Ticks and Tick-Borne Pathogens Abound in the Cattle Population of the Rabat-Sale Kenitra Region, Morocco
Abstract
:1. Introduction
2. Results
2.1. Prevalence of Ticks
2.2. Prevalence of TBPs
2.3. Phylogenetic Analysis and Genetic Distances
2.4. Risk Factor Analysis
3. Discussion
3.1. Theileria/Babesia Group
3.2. Anaplasma/Ehrlichia Species
4. Materials and Methods
4.1. Study Sites and Locations
4.2. Sample Collection
4.3. DNA Extraction
4.4. PCR Amplification
4.5. Sequencing of the PCR Positive Samples
4.6. Phylogenetic Analysis and Genetic Distances
4.7. Nucleotide Sequences Accession Numbers
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De la Fuente, J.; Torina, A.; Caracappa, S.; Tumino, G.; Furlá, R.; Almazán, C.; Kocan, K.M. Serologic and molecular characterization of Anaplasma species infection in farm animals and ticks from Sicily. Vet. Parasitol. 2005, 133, 357–362. [Google Scholar] [CrossRef]
- Torina, A.; Alongi, A.; Naranjo, V.; Estrada-Pena, A.; Vicente, J.; Scimeca, S.; Marino, A.M.; Salina, F.; Caracappa, S.; De la Fuente, J. Prevalence and genotypes of Anaplasma species and habitat suitability for ticks in a Mediterranean ecosystem. Appl. Environ. Microbiol. 2008, 74, 7578–7584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruybal, P.; Moretta, R.; Perez, A.; Petrigh, R.; Zimmer, P.; Alcaraz, E.; Echaide, I.; Echaide, S.T.; Kocan, K.M.; De la Fuente, J. Genetic diversity of Anaplasma marginale in Argentina. Vet. Parasitol. 2009, 162, 176–180. [Google Scholar] [CrossRef]
- Hurtado, O.J.B.; Giraldo-Ríos, C. Economic and health impact of the ticks in production animals. In Ticks and Tick-Borne Pathogens; Abubakar, M., Perera, P.K., Eds.; IntechOpen: London, UK, 2019; pp. 1–19. [Google Scholar] [CrossRef] [Green Version]
- Kivaria, F.M. Estimated direct economic costs associated with tick-borne diseases on cattle in Tanzania. Trop. Anim. Health Prod. 2006, 38, 291–299. [Google Scholar] [CrossRef]
- Ocaido, M.; Muwazi, R.T.; Opuda, J.A. Economic impact of ticks and tick-borne diseases on cattle production systems around Lake Mburo National Park in South Western Uganda. Trop. Anim. Health Pro. 2009, 41, 731–739. [Google Scholar] [CrossRef] [PubMed]
- Walker, A.R. Ticks of Domestic Animals in Africa: A Guide to Identification of Species; Bioscience Reports: Edinburgh, Scotland, 2003; pp. 3–210. [Google Scholar]
- Verhulst, A.; Mahin, L.; Thys, E.; De Witt, K.J. Prevalence of antibodies of Anaplasma marginale in cattle from various African Biotopes in Central Morocco, North Cameroon and South Eastern Zaire. J. Vet. Med. B. 1983, 30, 537–540. [Google Scholar] [CrossRef] [PubMed]
- Flach, E.J.; Ouhelli, H.; Waddington, D.; El Hasnaoui, M. Prevalence of Theileria in the tick Hyalomma detritum detritum in the Doukkala region, Morocco. Med. Vet. Entomol. 1993, 7, 343–350. [Google Scholar] [CrossRef]
- Ait Hamou, S.; Rahali, T.; Sahibi, H.; Belghiti, D.; Losson, B.; Goff, W.; Rhalem, A. Molecular and serological prevalence of Anaplasma marginale in cattle of North Centrale Morocco. Res. Vet. Sci. 2012, 93, 1318–1323. [Google Scholar] [CrossRef]
- Rahali, T.; Sahibi, H.; Sadak, A.; Hamou, S.A.; Losson, B.; Goff, W.L.; Rhalem, A. Seroprevalence and risk factors of bovine hemoparasitic diseases (theileriosis, babesiosis and anaplasmosis) in four major breeding areas of Morocco. Rev. D’élevage Médecine Vétérinaire Pays Trop. 2014, 67, 235–240. [Google Scholar] [CrossRef] [Green Version]
- Walker, A.R.; Latif, A.A.; Morzaria, S.P.; Jongejan, F. Natural infection rates of Hyalomma anatolicum with Theileria in Sudan. Res. Vet. Sci. 1983, 35, 87–90. [Google Scholar] [CrossRef]
- Mustafa, U.E.H.; Jongejan, F.; Morzaria, S.P. Note on the transmission of Theileria annulata by Hyalomma ticks in the Sudan. Vet. Q. 1983, 5, 112–113. [Google Scholar] [CrossRef]
