Distribution of Virulence Factors and Resistance Determinants in Three Genotypes of Staphylococcus argenteus Clinical Isolates in Japan
Abstract
:1. Introduction
2. Results
2.1. Identification and Prevalence of S. argenteus
2.2. Classification of ST and Coagulase Genotype
2.3. Prevalence of Virulence Factors
2.4. Antimicrobial Susceptibility and Prevalence of Drug Resistance Genes
2.5. Genetic Characterization of Drug Resistance Determinants
3. Discussion
4. Materials and Methods
4.1. Bacterial Isolates, Species Identification
4.2. Antimicrobial Susceptibility Testing
4.3. Genetic Typing, Detection of Virulence Factors and Drug Resistance Genes
4.4. Sequencing and Phylogenetic Analysis of Drug Resistance Genes and Enterotoxin Genes
4.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tong, S.Y.; Schaumburg, F.; Ellington, M.J.; Corander, J.; Pichon, B.; Leendertz, F.; Bentley, S.D.; Parkhill, J.; Holt, D.C.; Peters, G.; et al. Novel staphylococcal species that form part of a Staphylococcus aureus-related complex: The non-pigmented Staphylococcus argenteus sp. nov. and the non-human primate-associated Staphylococcus schweitzeri sp. nov. Int. J. Syst. Evol. Microbiol. 2015, 65, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Becker, K.; Schaumburg, F.; Kearns, A.; Larsen, A.R.; Lindsay, J.A.; Skov, R.L.; Westh, H. Implications of identifying the recently defined members of the Staphylococcus aureus complex S. argenteus and S. schweitzeri: A position paper of members of the ESCMID Study Group for Staphylococci and Staphylococcal Diseases (ESGS). Clin. Microbiol. Infect. 2019, 25, 1064–1070. [Google Scholar] [CrossRef]
- Schuster, D.; Rickmeyer, J.; Gajdiss, M.; Thye, T.; Lorenzen, S.; Reif, M.; Josten, M.; Szekat, C.; Melo, L.D.R.; Schmithausen, R.M.; et al. Differentiation of Staphylococcus argenteus (formerly: Staphylococcus aureus clonal complex 75) by mass spectrometry from S. aureus using the first strain isolated from a wild African great ape. Int. J. Med. Microbiol. 2017, 307, 57–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holt, D.C.; Holden, M.T.; Tong, S.Y.; Castillo-Ramirez, S.; Clarke, L.; Quail, M.A.; Currie, B.J.; Parkhill, J.; Bentley, S.D.; Feil, E.J.; et al. A very early-branching Staphylococcus aureus lineage lacking the carotenoid pigment staphyloxanthin. Genome Biol. Evol. 2011, 3, 881–895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okuma, K.; Iwakawa, K.; Turnidge, J.D.; Grubb, W.B.; Bell, J.M.; O’Brien, F.G.; Coombs, G.W.; Pearman, J.W.; Tenover, F.C.; Kapi, M.; et al. Dissemination of new methicillin-resistant Staphylococcus aureus clones in the community. J. Clin. Microbiol. 2002, 40, 4289–4294. [Google Scholar] [CrossRef] [Green Version]
- McDonald, M.; Dougall, A.; Holt, D.; Huygens, F.; Oppedisano, F.; Giffard, P.M.; Inman-Bamber, J.; Stephens, A.J.; Towers, R.; Carapetis, J.R.; et al. Use of a single-nucleotide polymorphism genotyping system to demonstrate the unique epidemiology of methicillin-resistant Staphylococcus aureus in remote aboriginal communities. J. Clin. Microbiol. 2006, 44, 3720–3727. [Google Scholar] [CrossRef] [Green Version]
