Salmonella Infection in Nursery Piglets and Its Role in the Spread of Salmonellosis to Further Production Periods
Abstract
:1. Introduction
2. Results
2.1. Salmonella Isolation, Serotyping, and Serology in Piglets
2.2. Salmonella Isolation, Serotyping, and Serology in Gilt Development Units (GDU)
2.3. Pulsed-Field Gel Electrophoresis (PFGE)
2.4. Antimicrobial Resistance
3. Discussion
4. Materials and Methods
4.1. Farm Selection
4.2. Collection of Samples
4.3. Bacteriology
4.4. Pulsed-Field Gel Electrophoresis Analysis
4.5. Antimicrobial Agent Susceptibility
4.6. Serology
4.7. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Food Safety Authority (EFSA). Report of the Task Force on Zoonoses Data Collection on the analysis of the baseline survey on the prevalence of Salmonella in slaughter pigs in the EU, 2006–2007. Part A: Salmonella prevalence estimates. EFSA J. 2008, 135, 1–111. [Google Scholar] [CrossRef]
- Bonardi, S. Salmonella in the pork production chain and its impact on human health in the European Union. Epidemiol. Infect. 2017, 145, 1513–1526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Argüello, H.; Álvarez-Ordoñez, A.; Carvajal, A.; Rubio, P.; Prieto, M. Role of slaughtering in Salmonella spreading and control in pork production. J. Food Prot. 2013, 76, 899–911. [Google Scholar] [CrossRef] [PubMed]
- Swart, A.; Simons, R.; Evers, E.; Snary, E.; Swanenburg, M. Modeling of Salmonella contamination in the pig slaughterhouse. Risk Anal. 2016, 36, 498–515. [Google Scholar] [CrossRef]
- Alban, L.; Baptista, F.M.; Møgelmose, V.; Sørensen, L.L.; Christensen, H.; Aabo, S.; Dahl, J. Salmonella surveillance and control for finisher pigs and pork in Denmark—A case study. Food Res. Int. 2012, 45, 656–665. [Google Scholar] [CrossRef]
- Méroc, E.; Strubbe, M.; Vangroenweghe, F.; Czaplicki, G.; Vermeersch, K.; Hooyberghs, J.; Van Der Stede, Y. Evaluation of the Salmonella surveillance program in Belgian pig farms. Prev. Vet. Med. 2012, 105, 309–314. [Google Scholar] [CrossRef]
- Nair, S.; Farzan, A.; Poljak, Z.; Friendship, R. Identifying Active Salmonella Infections in Swine Nurseries Using Serology and Bacterial Culture and Evaluating Associated Risk Factors. Animals (Basel) 2020, 10, 1517. [Google Scholar] [CrossRef]
- Konstantinov, S.R.; Awati, A.A.; Williams, B.A.; Miller, B.G.; Jones, P.; Stokes, C.R.; Akkermans, A.D.; Smidt, H.; De Vos, W.M. Post-natal development of the porcine microbiota composition and activities. Environ. Microbiol. 2006, 8, 1191–1199. [Google Scholar] [CrossRef]
- Gresse, R.; Chaucheyras-Durand, F.; Fleury, M.A.; Van De Wiele, T.; Forano, E.; Blanquet-Diot, S. Gut Microbiota Dysbiosis in Postweaning Piglets: Understanding the Keys to Health. Trends Microbiol. 2017, 25, 851–873. [Google Scholar] [CrossRef]
- Bianchi, A.T.; Moonen-Leusen, H.W.; Van Der Heijden, P.J.; Bokhout, B.A. The use of a double antibody sandwich ELISA and monoclonal antibodies for the assessment of porcine IgM, IgG and IgA concentrations. Vet. Immunol. Immunopathol. 1995, 44, 309–317. [Google Scholar] [CrossRef]
- Callaway, T.R.; Morrow, J.L.; Edrington, T.S.; Genovese, K.J.; Dowd, S.; Carroll, J.; Dailey, J.W.; Harvey, R.B.; Poole, T.L.; Anderson, R.C.; et al. Social stress increases fecal shedding of Salmonella Typhimurium by early weaned piglets. Curr. Issues Intest. Microbiol. 2006, 7, 65–71. [Google Scholar] [PubMed]
- Weber, N.R.; Nielsen, J.P.; Hjulsager, C.K.; Jorsal, S.E.; Haugegaard, S.; Hansen, C.F.; Pedersen, K.S. Comparison of bacterial culture and qPCR testing of rectal and pen floor samples as diagnostic approaches to detect enterotoxic Escherichia coli in nursery pigs. Prev. Vet. Med. 2017, 143, 61–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Medicines Agency: EMA/CVMP/AWP/158821/2014—Concept Paper on Use of Aminoglycosides in Animals in the European Union: Development of Resistance and Impact on Human and Animal Health. July 2014. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/concept-paper-use-aminoglycosides-animals-european-union-development-resistance-impact-human-animal_en.pdf (accessed on 30 November 2020).
- European Medicines Agency: EMA/CVMP/CHMP/231573/2016—Updated Advice on the Use of Colistin Products in Animals within the European Union: Development of Resistance and Possible Impact on Human and Animal Health. July 2016. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/updated-advice-use-colistin-products-animals-within-european-union-development-resistance-possible_en-0.pdf (accessed on 30 November 2020).
- Quesada, A.; Porrero, M.C.; Téllez, S.; Palomo, G.; García, M.; Domínguez, L. Polymorphism of genes encoding PmrAB in colistin-resistant strains of Escherichia coli and Salmonella enterica isolated from poultry and swine. J. Antimicrob. Chemother. 2015, 70, 71–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casanova-Higes, A.; Marín-Alcalá, C.M.; Andrés-Barranco, S.; Cebollada-Solanas, A.; Alvarez, J.; Mainar-Jaime, R.C. Weaned piglets: Another factor to be considered for the control of Salmonella infection in breeding pig farms. Vet. Res. 2019, 50, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ainslie-García, M.H.; Farzan, A.; Newman, J.E.; Friendship, R.M.; Lillie, B.N. Salmonella fecal shedding in pigs from birth to market and its association with the presence of Salmonella in palatine tonsils and submandibular lymph nodes at slaughter. Can. J. Vet. Res. 2018, 82, 249–255. [Google Scholar]
- Mannion, C.; Fanning, J.; Mclernon, J.; Lendrum, L.; Gutierrez, M.; Duggan, S.; Egan, J. The role of transport, lairage and slaughter processes in the dissemination of Salmonella spp. in pigs in Ireland. Food Res. Int. 2012, 45, 871–879. [Google Scholar] [CrossRef]
- Hernández, M.; Gómez-Laguna, J.; Luque, I.; Herrera-León, S.; Maldonado, A.; Reguillo, L.; Astorga, R.J. Salmonella prevalence and characterization in a free-range pig processing plant: Tracking in trucks, lairage, slaughter line and quartering. Int. J. Food Microbiol. 2013, 162, 48–54. [Google Scholar] [CrossRef]
- Cevallos-Almeida, M.; Fablet, C.; Houdayer, C.; Dorenlor, V.; Eono, F.; Denis, M.; Kerouanton, A. Longitudinal study describing time to Salmonella spp. seroconversion in piglets on three farrow-to-finish farms. Vet. Rec. Open 2019, 6, e000287. [Google Scholar] [CrossRef] [Green Version]
- García-Feliz, C.; Carvajal, A.; Collazos, J.A.; Rubio, P. Herd-level risk factors for faecal shedding of Salmonella enterica in Spanish fattening pigs. Prev. Vet. Med. 2009, 91, 130–136. [Google Scholar] [CrossRef]
- Davies, P.R.; Funk, J.A.; Morgan-Morrow, W.E. Fecal shedding of Salmonella by gilts before and after introduction to a swine breeding farm. Swine Health Prod. 2000, 8, 25–29. [Google Scholar]
- European Food Safety Authority (EFSA). Analysis of the baseline survey on the prevalence of Salmonella in holdings with breeding pigs, in the EU, 2008, Part A: Salmonella prevalence estimates. EFSA J. 2009, 7, 93. [Google Scholar] [CrossRef]
- Denis, M.; Houard, E.; Fablet, A.; Rouxel, S.; Salvat, G. Distribution of serotypes and genotypes of Salmonella enterica species in French pig production. Vet. Rec. 2013, 173, 370. [Google Scholar] [CrossRef] [PubMed]
- Gosling, R.J.; Mueller-Doblies, D.; Martelli, F.; Nunez-Garcia, J.; Kell, N.; Rabie, A.; Wales, A.D.; Davies, R.H. Observations on the distribution and persistence of monophasic Salmonella Typhimurium on infected pig and cattle farms. Vet. Microbiol. 2018, 227, 90–96. [Google Scholar] [CrossRef]
- Campos, J.; Mourão, J.; Peixe, L.; Antunes, P. Non-typhoidal Salmonella in the Pig Production Chain: A Comprehensive Analysis of Its Impact on Human Health. Pathogens 2019, 8, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ministerio de Agricultura, Pesca y Alimentación (MAPA). Informe de Resultados 2019. “Programa de Vigilancia de Zoonosis y Resistencias a Antimicrobianos: Diseño del Programa, Toma de Muestras, Aislamiento, Identificación y Caracterización de Microorganismos Sometidos al Programa de Vigilancia, con Especial Referencia al Aislamiento e Identificación de Cepas de E. coli Productor de ESBL y/o AmpC y/o Carbapenemasas, 2019”. 2020. Available online: https://www.mapa.gob.es/es/ganaderia/temas/sanidad-animal-higiene-ganadera/2019_informevigilanciazoonosisyram5_tcm30-551462.pdf (accessed on 5 December 2020).
- European Food Safety Authority (EFSA); European Centre for Disease Prevention and Control (ECDC). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2014. EFSA J. 2015, 13, 4329. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA); European Centre for Disease Prevention and Control (ECDC). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2015. EFSA J. 2016, 14, 4634. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA); European Centre for Disease Prevention and Control (ECDC). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016. EFSA J. 2017, 15, 5077. [Google Scholar] [CrossRef] [Green Version]
- European Food Safety Authority (EFSA); European Centre for Disease Prevention and Control (ECDC). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. EFSA J. 2018, 16, 5500. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Scientific report on the European Union One Health 2018 Zoonoses Report. EFSA J. 2019, 17, 5926. [Google Scholar] [CrossRef] [Green Version]
- Pornsukarom, S.; Patchanee, P.; Erdman, M.; Cray, P.F.; Wittum, T.; Lee, J.; Gebreyes, W.A. Comparative Phenotypic and Genotypic Analyses of Salmonella Rissen that Originated from Food Animals in Thailand and United States. Zoonoses Public Health 2015, 62, 151–158. [Google Scholar] [CrossRef]
- World Health Organization. Critically Important Antimicrobials for Human Medicine. 6th Revision. 2018. Available online: https://apps.who.int/iris/bitstream/handle/10665/312266/9789241515528-eng.pdf?ua=1 (accessed on 30 November 2020).
- European Food Safety Authority (EFSA); European Centre for Disease Prevention and Control (ECDC). The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2017/2018. EFSA J. 2020, 18, 6007. [Google Scholar] [CrossRef] [Green Version]
- Seiffert, S.N.; Hilty, M.; Perreten, V.; Endimiani, A. Extended-spectrum cephalosporin-resistant Gram-negative organisms in livestock: An emerging problem for human health? Drug Resist. Updates 2013, 16, 22–45. [Google Scholar] [CrossRef] [PubMed]
- Sevilla, E.; Vico, J.P.; Delgado-Blas, J.F.; González-Zorn, B.; Marín, C.M.; Uruén, C.; Martín-Burriel, I.; Bolea, R.; Mainar-Jaime, R.C. Resistance to colistin and production of extended-spectrum β-lactamases and/or AmpC enzymes in Salmonella isolates collected from healthy pigs in Northwest Spain in two periods: 2008–2009 and 2018. Int. J. Food Microbiol. 2020, 10, 108967. [Google Scholar] [CrossRef] [PubMed]
- Nollet, N.; Houf, K.; Dewulf, J.; Duchateau, L.; De Zutter, L.; De Kruif, A.; Maes, D. Distribution of Salmonella strains in farrow-to-finish pig herds: A longitudinal study. J. Food Prot. 2005, 68, 2012–2021. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Analysis of the baseline survey of Salmonella in holdings with breeding pigs, in the EU, 2008. Part B: Analysis of factors potentially associated with Salmonella pen positivity. EFSA J. 2011, 9, 2329. [Google Scholar] [CrossRef] [Green Version]
- Animal and Plant Health Agency (APHA); Biomathematics and Risk Research Workgroup; Martínez, J.M.; McCarthy, C.; Taylor, R.A. Livestock Health and Food Chain Risk Assessment. EFSA J. 2020, 18, e181111. [Google Scholar] [CrossRef]
- Funk, J.; Gebreyes, W.A. Risk factors associated with Salmonella prevalence on swine farms. J. Swine Health Prod. 2004, 12, 246–251. [Google Scholar]
- Garrido, V.; Sánchez, S.; San Román, B.; Fraile, L.; Migura-García, L.; Grilló, M.J. Salmonella Infection in Mesenteric Lymph Nodes of Breeding Sows. Foodborne Pathog. Dis. 2020, 17, 411–417. [Google Scholar] [CrossRef]
- Berge, A.C.; Wierup, M. Nutritional strategies to combat Salmonella in mono-gastric food animal production. Animal 2012, 6, 557–564. [Google Scholar] [CrossRef] [Green Version]
- Tran, T.H.T.; Everaert, N.; Bindelle, J. Review on the effects of potential prebiotics on controlling intestinal enteropathogens Salmonella and Escherichia coli in pig production. J. Anim. Physiol. Anim. Nutr. 2018, 102, 17–32. [Google Scholar] [CrossRef] [Green Version]
- De La Cruz, M.L.; Conrado, I.; Nault, A.; Perez, A.; Dominguez, L.; Alvarez, J. Vaccination as a control strategy against Salmonella infection in pigs: A systematic review and meta-analysis of the literature. Res. Vet. Sci. 2017, 114, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.P.; Andres, V.; Martelli, F.; Gosling, B.; Marco-Jimenez, F.; Vaughan, K.; Tchorzewska, M.; Davies, R. Maternal vaccination as a Salmonella Typhimurium reduction strategy on pig farms. J. Appl. Microbiol. 2018, 124, 274–285. [Google Scholar] [CrossRef] [PubMed]
- Omonijo, F.A.; Ni, L.; Gong, J.; Wang, Q.; Lahaye, L.; Yang, C. Essential oils as alternatives to antibiotics in swine production. Anim. Nutr. 2018, 4, 126–136. [Google Scholar] [CrossRef]
- Fabà, L.; Litjens, R.; Allaart, J.; Van Den Hil, P.R. Feed additive blends fed to nursery pigs challenged with Salmonella. J. Anim. Sci. 2020, 98, skz382. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.P.; Andres, V.; Cheney, T.E.; Martelli, F.; Gosling, R.; Marier, E.; Rabie, A.; Gilson, D.; Davies, R.H. How do pig farms maintain low Salmonella prevalence: A case-control study. Epidemiol. Infect. 2018, 146, 1909–1915. [Google Scholar] [CrossRef] [Green Version]
- Issenhuth-Jeanjean, S.; Roggentin, P.; Mikoleit, M.; Guibourdenche, M.; De Pinna, E.; Nair, S.; Fields, P.I.; Weill, F.X. Supplement 2008–2010 (no. 48) to the White-Kauffmann-Le Minor scheme. Res. Microbiol. 2014, 165, 526–530. [Google Scholar] [CrossRef] [Green Version]
- Ribot, E.M.; Fair, M.A.; Gautom, R.; Cameron, D.N.; Hunter, S.B.; Swaminathan, B.; Barrett, T.J. Standardization of pulsed-field gel electrophoresis protocols for the subtyping of Escherichia coli O157:H7, Salmonella, and Shigella for PulseNet. Foodborne Pathog. Dis. 2006, 3, 59–67. [Google Scholar] [CrossRef] [Green Version]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 29th ed.; Approved Standard, CLSI Document M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2019. [Google Scholar]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- European Committee on Antimicrobial Susceptibility Testing (EUCAST). Clinical Breakpoints and Dosing of Antibiotics. Version 10.0. Available online: https://www.eucast.org/clinical_breakpoints/ (accessed on 30 November 2020).