- Visera, J.; Hueli, L.E.; Adroher, F.J.; García-Fernández, P. Studies on the transmission of Theileria annulata to cattle by the tick Hyalomma lusitanicum. J. Vet. Med. B 1999, 46, 505–509. [Google Scholar] [CrossRef]
- Flach, E.J.; Ouhelli, H. The epidemiology of tropical theileriosis (Theileria annulata infection in cattle) in an endemic area of Morocco. Vet. Parasitol. 1992, 44, 51–65. [Google Scholar] [CrossRef]
- Darghouth, M.E.A.; Bouattour, A.; Ben Miled, L.; Kilani, M.; Brown, C.G.D. Epidemiology of tropical theileriosis (Theileria annulata infection of cattle) in an endemic region of Tunisia: Characterisation of endemicity states. Vet. Parasitol. 1996, 65, 199–211. [Google Scholar] [CrossRef]
- Gray, J.S.; Estrada-Peña, A.; Zintl, A. Vectors of Babesiosis. Annu. Rev. Entomol. 2019, 64, 149–165. [Google Scholar] [CrossRef]
- El Haj, N.; Kachani, M.; Bouslikhane, M.; Ouhelli, H.; Ahami, A.T.; Katende, J.; Morzaria, S.P. Seroepidemiologie de la theilériose et de la babésiose au Maroc. Rev. Med. Vet. 2002, 153, 809–814. [Google Scholar]
- Kocan, K.M.; De la Fuente, J. Co-feeding studies of ticks infected with Anaplasma marginale. Vet. Parasitol. 2003, 112, 295–305. [Google Scholar] [CrossRef]
- Aubry, P.; Geale, D.W. A review of bovine anaplasmosis. Transbound. Emerg. Dis. 2011, 58, 1–30. [Google Scholar] [CrossRef]
- Ben Said, M.; Belkahia, H.; Messadi, L. Anaplasma spp. in North Africa: A review on molecular epidemiology, associated risk factors and genetic characteristics. Ticks Tick Borne Dis. 2018, 9, 543–555. [Google Scholar] [CrossRef]
- Bush, A.O.; Lafferty, K.D.; Lotz, M.; Shostak, A.W. Parasitology meets ecology. J. Parasitol. 1997, 83, 575–583. [Google Scholar] [CrossRef]
- Gharbi, M.; Darghouth, M.A.; Elati, K.; AL-Hosary, A.A.; Ayadi, O.; Salih, D.A.; El Hussein, A.M.; Mhadhbi, M.; Khbou, M.K.; Hassan, S.M.; et al. Current status of tropical theileriosis in northern Africa: A review of recent epidemiological investigations and implications for control. Transbound. Emerg. Dis. 2020, 67, 8–25. [Google Scholar] [CrossRef]
- Perveen, N.; Muzaffar, S.B.; Al-deeb, M.A. Ticks and Tick-Borne Diseases of Livestock in the Middle East and North Africa: A Review. Insects 2021, 12, 83. [Google Scholar] [CrossRef]
- El-Ashker, M.; Hotzel, H.; Gwida, M. Molecular biological identification of Babesia, Theileria, and Anaplasma species in cattle in Egypt using PCR assays, gene sequence analysis and a novel DNA microarray. Vet. Parasitol. 2015, 207, 329–334. [Google Scholar] [CrossRef] [Green Version]
- Al-Hosary, A.; Răileanu, C.; Tauchmann, O.; Fischer, S.; Nijhof, A.M.; Silaghi, C. Epidemiology and genotyping of Anaplasma marginale and co-infection with piroplasms and other Anaplasmataceae in cattle and buffaloes from Egypt. Parasit. Vectors 2020, 13, 495. [Google Scholar] [CrossRef] [PubMed]
- Kachani, M.; Flach, E.J.; Williamson, S.; Ouhelli, H.; El Hasnaoui, M.; Spooner, M. The use of enzime-linke dimmunosorbent assay for tropical theilleriosis in Morocco. Prev. Vet. Med. 1995, 26, 329–339. [Google Scholar] [CrossRef]
- Dobbelaere, D.A.; Küenzi, P. The strategies of the Theileria parasite: A new twist in host-pathogen interactions. Curr. Opin. Immunol. 2004, 16, 524–530. [Google Scholar] [CrossRef] [PubMed]
- Fujisaki, K.; Kawazu, S.; Kamio, T. The taxonomy of the bovine Theileria spp. Parasitol. Today 1994, 10, 31–33. [Google Scholar] [CrossRef]
- Gubbels, M.J.; Hong, Y.; van der Weide, M.; Qi, B.; Nijman, I.J.; Guangyuan, L.; Jongejan, F. Molecular characterisation of the Theileria buffeli/orientalis group. Int. J. Parasitol. 2000, 30, 943–952. [Google Scholar] [CrossRef]
