00882 g006
Figure 7. Distribution models fitted to the experimental data.
Figure 7. Distribution models fitted to the experimental data.
Metals 09 00882 g007
Figure 8. Zero error graph of the experimental data and the data simulated by the SWEF.
Figure 8. Zero error graph of the experimental data and the data simulated by the SWEF.
Metals 09 00882 g008
Figure 9. Simulation of the particle size distribution for products in the grinding circuit.
Figure 9. Simulation of the particle size distribution for products in the grinding circuit.
Metals 09 00882 g009
Table 1. Studied model parameters, mill discharge.
Table 1. Studied model parameters, mill discharge.
MDTPModel ParametersR2σ
Slope, mK (*)XmaxX50b
GGS0.27920.3461---0.98672.14
RRS0.54250.0703---0.98673.04
SWEF--0.34610.03531.33540.99271.77
(*) d62.8—for RRS and d100—for GGS.
Table 2. Parameters of the distribution models under study, recirculated product.
Table 2. Parameters of the distribution models under study, recirculated product.
MDTPModel ParametersR2σ
Slope, mK *XmaxX50b
GGS0.45070.8732---0.96051.9277
RRS0.62240.2299---0.95382.1163
SWEF--0.77870.11041.32060.97432.6468
(*) d62.8—for RRS and d100—for GGS.
Table 3. Parameters of the distribution models under study.
Table 3. Parameters of the distribution models under study.
ModelModel ParametersR2
Slope, mK (*)XmaxX50b
GGS0.24930.429---0.900
RRS0.33521.857---0.954
SWEF--40.01.3313.100.977
(*) d62.8 for RRS and d100 for GGS.
Table 4. Parameters of the distribution models for the final product of the circuit.
Table 4. Parameters of the distribution models for the final product of the circuit.
MDTPModel ParametersR2σ
Slope, mK (*)XmaxX50b
GGS0.20260.1690---0.97631.4051
RRS0.74890.0284---0.98691.1234
SWEF--0.17490.00991.4010.98552.2193
(*) d62.8 for RRS and d100 for GGS.

Share and Cite

MDPI and ACS Style

Coello-Velázquez, A.L.; Quijano Arteaga, V.; Menéndez-Aguado, J.M.; Pole, F.M.; Llorente, L. Use of the Swebrec Function to Model Particle Size Distribution in an Industrial-Scale Ni-Co Ore Grinding Circuit. Metals 2019, 9, 882. https://doi.org/10.3390/met9080882

AMA Style

Coello-Velázquez AL, Quijano Arteaga V, Menéndez-Aguado JM, Pole FM, Llorente L. Use of the Swebrec Function to Model Particle Size Distribution in an Industrial-Scale Ni-Co Ore Grinding Circuit. Metals. 2019; 9(8):882. https://doi.org/10.3390/met9080882

Chicago/Turabian Style

Coello-Velázquez, Alfredo L., Víctor Quijano Arteaga, Juan M. Menéndez-Aguado, Francisco M. Pole, and Luis Llorente. 2019. "Use of the Swebrec Function to Model Particle Size Distribution in an Industrial-Scale Ni-Co Ore Grinding Circuit" Metals 9, no. 8: 882. https://doi.org/10.3390/met9080882

APA Style

Coello-Velázquez, A. L., Quijano Arteaga, V., Menéndez-Aguado, J. M., Pole, F. M., & Llorente, L. (2019). Use of the Swebrec Function to Model Particle Size Distribution in an Industrial-Scale Ni-Co Ore Grinding Circuit. Metals, 9(8), 882. https://doi.org/10.3390/met9080882

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop