Enhancing Corrosion Resistance of High-Carbon Steel by Formation of Surface Layers Using Wastes as Input
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Preparation
2.2. Analytical Methods
3. Results and Discussions
3.1. Microstructural Analysis
3.2. Synthesis of Ceramic Layer into Steel Substrate
3.3. SEM/EDS Analysis
3.4. XPS Analysis
3.5. Electrochemical Corrosion Test
3.6. Microhardness Test
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, Q.; Zhou, Q.; Venezuela, J.; Zhang, M.; Atrens, A. Hydrogen influence on some advanced high-strength steels. Corros. Sci. 2017, 125, 114–138. [Google Scholar] [CrossRef]
- Handoko, W.; Pahlevani, F.; Hossain, R.; Sahajwalla, V. Stress-induced phase transformation and its correlation with corrosion properties of dual-phase high carbon steel. J. Manus. Mater. Process. 2019, 3, 55. [Google Scholar] [CrossRef]
- Handoko, W.; Pahlevani, F.; Sahajwalla, V. Effect of austenitisation temperature on corrosion resistance properties of dual-phase high-carbon steel. J. Mater. Sci. 2019, 54, 13775–13876. [Google Scholar] [CrossRef]
- Handoko, W.; Pahlevani, F.; Sahajwalla, V. The effect of low-quantity Cr addition on the corrosion behaviour of dual-phase high carbon steel. Metals 2018, 8, 199. [Google Scholar] [CrossRef]
- Pei, X.; Noël, M.; Green, M.; Fam, A.; Shier, G. Cementitious coatings for improved corrosion resistance of steel reinforcement. Surf. Coat. Technol. 2017, 315, 188–195. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, S.; Zhang, C.; Zhang, H.; Dong, S. Phase evolution and cavitation erosion corrosion behavior of FeCoCrAlNiTi x high entropy alloy coatings on 304 stainless steel by laser surface alloying. J. Alloys Compd. 2017, 698, 761–770. [Google Scholar] [CrossRef]
- Piatak, N.; Parsons, M.; Seal, R. Characteristics and environmental aspects of slag: A review. Appl. Geochem. 2015, 57, 236–266. [Google Scholar] [CrossRef]
- Handoko, W.; Pahlevani, F.; Emmanuelawati, I.; Sahajwalla, V. Transforming automotive waste into TiN and TiC ceramics. Mater. Lett. 2016, 176, 17–20. [Google Scholar] [CrossRef]
- Mayyas, M.; Pahlevani, F.; Handoko, W.; Sahajwalla, V. Preliminary investigation on the thermal conversion of automotive shredder residue into value-added products: Graphitic carbon and nano-ceramics. Waste Manage. 2016, 50, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Xiang, Z. Formation of chromium nitride coatings on carbon steels by pack cementation process. Surf. Coat. Technol. 2017, 309, 994–1000. [Google Scholar] [CrossRef]
- Liang, X.; Dodge, M.; Liang, W.; Dong, H. Precipitation of chromium nitride nano-rods on lamellar carbides along austenite-ferrite boundaries in super duplex stainless steel. Scr. Mater. 2017, 127, 45–48. [Google Scholar] [CrossRef]
- Wang, L.; Li, Q.; Zhu, Y.; Qian, Y. Magnesium-assisted formation of metal carbides and nitrides from metal oxides. Int. J. Refract. Met. Hard Mater. 2012, 31, 288–292. [Google Scholar] [CrossRef]
- Höche, D.; Blawert, C.; Cavellier, M.; Busardo, D.; Gloriant, T. Magnesium nitride phase formation by means of ion beam implantation technique. Appl. Surf. Sci. 2011, 257, 5626–5633. [Google Scholar] [CrossRef] [Green Version]
- Handoko, W.; Pahlevani, F.; Sahajwalla, V. Corrosion behaviour of dual-phase high carbon steel—microstructure influence. J. Manuf. Mater. Process 2017, 1, 21. [Google Scholar] [CrossRef]
- Handoko, W.; Pahlevani, F.; Sahajwalla, V. Enhancing corrosion resistance and hardness properties of carbon steel through modification of microstructure. Materials 2018, 11, 2404. [Google Scholar] [CrossRef] [PubMed]
- Ghouleh, Z.; Guthrie, R.; Shao, Y. High-strength KOBM steel slag binder activated by carbonation. Constr. Build. Mater. 2015, 99, 175–183. [Google Scholar] [CrossRef]
- Burks, T.; Avila, M.; Akhtar, F.; Göthelid, M.; Lansåker, P.; Toprak, M.; Muhammed, M.; Uheida, A. Studies on the adsorption of chromium (VI) onto 3-Mercaptopropionic acid coated superparamagnetic iron oxide nanoparticles. J. Colloid Interface Sci. 2014, 425, 36–43. [Google Scholar] [CrossRef]
- Lamaka, S.; Höche, D.; Petrauskas, R.; Blawert, C.; Zheludkevich, M. A new concept for corrosion inhibition of magnesium: Suppression of iron re-deposition. Electrochem. Commun. 2016, 62, 5–8. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, J.; Xue, S.; Wang, J.; Zhang, Y.; Tang, Y. Hydrogen production by low-temperature oxidation of coal: Exploration of the relationship between aliphatic C H conversion and molecular hydrogen release. Int. J. Hydrogen Energy 2017, 42, 25063–25073. [Google Scholar] [CrossRef]
- Ogirigbo, O.; Black, L. Influence of slag composition and temperature on the hydration and microstructure of slag blended cements. Constr. Build. Mater. 2016, 126, 496–507. [Google Scholar] [CrossRef] [Green Version]
- Name, T.; Sheridan, C. Remediation of acid mine drainage using metallurgical slags. Miner. Eng. 2014, 64, 15–22. [Google Scholar] [CrossRef]
- Zhu, X.; Lei, T. Characteristics and formation of corrosion product films of 70Cu–30Ni alloy in seawater. Corros. Sci. 2002, 44, 67–79. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Handoko, W.; Pahlevani, F.; Sahajwalla, V. Enhancing Corrosion Resistance of High-Carbon Steel by Formation of Surface Layers Using Wastes as Input. Metals 2019, 9, 902. https://doi.org/10.3390/met9080902
Handoko W, Pahlevani F, Sahajwalla V. Enhancing Corrosion Resistance of High-Carbon Steel by Formation of Surface Layers Using Wastes as Input. Metals. 2019; 9(8):902. https://doi.org/10.3390/met9080902
Chicago/Turabian StyleHandoko, Wilson, Farshid Pahlevani, and Veena Sahajwalla. 2019. "Enhancing Corrosion Resistance of High-Carbon Steel by Formation of Surface Layers Using Wastes as Input" Metals 9, no. 8: 902. https://doi.org/10.3390/met9080902
APA StyleHandoko, W., Pahlevani, F., & Sahajwalla, V. (2019). Enhancing Corrosion Resistance of High-Carbon Steel by Formation of Surface Layers Using Wastes as Input. Metals, 9(8), 902. https://doi.org/10.3390/met9080902