- Kakuda, T.; Shiki, M.; Kubota, S.; Sugimoto, C.; Brown, W.C.; Kosum, C.; Nopporn, S.; Onuma, M. Phylogeny of benign Theileria species from cattle in Thailand, China and the USA based on the major piroplasm surface protein and small subunit ribosomal RNA genes. Int. J. Parasitol. 1998, 28, 1261–1267. [Google Scholar] [CrossRef]
- Sivakumar, T.; Hayashida, K.; Sugimoto, C.; Yokoyama, N. Evolution and genetic diversity of Theileria. Infect Genet Evol. 2014, 27, 250–263. [Google Scholar] [CrossRef] [Green Version]
- Eamens, G.J.; Bailey, G.; Jenkins, C.; Gonsalves, J.R. Significance of Theileria orientalis types in individual affected beef herds in New South Wales based on clinical, smear and PCR findings. Vet. Parasitol. 2013, 196, 96–105. [Google Scholar] [CrossRef]
- Gebrekidan, H.; Gasser, R.B.; Baneth, G.; Yasur-Landau, D.; Nachum-Biala, Y.; Hailu, A.; Jabbar, A. Molecular characterization of Theileria orientalis from cattle in Ethiopia. Ticks Tick Borne Dis. 2016, 7, 742–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elsify, A.; Sivakumar, T.; Nayel, M.; Salama, A.; Elkhtam, A.; Rizk, M.; Mosaab, O.; Sultan, K.; Elsayed, S.; Igarashi, I.; et al. An epidemiological survey of bovine Babesia and Theileria parasites in cattle, buffaloes, and sheep in Egypt. Parasitol. Int. 2015, 64, 79–85. [Google Scholar] [CrossRef] [Green Version]
- Kumsa, B.; Signorini, M.; Teshale, S.; Tessarin, C.; Duguma, R.; Ayana, D.; Martini, M.; Cassini, R. Molecular detection of piroplasms in ixodid ticks infesting cattle and sheep in western Oromia, Ethiopia. Trop. Anim. Health Prod. 2014, 46, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Hornok, S.; Abichu, G.; Meli, M.L.; Tánczos, B.; Sulyok, K.M.; Gyuranecz, M.; Gönczi, E.; Farkas, R.; Hofmann-Lehmann, R. Influence of the biotope on the tick infestation of cattle and on the tick-borne pathogen repertoire of cattle ticks in Ethiopia. PLoS ONE 2014, 23, e106452. [Google Scholar] [CrossRef] [Green Version]
- Fahrimal, Y.; Gott, W.L.; Jamer, D.P. Detection of Babesia bovis carrier cattle by using polymerase chain reaction amplification of parasite DNA. J. Clin. Microbiol. 1992, 30, 1374–1379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahibi, H.; Rhalem, A.; Berrag, B.; Goff, W.L. Bovine babesiosis: Seroprevalence and ticks associated with cattle from two different regions of Morocco. Ann. N. Y. Acad. Sci. 1998, 849, 213–218. [Google Scholar] [CrossRef]
- Sadeddine, R.; Diarra, A.Z.; Laroche, M.; Mediannikov, O.; Righi, S.; Benakhla, A.; Dahmana, H.; Raoult, D.; Parola, P. Molecular identification of protozoal and bacterial organisms in domestic animals and their infesting ticks from north eastern Algeria. Ticks Tick Borne Dis. 2020, 11, 101330. [Google Scholar] [CrossRef] [PubMed]
- Adjou Moumouni, P.F.; Aboge, G.O.; Terkawi, M.A.; Masatani, T.; Cao, S.; Kamyingkird, K.; Jirapattharasate, C.; Zhou, M.; Wang, G.; Liu, M.; et al. Molecular detection and characterization of Babesia bovis, Babesia bigemina, Theileria species and Anaplasma marginale isolated from cattle in Kenya. Parasit. Vectors 2015, 8, 496. [Google Scholar] [CrossRef] [Green Version]
- Aktas, M.; Ozubek, S. Molecular and parasitological survey of bovine piroplasms in the Black Sea Region, including the first report of babesiosis associated with Babesia divergens inTurkey. J. Med. Entomol. 2015, 52, 1344–1350. [Google Scholar] [CrossRef]
- Noaman, V.; Ghadimipour, R.; Nabavi, R. First report of Babesia occultans in two symptomatic cows in Iran. Parasitol. Res. 2021, 120, 1915–1919. [Google Scholar] [CrossRef]
- Ros-Garcia, A.; M’ghirbi, Y.; Bouattour, A.; Hurtado, A. First detection of Babesia occultans in Hyalomma ticks from Tunisia. Parasitology 2011, 138, 578–582. [Google Scholar] [CrossRef] [PubMed]