- Nollet, N.; Maes, D.; Duchateau, L.; Hautekiet, V.; Houf, K.; Van Hoof, J.; De Zuttera, L.; De Kruif, A.; Geers, R. Discrepancies between the isolation of Salmonella from mesenteric lymph nodes and the results of serological screening in slaughter pigs. Vet. Res. 2005, 36, 545–555. [Google Scholar] [CrossRef] [Green Version]
- Vico, J.P.; Engel, B.; Buist, W.G.; Mainar-Jaime, R.C. Evaluation of three commercial enzyme-linked immunosorbent assays for the detection of antibodies against Salmonella spp. in meat juice from finishing pigs in Spain. Zoonoses Public Health 2010, 57, 107–114. [Google Scholar] [CrossRef]
Farm | No. of Piglets | No. of MLN-Positive (%) | No. of IC-Positive (%) | No. of IC- and MLN-Positive (%) ** |
---|---|---|---|---|
A | 96 | 39 (40.6) | 47 (48.9) | 31 (56.4) |
B | 75 | 34 (45.3) | 26 (34.7) | 20 (50.0) |
C | 89 | 26 (29.2) | 34 (38.2) | 22 (57.9) |
D | 49 | 29 (59.2) | 22 (44.9) | 20 (64.5) |
E | 80 | 14 (17.5) | 16 (20.0) | 11 (57.9) |
Total | 389 | 142 (36.5) | 145 (37.3) | 104 (56.8) |
Farm | Piglet Isolates | No. of Piglets with the Same Serotype in MLN–IC | GDU Isolates | ||||
---|---|---|---|---|---|---|---|
IC | MLN | ||||||
Serotype | No. (%) | Serotype | No. (%) | Serotype | No. (%) | ||
A | Rissen | 25 (53.2) | Rissen | 19 (48.7) | 17 | Rissen | 11 (78.6) |
4,[5],12:i:- | 15 (31.9) | 4,[5],12:i:- | 17 (43.6) | 9 | Anatum | 2 (14.3) | |
Derby | 4 (8.5) | Brandenburg | 1 (2.6) | 4,[5],12:i:- | 1 (7.1) | ||
Kapemba | 2 (4.3) | Goldcoast | 1 (2.6) | ||||
Typhimurium | 1 (2.1) | London | 1 (2.6) | ||||
B | Rissen | 12 (46.2) | Rissen | 8 (23.5) | 5 | Rissen | 4 (66.6) |
4,[5],12:i:- | 5 (19.2) | 4,[5],12:i:- | 8 (23.5) | 3 | Brandenburg | 1 (16.7) | |
Goldcoast | 5 (19.2) | Goldcoast | 3 (8.8) | 3 | 4,[5],12:i:- | 1 (16.7) | |
Brandenburg | 3 (11.5) | Brandenburg | 13 (38.2) | 3 | |||
Derby | 1 (3.8) | Derby | 2 (5.9) | 1 | |||
C | Rissen | 23 (67.6) | Rissen | 13 (50) | 12 | Rissen | 10 (83.3) |
4,[5],12:i:- | 7 (20.6) | 4,[5],12:i:- | 6 (23.1) | 2 | Derby | 2 (16.7) | |
Derby | 2 (5.9) | Derby | 5 (19.2) | 1 | |||
Anatum | 1 (2.9) | Anatum | 1 (3.8) | 1 | |||
Kedougou | 1 (2.9) | Typhimurium | 1 (3.8) | ||||
D | 4,[5],12:i:- | 19 (86.3) | 4,[5],12:i:- | 18 (62.1) | 15 | Derby | 7 (70.0) |
Goldcoast | 1 (4.5) | Goldcoast | 9 (31.0) | 1 | Rissen | 3 (30.0) | |
Brandenburg | 1 (4.5) | Brandenburg | 1 (3.4) | 1 | |||
Ohio | 1 (4.5) | Ohio | 1 (3.4) | 1 | |||
E | 4,[5],12:i:- | 12 (75.0) | 4,[5],12:i:- | 9 (64.3) | 8 | Rissen | 8 (88.9) |
Rissen | 2 (12.5) | Rissen | 4 (28.6) | 2 | 4,[5],12:i:- | 1 (11.1) | |
Anatum | 1 (6.3) | Anatum | 1 (7.1) | 1 | |||
Agona | 1 (6.3) | ||||||