- Chantratita, N.; Wikraiphat, C.; Tandhavanant, S.; Wongsuvan, G.; Ariyaprasert, P.; Suntornsut, P.; Thaipadungpanit, J.; Teerawattanasook, N.; Jutrakul, Y.; Srisurat, N.; et al. Comparison of community-onset Staphylococcus argenteus and Staphylococcus aureus sepsis in Thailand: A prospective multicentre observational study. Clin. Microbiol. Infect. 2016, 22, 458.e11–458.e19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dupieux, C.; Blonde, R.; Bouchiat, C.; Meugnier, H.; Bes, M.; Laurent, S.; Vandenesch, F.; Laurent, F.; Tristan, A. Community-acquired infections due to Staphylococcus argenteus lineage isolates harboring the Panton-Valentine leucocidin, France, 2014. Eur. Surveill. 2015, 20, 21154. [Google Scholar] [CrossRef] [PubMed]
- Argudín, M.A.; Dodémont, M.; Vandendriessche, S.; Rottiers, S.; Tribes, C.; Roisin, S.; de Mendonça, R.; Nonhoff, C.; Deplano, A.; Denis, O. Low occurrence of the new species Staphylococcus argenteus in a Staphylococcus aureus collection of human isolates from Belgium. Eur. J. Clin. Microbiol. Infect. Dis. 2016, 35, 1017–1022. [Google Scholar] [CrossRef]
- Hansen, T.A.; Bartels, M.D.; Høgh, S.V.; Dons, L.E.; Pedersen, M.; Jensen, T.G.; Kemp, M.; Skov, M.N.; Gumpert, H.; Worning, P.; et al. Whole genome sequencing of Danish Staphylococcus argenteus reveals a genetically diverse collection with clear separation from Staphylococcus aureus. Front. Microbiol. 2017, 8, 1512. [Google Scholar] [CrossRef]
- Tång Hallbäck, T.E.; Karami, N.; Adlerberth, I.; Cardew, S.; Ohlén, M. Methicillin-resistant Staphylococcus argenteus misidentified as methicillin-resistant Staphylococcus aureus emerging in western Sweden. J. Med. Microbiol. 2018, 67, 968–971. [Google Scholar] [CrossRef] [PubMed]
- Alhussein, F.; Fürstenberg, J.; Gaupp, R.; Eisenbeis, J.; Last, K.; Becker, S.L.; Papan, C. Human infections caused by Staphylococcus argenteus in Germany: Genetic characterisation and clinical implications of novel species designation. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 2461–2465. [Google Scholar] [CrossRef]
- Yeap, A.D.; Woods, K.; Dance, D.A.B.; Pichon, B.; Rattanavong, S.; Davong, V.; Phetsouvanh, R.; Newton, P.N.; Shetty, N.; Kearns, A.M. Molecular epidemiology of Staphylococcus aureus skin and soft tissue infections in the Lao People’s Democratic Republic. Am. J. Trop. Med. Hyg. 2017, 97, 423–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moradigaravand, D.; Jamrozy, D.; Mostowy, R.; Anderson, A.; Nickerson, E.K.; Thaipadungpanit, J.; Wuthiekanun, V.; Limmathurotsakul, D.; Tandhavanant, S.; Wikraiphat, C.; et al. Evolution of the Staphylococcus argenteus ST2250 clone in Northeastern Thailand is linked with the acquisition of livestock-associated staphylococcal genes. mBio 2017, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aung, M.S.; San, T.; San, N.; Oo, W.M.; Ko, P.M.; Thet, K.T.; Urushibara, N.; Kawaguchiya, M.; Sumi, A.; Kobayashi, N. Molecular characterization of Staphylococcus argenteus in Myanmar: Identification of novel genotypes/clusters in staphylocoagulase, protein Aalpha-haemolysin and other virulence factors. J. Med. Microbiol. 2019, 68, 95–104. [Google Scholar] [CrossRef]