- Aktas, M.; Vatansever, Z.; Ozubek, S. Molecular evidence for trans-stadial and transovarial transmission of Babesia occultans in Hyalomma marginatum and Rhipicephalus turanicus in Turkey. Vet. Parasitol. 2014, 204, 369–371. [Google Scholar] [CrossRef]
- Sun, M.; Guan, G.; Liu, Z.; Wang, J.; Wang, D.; Wang, S.; Ma, C.; Cheng, S.; Yin, H.; Luo, J. Molecular survey and genetic diversity of Babesia spp. and Theileria spp. in cattle in Gansu province China. Acta Parasitol. 2020, 65, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Rar, V.; Tkachev, S.; Tikunova, N. Genetic diversity of Anaplasma bacteria: Twenty years later. Infect. Genet. Evol. 2021, 91, 104833. [Google Scholar] [CrossRef]
- Kocan, K.M.; Delafuente, J.; Guglielmone, A.A.; Melendez, R.D. Antigens and alterative for control of Anaplasma marginale infection in cattle. Clin. Microbiol. Rev. 2003, 16, 698–712. [Google Scholar] [CrossRef] [Green Version]
- Mylonakis, M.E.; Theodorou, K.N. Canine monocytic ehrlichiosis: An update on diagnosis and treatment. Acta Vet. Brno 2017, 67, 299–317. [Google Scholar] [CrossRef] [Green Version]
- Foughali, A.A.; Ziam, H.; Aiza, A.; Boulkrout, H.; Berber, A.; Bitam, I.; Gharbi, M. Cross-sectional survey of cattle haemopathogens in Constantine, Northeast Algeria. Vet. Med. Sci. 2021, 7, 1237–1244. [Google Scholar] [CrossRef] [PubMed]
- M’ghirbi, Y.; Ros-García, A.; Iribar, P.; Rhaim, A.; Hurtado, A.; Bouattour, A.A. Molecular study of tick-borne haemoprotozoan parasites (Theileria and Babesia) in small ruminants in northern Tunisia. Vet. Parasitol. 2013, 198, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Ringo, A.E.; Adjou Moumouni, P.F.; Lee, S.-H.; Liu, M.; Khamis, Y.H.; Gao, Y.; Guo, H.; Zheng, W.; Efstratiou, A.; Galon, E.M.; et al. Molecular detection and characterization of tick-borne protozoan and rickettsial pathogens isolated from cattle on Pemba Island, Tanzania. Ticks Tick Borne Dis. 2018, 9, 1437–1445. [Google Scholar] [CrossRef] [PubMed]
- Abanda, B.; Paguem, A.; Abdoulmoumini, M.; Kingsley, M.T.; Renz, A.; Eisenbarth, A. Molecular identification and prevalence of tick-borne pathogens in zebu and taurine cattle in North Cameroon. Parasit. Vectors 2019, 12, 448. [Google Scholar] [CrossRef]
- Okal, M.N.; Odhiambo, B.K.; Otieno, P.; Bargul, J.L.; Masiga, D.; Villinger, J.; Kalayou, S. Anaplasma and Theileria Pathogens in Cattle of Lambwe Valley, Kenya: A Case for Pro-Active Surveillance in the Wildlife–Livestock Interface. Microorganisms 2020, 8, 1830. [Google Scholar] [CrossRef] [PubMed]
- Stuen, S.; Granquist, E.G.; Silaghi, C. Anaplasma phagocytophilum a widespread multi-host pathogen with highly adaptive strategies. Front. Cell. Infect. Microbiol. 2013, 3, 31. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.M.; Dumler, J.S.; Bakken, J.S.; Walker, D.H. Identification of a granulocytotropic Ehrlichia species as the etiologic agent of human disease. J. Clin. Microbiol. 1994, 32, 589–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakken, J.S.; Dumler, S. Human granulocytic anaplasmosis. Infect. Dis. Clin. N. Am. 2008, 22, 433–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stuen, S. Anaplasma phagocytophilum—The most widespread tick-borne infection in animals in Europe. Vet. Res. Commun. 2007, 31, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Ghafar, M.W.; EL-Enbaawy, M.I.; Ghoneim, M.A. Nested PCR detection of Anaplasma phagocytophilum in sheep and human contacts in Egypt. J. Egypt. Vet. Med. Assoc. 2005, 65, 131–144. [Google Scholar]
- Ait Lbacha, H.; Alali, S.; Zouagui, Z.; El Mamoun, L.; Rhalem, A.; Petit, E.; Haddad, N.; Gandoin, C.; Boulouis, H.J.; Maillard, R. High prevalence of Anaplasmas pp. in small ruminants in Morocco. Transbound. Emerg. Dis. 2017, 60, 250–263. [Google Scholar] [CrossRef]