Total | 145 | 142 | 86 | 51 |
No. of Piglets | No. (%) of IC-Positive Piglets | Logistic Regression Parameters | |||
---|---|---|---|---|---|
OR | 95% CI (OR) | p | |||
MLN | |||||
Negative 1 | 247 | 41 (16.6) | 1 | - | - |
Positive | 142 | 104 (73.2) | 12.71 | 7.33–22.05 | <0.001 |
Season | |||||
Winter 1 | 139 | 33 (23.7) | 1 | - | - |
Spring | 91 | 26 (28.6) | 1.17 | 0.55–2.51 | 0.672 |
Summer | 87 | 56 (64.4) | 2.69 | 1.31–5.55 | 0.007 |
Autumn | 72 | 30 (41.7) | 2.53 | 1.22–5.26 | 0.013 |
Farm | No. of Floor Fecal Samples | No. of Positive Floor Fecal Samples (%) * | No. of Serum Samples | No. of Seropositive Samples (%) ** |
---|---|---|---|---|
A | 32 | 14 (43.8) | 91 | 29 (31.9) |
B | 24 | 6 (25.0) | 90 | 25 (27.8) |
C | 32 | 12 (37.5) | 90 | 19 (21.1) |
D | 57 | 10 (17.5) | NA | - |
E | 46 | 9 (19.6) | 150 | 29 (19.3) |
Total | 191 | 51 (26.7) | 421 | 102 (24.2) |
AMR Family Pattern * | No. of Strains | Serotypes Involved (No. of Strains) | Farm |
---|---|---|---|
ACS | 1 | 4,[5],12:i:- | E |
ACSSu | 1 | Rissen | A |
ACSSuT | 15 | Rissen (13), Derby (2) | A, B, C, E |
ACSSuTCf | 1 | Rissen | C |
ACSSuTCfNa | 5 | Rissen | A, B, C |
ACST | 17 | 4,[5],12:i:- (10), Rissen (7) | A, B, C, E |
ACSTCf | 1 | Rissen | A |
AST | 4 | 4,[5],12:i:- | A, E |
CS | 2 | Derby | C |
CSCf | 1 | Rissen | E |
CSSuT | 1 | Rissen | B |
CST | 5 | Rissen (4), 4,[5],12:i:- (1) | A, B, E |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernad-Roche, M.; Casanova-Higes, A.; Marín-Alcalá, C.M.; Cebollada-Solanas, A.; Mainar-Jaime, R.C. Salmonella Infection in Nursery Piglets and Its Role in the Spread of Salmonellosis to Further Production Periods. Pathogens 2021, 10, 123. https://doi.org/10.3390/pathogens10020123
Bernad-Roche M, Casanova-Higes A, Marín-Alcalá CM, Cebollada-Solanas A, Mainar-Jaime RC. Salmonella Infection in Nursery Piglets and Its Role in the Spread of Salmonellosis to Further Production Periods. Pathogens. 2021; 10(2):123. https://doi.org/10.3390/pathogens10020123
Chicago/Turabian StyleBernad-Roche, María, Alejandro Casanova-Higes, Clara M. Marín-Alcalá, Alberto Cebollada-Solanas, and Raúl C. Mainar-Jaime. 2021. "Salmonella Infection in Nursery Piglets and Its Role in the Spread of Salmonellosis to Further Production Periods" Pathogens 10, no. 2: 123. https://doi.org/10.3390/pathogens10020123
APA StyleBernad-Roche, M., Casanova-Higes, A., Marín-Alcalá, C. M., Cebollada-Solanas, A., & Mainar-Jaime, R. C. (2021). Salmonella Infection in Nursery Piglets and Its Role in the Spread of Salmonellosis to Further Production Periods. Pathogens, 10(2), 123. https://doi.org/10.3390/pathogens10020123