- Hsu, J.C.; Wan, T.W.; Lee, H.; Wang, X.M.; Lin, Y.T.; Jung, C.J.; Lee, T.F.; Hsueh, P.R.; Teng, L.J. Heterogeneity of Molecular Characteristics among Staphylococcus argenteus Clinical Isolates (ST2250, ST2793, ST1223, and ST2198) in Northern Taiwan. Microorganisms 2020, 8, 1157. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.-F.; Xu, X.; Song, Q.; Bai, Y.; Zhang, Y.; Song, M.; Shi, C.; Shi, X. Identification of Staphylococcus argenteus in Eastern China based on a nonribosomal peptide synthetase (NRPS) gene. Future Microbiol. 2016, 11, 1113–1121. [Google Scholar] [CrossRef] [PubMed]
- Ohnishi, T.; Shinjoh, M.; Ohara, H.; Kawai, T.; Kamimaki, I.; Mizushima, R.; Kamada, K.; Itakura, Y.; Iguchi, S.; Uzawa, Y.; et al. Purulent lymphadenitis caused by Staphylococcus argenteus, representing the first Japanese case of Staphylococcus argenteus (multilocus sequence type 2250) infection in a 12-year-old boy. J. Infect. Chemother. 2018, 24, 925–927. [Google Scholar] [CrossRef]
- Kitagawa, H.; Ohge, H.; Hisatsune, J.; Masuda, K.; Aziz, F.; Hara, T.; Kuroo, Y.; Sugai, M. Low incidence of Staphylococcus argenteus bacteremia in Hiroshima, Japan. J. Infect. Chemother. 2019, 26, 140–143. [Google Scholar] [CrossRef]
- Aung, M.S.; Urushibara, N.; Kawaguchiya, M.; Sumi, A.; Takahashi, S.; Ike, M.; Ito, M.; Habadera, S.; Kobayashi, N. Molecular Epidemiological Characterization of Staphylococcus argenteus Clinical Isolates in Japan: Identification of Three Clones (ST1223, ST2198, and ST2550) and a Novel Staphylocoagulase Genotype XV. Microorganisms 2019, 7, 389. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, Y.; Kubota, H.; Ono, H.K.; Kobayashi, M.; Murauchi, K.; Kato, R.; Hirai, A.; Sadamas, K. Food poisoning outbreak in Tokyo, Japan caused by Staphylococcus argenteus. Int. J. Food Microbiol. 2017, 262, 31–37. [Google Scholar] [CrossRef]
- Wakabayashi, Y.; Umeda, K.; Yonog, I.S.; Nakamura, H.; Yamamoto, K.; Kumeda, Y.; Kawatsu, K. Staphylococcal food poisoning caused by Staphylococcus argenteus harboring staphylococcal enterotoxin genes. Int. J. Food Microbiol. 2018, 265, 23–29. [Google Scholar] [CrossRef]
- Ruimy, R.; Armand-Lefevre, L.; Barbier, F.; Ruppe, E.; Cocojaru, R.; Mesli, Y.; Maiga, A.; Benkalfat, M.; Benchouk, S.; Hassaine, H.; et al. Comparisons between geographically diverse samples of carried Staphylococcus aureus. J. Bacteriol. 2009, 191, 5577–5583. [Google Scholar] [CrossRef] [Green Version]
- Ruimy, R.; Angebault, C.; Djossou, F.; Dupont, C.; Epelboin, L.; Jarraud, S.; Lefevre, L.A.; Bes, M.; Lixandru, B.E.; Bertine, M.; et al. Are host genetics the predominant determinant of persistent nasal Staphylococcus aureus carriage in humans? J. Infect. Dis. 2010, 202, 924–934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, B.; You, B.; Tan, L.; Yu, S.; Li, H.; Bai, G.; Li, S.; Rao, X.; Xie, Z.; Shi, X.; et al. Clinical Staphylococcus argenteus Develops to Small Colony Variants to Promote Persistent Infection. Front. Microbiol. 2018, 9, 1347. [Google Scholar] [CrossRef] [Green Version]
- Diot, A.; Dyon-Tafani, V.; Bergot, M.; Tasse, J.; Martins-Simões, P.; Josse, J.; Valour, F.; Laurent, F. Investigation of a Staphylococcus argenteus Strain Involved in a Chronic Prosthetic-Joint Infection. Int. J. Mol. Sci. 2020, 21, 6245. [Google Scholar] [CrossRef] [PubMed]
- Söderquist, B.; Wildeman, P.; Stenmark, B.; Stegger, M. Staphylococcus argenteus as an etiological agent of prosthetic hip joint infection: A case presentation. Bone Jt. Infect. 2020, 5, 172–175. [Google Scholar] [CrossRef]
- Hao, S.; Abdelghany, M.; Lyden, A.; Sit, R.; Tan, M.; Tato, C.M.; DeRisi, J.L.; Miller, S.; Doernberg, S.B.; Langelier, C. Genomic Profiling of Evolving Daptomycin Resistance in a Patient with Recurrent Staphylococcus argenteus Sepsis. Antimicrob. Agents Chemother. 2020, 64, e00961-20. [Google Scholar] [CrossRef]
- Chen, S.Y.; Lee, H.; Wang, X.M.; Lee, T.F.; Liao, C.H.; Teng, L.J.; Hsueh, P.R. High mortality impact of Staphylococcus argenteus on patients with community-onset staphylococcal bacteraemia. Int. J. Antimicrob. Agents 2018, 52, 747–753. [Google Scholar] [CrossRef] [PubMed]
- Aung, M.S.; San, T.; Aye, M.M.; Mya, S.; Maw, W.W.; Zan, K.N.; Htut, W.H.W.; Kawaguchiya, M.; Urushibara, N.; Kobayashi, N. Prevalence and genetic characteristics of Staphylococcus aureus and Staphylococcus argenteus isolates harboring Panton-Valentine leukocidin, enterotoxins, and TSST-1 genes from food handlers in Myanmar. Toxins 2017, 9, 241. [Google Scholar] [CrossRef] [Green Version]
- Senok, A.; Nassar, R.; Kaklamanos, E.G.; Belhoul, K.; Fanas, S.A.; Nassar, M.; Azar, A.J.; Müller, E.; Reissig, A.; Gawlik, D.; et al. Molecular Characterization of Staphylococcus aureus Isolates Associated with Nasal Colonization and Environmental Contamination in Academic Dental Clinics. Microb. Drug Resist. 2020, 26, 661–669. [Google Scholar] [CrossRef]
- Wu, S.; Huang, J.; Zhang, F.; Dai, J.; Pang, R.; Zhang, J.; Zeng, H.; Gu, Q.; Zhang, S.; Zhang, Y.; et al. Staphylococcus argenteus isolated from retail foods in China: Incidence, antibiotic resistance, biofilm formation and toxin gene profile. Food Microbiol. 2020, 91, 103531. [Google Scholar] [CrossRef] [PubMed]
- Thaipadungpanit, J.; Amornchai, P.; Nickerson, E.K.; Wongsuvan, G.; Wuthiekanun, V.; Limmathurotsakul, D.; Peacock, S.J. Clinical and molecular epidemiology Staphylococcus argenteus infections in Thailand. J. Clin. Microbiol. 2015, 53, 1005–1008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.F.; Zhi, X.Y.; Zhang, J.; Paoli, G.C.; Cui, Y.; Shi, C.; Shi, X. Preliminary comparative genomics revealed pathogenic potential and international spread of Staphylococcus argenteus. BMC Genom. 2017, 18, 808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tong, S.Y.; Sharma-Kuinkel, B.K.; Thaden, J.T.; Whitney, A.R.; Yang, S.J.; Mishra, N.N.; Rude, T.; Lilliebridge, R.A.; Selim, M.A.; Ahn, S.H.; et al. Virulence of endemic nonpigmented northern Australian Staphylococcus aureus clone (clonal complex 75, S. argenteus) is not augmented by staphyloxanthin. J. Infect. Dis. 2013, 208, 520–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williamson, D.A.; Coombs, G.W.; Nimmo, G.R. Staphylococcus aureus ‘Down Under’: Contemporary epidemiology of S. aureus in Australia, New Zealand, and the South West Pacific. Clin. Microbiol. Infect. 2014, 20, 597–604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giske, C.G.; Dyrkell, F.; Arnellos, D.; Vestberg, N.; Hermansson Panna, S.; Fröding, I.; Ullberg, M.; Fang, H. Transmission events and antimicrobial susceptibilities of methicillin-resistant Staphylococcus argenteus in Stockholm. Clin. Microbiol. Infect. 2019, 25, 1289.e5–1289.e8. [Google Scholar] [CrossRef] [PubMed]
- Yamada, K.; Sasaki, M.; Imai, W.; Kato, M.; Maehara, C.; Yasui, K.; Fukuzawa, S.; Murakami, H.; Kakisu, K.; Hori, Y.; et al. Bacterial keratoconjunctivitis caused by Staphylococcus argenteus belonging to sequence type 1223 isolated in Japan. J. Infect. Chemother. 2020, 26, 1002–1004. [Google Scholar] [CrossRef]