- Elhamiani Khatat, S.; Daminet, S.; Kachani, M.; Leutenegger, C.; Duchateau, L.; El Amri, H.; Hing, M.; Azib, R.; Sahibi, H. Anaplasma spp. in dogs and owners in northwestern Morocco. Parasit. Vectors 2017, 10, 202. [Google Scholar] [CrossRef] [Green Version]
- Elhamiani Khatat, S.; Sahibi, H.; Hing, M.; Alaoui Moustain, I.; El Amri, H.; Benajiba, M.; Kachani, M.; Duchateau, L.; Daminet, S. Human Exposure to Anaplasma phagocytophilum in Two Cities of Northwestern Morocco. PLoS ONE 2016, 11, e0160880. [Google Scholar] [CrossRef]
- Elhamiani Khatat, S.; Khallaayoune, K.; Errafyk, N.; Van Gool, F.; Duchateau, L.; Daminet, S.; Kachani, M.; El Amri, H.; Azib, R.; Sahibi, H. Detection of Anaplasma spp. and Ehrlichia spp. antibodies, and Dirofilaria immitis antigens in dogs from seven locations of Morocco. Vet. Parasitol. 2017, 239, 86–89. [Google Scholar] [CrossRef] [PubMed]
- Chastagner, A.; Bailly, X.; Leblond, A.; Pradier, S.; Vourc’h, G. Single Genotype of Anaplasma phagocytophilum identified from ticks, Camargue, France. Emerg. Infect. Dis. 2013, 19, 825–826. [Google Scholar] [CrossRef]
- Chisu, V.; Zobba, R.; Lecis, R.; Sotgiu, F.; Masala, G.; Foxi, C.; Pisu, D.; Alberti, A. GroEL typing and phylogeny of Anaplasma species in ticks from domestic and wild vertebrates. Ticks Tick Borne Dis. 2018, 9, 31. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zheng, Y.C.; Ma, L.; Jia, N.; Jiang, B.G.; Jiang, R.R.; Huo, Q.B.; Wang, Y.W.; Liu, H.B.; Chu, Y.L.; et al. Human infection with a novel tick-borne Anaplasma species in China: A surveillance study. Lancet Infect. Dis. 2015, 15, 663–670. [Google Scholar] [CrossRef]
- Zhou, Z.; Nie, K.; Tang, C.; Wang, Z.; Zhou, R.; Hu, S.; Zhang, Z. Phylogenetic analysis of the genus Anaplasma in Southwestern China based on 16S rRNA sequence. Res. Vet. Sci. 2010, 89, 262–265. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, K.; Zhao, S.; Yan, Y.; Wang, H.; Jing, J.; Jian, F.; Wang, R.; Zhang, L.; Ning, C. Detection and phylogenetic characterization of Anaplasma capra: An emerging pathogen in sheep and goats in China. Front. Cell. Infect. Microbiol. 2018, 8, 283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seo, M.G.; Ouh, I.O.; Lee, H.; Geraldino, P.J.L.; Rhee, M.H.; Kwon, O.D.; Kwak, D. Differential identification of Anaplasma in cattle and potential of cattle to serve as reservoirs of Anaplasma capra, an emerging tick-borne zoonotic pathogen. Vet. Microbiol. 2018, 226, 15–22. [Google Scholar] [CrossRef]
- Shi, K.; Li, J.; Yan, Y.; Chen, Q.; Wang, K.; Zhou, Y.; Li, D.; Chen, Y.; Yu, F.; Peng, Y.; et al. Dogs as new hosts for the emerging zoonotic pathogen Anaplasma capra in China. Front. Cell. Infect. Microbiol. 2019, 9, 394. [Google Scholar] [CrossRef]
- Jouglin, M.; Blanc, B.; de la Cotte, N.; Bastian, S.; Ortiz, K.; Malandrin, L. First detection and molecular identification of the zoonotic Anaplasma capra in deer in France. PLoS ONE 2019, 14, e0219184. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y.; Lu, C.; Yan, Y.; Song, J.; Pei, Z.; Gong, P.; Wang, R.; Zhang, L.; Jian, F.; Ning, C. The Novel Zoonotic Pathogen, Anaplasma capra, Infects Human Erythrocytes, HL-60, and TF-1 Cells In Vitro. Pathogens 2021, 10, 600. [Google Scholar] [CrossRef] [PubMed]
- Harvey, J.W.; Simpson, C.F.; Gaskin, J.M. Cyclic thrombocytopenia induced by a Rickettsia-like agent in dogs. J. Infect. Dis. 1978, 137, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Qurollo, B.A.; Balakrishnan, N.; Cannon, C.Z.; Maggi, R.G.; Breitschwerdt, E.B. Co- infection with Anaplasma platys, Bartonella henselae, Bartonella koehlerae and ‘Candidatus Mycoplasma haemominutum’ in a cat diagnosed with splenic plasmacytosis and multiple myeloma. J. Feline Med. Surg. 2014, 16, 713–720. [Google Scholar] [CrossRef] [PubMed]
- Arraga-Alvarado, C.M.; Qurollo, B.A.; Parra, O.C.; Berrueta, M.A.; Hegarty, B.C.; Breitschwerdt, E.B. Case report: Molecular evidence of Anaplasma platys infection in two women from Venezuela. Am. J. Trop. Med. Hyg. 2014, 91, 1161–1165. [Google Scholar] [CrossRef]
- Dahmani, M.; Davoust, B.; Benterki, M.S.; Fenollar, F.; Raoult, D.; Mediannikov, O. Development of a new PCR-based assay to detect Anaplasmataceae and the first report of Anaplasma phagocytophilum and Anaplasma platys in cattle from Algeria. Comp. Immunol. Microbiol. Infect. Dis. 2015, 39, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Li, J.; Wang, Y.W.; Jiang, B.G.; Liu, H.B.; Wei, R.; Jiang, R.-R.; Cui, X.-M.; Li, L.-F.; Yuan, T.-T.; et al. Anaplasma platys-like infection in goats, Beijing, China. Vector Borne Zoonotic Dis. 2020, 20, 755–762. [Google Scholar] [CrossRef]
- Alhassan, A.; Hove, P.; Sharma, B.; Matthew-Belmar, V.; Karasek, I.; Lanza-Perea, M.; Werners, A.H.; Wilkerson, M.J.; Ganta, R.R. Molecular detection and characterization of Anaplasma platys and Ehrlichia canis in dogs from the Caribbean. Ticks Tick Borne Dis. 2021, 12, 101727. [Google Scholar] [CrossRef] [PubMed]
- Aktas, M.; Ozubek, S. Molecular evidence for trans-stadial transmission of Anaplasma platys by Rhipicephalus sanguineus sensu lato under field conditions. Med. Vet. Entomol. 2018, 32, 78–83. [Google Scholar] [CrossRef]
- Atif, F.A. Alpha proteobacteria of genus Anaplasma (Rickettsiales: Anaplasmataceae): Epidemiology and characteristics of Anaplasma species related to veterinary and public health importance. Parasitology 2016, 143, 659–685. [Google Scholar] [CrossRef]
- Battilani, M.; De Arcangeli, S.; Balboni, A.; Dondi, F. Genetic diversity and molecular epidemiology of Anaplasma. Infect. Genet. Evol. 2017, 49, 195–211. [Google Scholar] [CrossRef]
- Koh, F.X.; Panchadcharam, C.; Sitam, F.T.; Tay, S.T. Molecular investigation of Anaplasma spp. in domestic and wildlife animals in Peninsular Malaysia. Vet. Parasitol. Reg. Stud. Rep. 2018, 13, 141–147. [Google Scholar] [CrossRef]
- Gajadhar, A.A.; Lobanov, V.; Scandrett, W.B.; Campbell, J.; Al-Adhami, B. A novel Ehrlichia genotype detected in naturally infected cattle in North America. Vet. Parasitol. 2010, 173, 324–329. [Google Scholar] [CrossRef]
- Lobanov, V.A.; Gajadhar, A.A.; Al-Adhami, B.; Schwantje, H.M. Molecular study of free-ranging mule deer and white-tailed deer from British Columbia, Canada, for evidence of Anaplasma spp. and Ehrlichia spp. Transbound. Emerg. Dis. 2011, 59, 233–243. [Google Scholar] [CrossRef] [PubMed]
- Aguiar, D.M.; Ziliani, T.F.; Zhang, X.; Melo, A.L.; Braga, I.A.; Witter, R.; Freitas, L.C.; Rondelli, A.L.; Luis, M.A.; Sorte, E.C.; et al. A novel Ehrlichia genotype strain distinguished by the TRP36 gene naturally infects cattle in Brazil and causes clinical manifestations associated with ehrlichiosis. Ticks Tick Borne Dis. 2014, 5, 537–544. [Google Scholar] [CrossRef] [PubMed]
- Aguiar, D.M.; Araújo, J.P., Jr.; Nakazato, L.; Bard, E.; Aguilar-Bultet, L.; Vorimore, F.; Popov, V.L.; Colodel, E.M.; Cabezas-Cruz, A. Isolation and Characterization of a Novel Pathogenic Strain of Ehrlichia minasensis. Microorganisms 2019, 7, 528. [Google Scholar] [CrossRef] [Green Version]
- Cicculi, V.; Masse, S.; Capai, L.; de Lamballerie, X.; Charrel, R.; Falchi, A. First detection of Ehrlichia minasensis in Hyalomma marginatum ticks collected from cattle in Corsica, France. Vet. Med. Sci. 2019, 5, 243–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clarridge, J.E., III. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin. Microbiol. Rev. 2004, 17, 840–862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez-Murcia, A.J.; Antón, A.I.; Rodrîguez-Valera, F. Patterns of sequence variation in two regions of the 16S rRNA multigene family of Escherichia coli. Int. J. Syst. Bacteriol. 1999, 49, 601–610. [Google Scholar] [CrossRef] [Green Version]