- Mitsutake, K.; Noriyuki Watanabe, N.; Haruka Karaushi, H.; Tarumoto, N.; Sachie Koyama, S.; Yasuhiro Ebihara, Y.; Yoshitake, A.; Hiroyuki Nakajima, H. Thoracic aortic mycotic aneurysm due to Staphylococcus argenteus: A case report. J. Infect. Chemother. 2020, 26, 1213–1215. [Google Scholar] [CrossRef] [PubMed]
- Johler, S.; Sihto, H.M.; Macori, G.; Stephan, R. Sequence Variability in Staphylococcal Enterotoxin Genes seb, sec, and sed. Toxins 2016, 8, 169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verkaik, N.J.; Benard, M.; Boelens, H.A.; de Vogel, C.P.; Nouwen, J.L.; Verbrugh, H.A.; Melles, D.C.; van Belkum, A.; van Wamel, W.J. Immune evasion cluster-positive bacteriophages are highly prevalent among human Staphylococcus aureus strains, but they are not essential in the first stages of nasal colonization. Clin. Microbiol. Infect. 2011, 17, 343–348. [Google Scholar] [CrossRef] [Green Version]
- McGavin, M.J.; Arsic, B.; Nickerson, N.N. Evolutionary blueprint for host- and niche-adaptation in Staphylococcus aureus clonal complex CC30. Front. Cell Infect. Microbiol. 2012, 2, 48. [Google Scholar] [CrossRef] [Green Version]
- Taneike, I.; Otsuka, T.; Dohmae, S.; Saito, K.; Ozaki, K.; Takano, M.; Higuchi, W.; Takano, T.; Yamamoto, T. Molecular nature of methicillin-resistant Staphylococcus aureus derived from explosive nosocomial outbreaks of the 1980s in Japan. FEBS Lett. 2006, 580, 2323–2334. [Google Scholar] [CrossRef] [Green Version]
- Roy, S.; Aung, M.S.; Paul, S.K.; Ahmed, S.; Haque, N.; Khan, E.R.; Barman, T.K.; Islam, A.; Abedin, S.; Sultana, C.; et al. Drug Resistance Determinants in Clinical Isolates of Enterococcus faecalis in Bangladesh: Identification of Oxazolidinone Resistance Gene optrA in ST59 and ST902 Lineages. Microorganisms 2020, 8, 1240. [Google Scholar] [CrossRef]
- Lüthje, P.; Schwarz, S. Molecular analysis of constitutively expressed erm(C) genes selected in vitro in the presence of the non-inducers pirlimycin, spiramycin and tylosin. J. Antimicrob. Chemother. 2007, 59, 97–101. [Google Scholar] [CrossRef] [Green Version]
- Olsen, J.E.; Christensen, H.; Aarestrup, F.M. Diversity and evolution of blaZ from Staphylococcus aureus and coagulase-negative staphylococci. J. Antimicrob. Chemother. 2006, 57, 450–460. [Google Scholar] [CrossRef] [PubMed]
- Piddock, L.J. Mechanisms of fluoroquinolone resistance: An update 1994–1998. Drugs 1999, 58, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Horii, T.; Suzuki, Y.; Monji, A.; Morita, M.; Muramatsu, H.; Kondo, Y.; Doi, M.; Takeshita, A.; Kanno, T.; Maekawa, M. Detection of mutations in quinolone resistance-determining regions in levofloxacin- and methicillin-resistant Staphylococcus aureus: Effects of the mutations on fluoroquinolone MICs. Diagn. Microbiol. Infect. Dis. 2003, 46, 139–145. [Google Scholar] [CrossRef]