- Estrada-Peña, A.; Bouattour, A.; Camicas, J.L.; Walker, A.R. Ticks of Domestic Animals in the Mediterranean Region; University of Zaragoza: Zaragoza, Spain, 2004; p. 131. [Google Scholar]
- Apanaskevich, D.A.; Horak, I.G. The genus Hyalomma Koch, 1844: V. re-evaluation of the taxonomic rank of taxa comprising the H. (Euhyalomma) marginatum Koch complex of species (Acari: Ixodidae) with redescription of all parasitic stages and notes on biology. Int. J. Acarol. 2008, 34, 13–42. [Google Scholar] [CrossRef]
- Hall, T. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [Green Version]
Zone | Location | H. marginatum | H. a. excavatum | H. detritum | H. lusitanicum | H. dromedarii | H. impeltatum | R. sanguineus s.l. | R. bursa | Total Ticks (%) |
---|---|---|---|---|---|---|---|---|---|---|
Middle Atlas mountains | ACH | 72 | 173 | 0 | 12 | 6 | 0 | 25 | 7 | 295 (10.9) |
KHM | 78 | 132 | 1 | 7 | 6 | 0 | 30 | 12 | 266 (9.8) | |
OLM | 76 | 143 | 3 | 9 | 3 | 0 | 7 | 2 | 243 (9) | |
The Gharb Plains | ARB | 114 | 81 | 7 | 13 | 0 | 2 | 22 | 14 | 253 (9.4) |
JEM | 188 | 80 | 27 | 6 | 12 | 10 | 62 | 38 | 423 (15.6) | |
SAY | 157 | 59 | 28 | 14 | 11 | 14 | 36 | 24 | 343 (12.7) | |
The Coastal Plains | ROM | 60 | 80 | 10 | 20 | 1 | 1 | 28 | 18 | 218 (8.0) |
SKH | 110 | 105 | 20 | 6 | 28 | 0 | 21 | 12 | 302 (11.2) | |
SYZ | 197 | 41 | 20 | 14 | 32 | 0 | 37 | 18 | 359 (13.3) | |
Total ticks (%) | 1052 (38.9) | 894 (33.1) | 116 (4.3) | 101 (3.7) | 99 (3.7) | 27 (1.1) | 268 (9.9) | 145 (5.4) | 2702 (100) |
Strain of Reference | PI (%) | Country | Accession Number | Number of Positives (n = 131) |
---|---|---|---|---|
B. occultans | 100.00 | Pakistan | MN726547.1 | 2 |
B. bovis | 99.74 | USA | MH045746.1 | 5 |
B. bovis | 99.72 | USA | MH045761.1 | 1 |
T. orientalis | 100.00 | China | MH208641.1 | 18 |
T. buffeli | 100.00 | Sardinia | MT242566.1 | 24 |
T. annulata | 100.00 | Italy | MT341858.1 | 81 |
Strain of Reference | PI (%) | Country | Accession Number | Number of Positives (257) |
---|---|---|---|---|
E. minasensis | 99.42 | Australia | MH500005.1 | 2 |
A. bovis | 100.00 | China | MH255938.1 | 4 |
A. bovis | 99.71 | China | KP314244.1 | 1 |
A. platys | 100.00 | Panama | CP046391.1 | 7 |
A. capra | 100.00 | Korea | LC432126.1 | 21 |
A. capra | 99.71 | Korea | LC432114.1 | 5 |
A. capra | 99.71 | Angola | MT898985.1 | 3 |
A. marginale | 100.00 | Hungary | MH020201.1 | 131 |
A. marginale | 100.00 | Kenya | MN266934.1 | 8 |
A. phagocytophilum | 99.70 | Korea | GU064895.1 | 30 |
A. phagocytophilum | 100.00 | Russia | HM366583.1 | 23 |
A. phagocytophilum | 100.00 | Korea | MK239931.1 | 13 |
A. phagocytophilum | 100.00 | Canada | HG916767.1 | 3 |
A. phagocytophilum | 99.71 | Korea | MN559940.1 | 3 |
A. phagocytophilum | 100.00 | China | KF569909.1 | 2 |
E. canis (Bovine Anaplasma sp.) | 97.38 | Iraq | MN227484.1 | 1 |
Co-Infection | Number of Positives | Prevalence (%) |
---|---|---|
T. annulata, A. phagocytophilum | 20 | 23.8 |
T. annulata, A. marginale | 16 | 19.0 |
T. buffeli, A. marginale | 15 | 17.9 |
T. orientalis, A. marginale | 9 | 10.7 |
T. annulata, A. capra | 5 | 5.9 |
T. orientalis, A. capra | 4 | 4.8 |
T. annulata, A. platys | 3 | 3.6 |
T. buffeli, A. capra | 3 | 3.6 |
T. orientalis, A. phagocytophilum | 3 | 3.6 |
T. annulata, A. bovis | 2 | 2.3 |
T. buffeli, A. phagocytophilum | 2 | 2.3 |
T. buffeli, A. bovis | 1 | 1.2 |
T. orientalis, A. platys | 1 | 1.2 |
A. marginale | T. annulata | ||||
---|---|---|---|---|---|
Variable | Level | Percentage Infection (Lower, Upper) | p-Value | Percentage Infection (Lower, Upper) | p-Value |
Location | ACH | 58 (44; 71) | 0.0001 | 0 (0; 100) | <0.0001 |
KHM | 41 (29; 54) | 3 (0; 13) | |||
OLM | 48 (35; 61) | 1 (0; 11) | |||
ARB | 57 (44; 69) | 22 (13; 34) | |||
JEM | 24 (15; 36) | 43 (32; 55) | |||
SAY | 23 (14; 35) | 20 (11; 31) | |||
ROM | 50 (34; 65) | 17 (8; 31) | |||
SKH | 55 (43; 66) | 24 (15; 36) | |||
SYZ | 48 (35; 60) | 41 (29; 54) | |||
Sex | Female | 81 (71; 88) | <0.0001 | 4 (0; 100) | 0.0001 |
Male | 36 (32; 41) | 0 (0; 100) | |||
Cow type | Beef | 80 (72; 87) | 0.0001 | 0 (0; 100) | <0.0001 |
Dairy | 33 (28; 38) | 5 (0; 100) | |||
Farm type | Modern | 75 (67; 82) | 0.0001 | 0 (0; 100) | <0.0001 |
Traditional | 32 (27; 38) | 6 (0; 100) | |||
Health status | Healthy | 44 (39; 48) | 0.4121 | 3 (0; 100) | 0.0255 |
Sick | 54 (31; 76) | 12 (0; 100) | |||
Breed | Cross-breed | 47 (42; 53) | 0.0295 | 5 (0; 100) | 0.0010 |
Local breed | 34 (25; 44) | 0 (0; 100) | |||
Age | −0.007 (0.003) | 0.0269 | 0.002 (0.003) | <0.0001 | |
Number of ticks | −0.042 (0.020) | 0.0369 | 0.073 (0.022) | 0.0011 |
Zone | Study Locations | Number of Blood Samples |
---|---|---|
Middle Atlas mountains | Ouelmes (OLM) | 65 |
Ait Ichou (ACH) | 48 | |
Khemisset (KHM) | 58 | |
Sub-total | 171 | |
The Gharb Plains | Jorf El Melha (JEM) | 56 |
Sidi Ayach (SAY) | 57 | |
Arabaoua (ARB) | 55 | |
Sub-total | 168 | |
The Coastal Plains | Skhirat (SKH) | 60 |
Sidi Yahya Zaer (SYZ) | 57 | |
Rommani (ROM) | 52 | |
Sub-total | 169 | |
Total | 508 |
General Target | Forward Primer 5′→3′ | Reverse Primer 5′→3′ | Fragment Size (bp) | Annealing T (°C) | Reference |
---|---|---|---|---|---|
Theileria/Babesia spp. (18S rRNA) (RLB-F2/R2) | GACACAGGGAGGTAGTGACAAG | CTAAGAATTTCACCTCTGACAGT | 460–500 | 58 | [53] |
Anaplasma/Ehrlichia spp. (16S rRNA) (Ehr-16S-D1/R) | GGTACCTAYAGAAGAAGTCC | TAGCACTCATCGTTTACAGC | 345 | 54 | [76] |
Rickettsia spp. (16S rRNA) (Rick-F1/R2) | GAACGCTATCGGTATGCTTAACACA | CATCACTCACTCGGTATTGCTGGA | 350–400 | 60 | [53] |
Pathogen | Accession Number |
---|---|
Theileria annulata | OL305716 |
Theileria buffeli | OL305720 OL305719 OL305723 |
Theileria orientalis | OL305721 OL305718 |
Babesia bovis | OL305722 OL305724 |
Babesia occultans | OL305717 |
Anaplasma marginale | OK606081 OK606082 |
Anaplasma phagocytophilum | OK606078 OK606088 OK606076 OK606072 OK606077 OK606073 |
Anaplasma capra | OK606083 OK606084 OK606089 |
Anaplasma platys | OK606071 |
Anaplasma bovis | OK606086 OK606085 |
Bovine Anaplasma sp. | OK606070 |
Ehrlichia minasensis | OK606068 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elhachimi, L.; Rogiers, C.; Casaert, S.; Fellahi, S.; Van Leeuwen, T.; Dermauw, W.; Valcárcel, F.; Olmeda, Á.S.; Daminet, S.; Khatat, S.E.H.; et al. Ticks and Tick-Borne Pathogens Abound in the Cattle Population of the Rabat-Sale Kenitra Region, Morocco. Pathogens 2021, 10, 1594. https://doi.org/10.3390/pathogens10121594
Elhachimi L, Rogiers C, Casaert S, Fellahi S, Van Leeuwen T, Dermauw W, Valcárcel F, Olmeda ÁS, Daminet S, Khatat SEH, et al. Ticks and Tick-Borne Pathogens Abound in the Cattle Population of the Rabat-Sale Kenitra Region, Morocco. Pathogens. 2021; 10(12):1594. https://doi.org/10.3390/pathogens10121594
Chicago/Turabian StyleElhachimi, Latifa, Carolien Rogiers, Stijn Casaert, Siham Fellahi, Thomas Van Leeuwen, Wannes Dermauw, Félix Valcárcel, Ángeles Sonia Olmeda, Sylvie Daminet, Sarah El Hamiani Khatat, and et al. 2021. "Ticks and Tick-Borne Pathogens Abound in the Cattle Population of the Rabat-Sale Kenitra Region, Morocco" Pathogens 10, no. 12: 1594. https://doi.org/10.3390/pathogens10121594
APA StyleElhachimi, L., Rogiers, C., Casaert, S., Fellahi, S., Van Leeuwen, T., Dermauw, W., Valcárcel, F., Olmeda, Á. S., Daminet, S., Khatat, S. E. H., Sahibi, H., & Duchateau, L. (2021). Ticks and Tick-Borne Pathogens Abound in the Cattle Population of the Rabat-Sale Kenitra Region, Morocco. Pathogens, 10(12), 1594. https://doi.org/10.3390/pathogens10121594