- Sanfilippo, C.M.; Hesje, C.K.; Haas, W.; Morris, T.W. Topoisomerase mutations that are associated with high-level resistance to earlier fluoroquinolones in Staphylococcus aureus have less effect on the antibacterial activity of besifloxacin. Chemotherapy 2011, 57, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Aung, M.S.; Urushibara, N.; Kawaguchiya, M.; Ito, M.; Habadera, S.; Kobayashi, N. Prevalence and Genetic Diversity of Staphylococcal Enterotoxin (-Like) Genes sey, selw, selx, selz, sel26 and sel27 in Community-Acquired Methicillin-Resistant Staphylococcus aureus. Toxins 2020, 12, 347. [Google Scholar] [CrossRef] [PubMed]
- Aung, M.S.; San, T.; Urushibara, N.; San, N.; Oo, W.M.; Soe, P.E.; Kyaw, Y.; Ko, P.M.; Thu, P.P.; Hlaing, M.S.; et al. Molecular Characterization of Methicillin-Susceptible and -Resistant Staphylococcus aureus Harboring Panton-Valentine Leukocidin-Encoding Bacteriophages in a Tertiary Care Hospital in Myanmar. Microb. Drug Resist. 2020, 26, 360–367. [Google Scholar] [CrossRef]
- Severin, J.A.; Lestari, E.S.; Kuntaman, K.; Melles, D.C.; Pastink, M.; Peeters, J.K.; Snijders, S.V.; Hadi, U.; Duerink, D.O.; van Belkum, A.; et al. Unusually high prevalence of panton-valentine leukocidin genes among methicillin-sensitive Staphylococcus aureus strains carried in the Indonesian population. J. Clin. Microbiol. 2008, 46, 1989–1995. [Google Scholar] [CrossRef] [Green Version]
- Aung, M.S.; Kawaguchiya, M.; Urushibara, N.; Sumi, A.; Ito, M.; Kudo, K.; Morimoto, S.; Hosoya, S.; Kobayashi, N. Molecular Characterization of Methicillin-Resistant Staphylococcus aureus from Outpatients in Northern Japan: Increasing Tendency of ST5/ST764 MRSA-IIa with Arginine Catabolic Mobile Element. Microb. Drug Resist. 2017, 23, 616–625. [Google Scholar] [CrossRef]
- Aung, M.S.; Urushibara, N.; Kawaguchiya, M.; Sumi, A.; Shinagawa, M.; Takahashi, S.; Kobayashi, N. Clonal Diversity and Genetic Characteristics of Methicillin-Resistant Staphylococcus aureus Isolates from a Tertiary Care Hospital in Japan. Microb. Drug Resist. 2019, 25, 1164–1175. [Google Scholar] [CrossRef] [PubMed]
- Aung, M.S.; Urushibara, N.; Kawaguchiya, M.; Hirose, M.; Ito, M.; Habadera, S.; Kobayashi, N. Clonal diversity of methicillin-resistant Staphylococcus aureus (MRSA) from bloodstream infections in northern Japan: Identification of spermidine N-acetyltransferase gene (speG) in staphylococcal cassette chromosomes (SCCs) associated with type II and IV SCCmec. J. Glob. Antimicrob. Resist. 2021, 24, 207–214. [Google Scholar] [CrossRef]
- Monecke, S.; Coombs, G.; Shore, A.C.; Coleman, D.C.; Akpaka, P.; Borg, M.; Chow, H.; Ip, M.; Jatzwauk, L.; Jonas, D.; et al. A field guide to pandemic, epidemic and sporadic clones of methicillin-resistant Staphylococcus aureus. PLoS ONE 2011, 6, e17936. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.J.; Huang, Y.C. New epidemiology of Staphylococcus aureus infection in Asia. Clin. Microbiol. Infect. 2014, 20, 605–623. [Google Scholar] [CrossRef] [Green Version]
- Kondo, Y.; Ito, T.; Ma, X.X.; Watanabe, S.; Kreiswirth, B.N.; Etienne, J.; Hiramatsu, K. Combination of multiplex PCRs for staphylococcal cassette chromosome mec type assignment: Rapid identification system for mec, ccr, and major differences in junkyard regions. Antimicrob. Agents Chemother. 2007, 51, 264–274. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.X.; Ito, T.; Chongtrakool, P.; Hiramatsu, K. Predominance of clones carrying Panton-Valentine leukocidin genes among methicillin-resistant Staphylococcus aureus strains isolated in Japanese hospitals from 1979 to 1985. J. Clin. Microbiol. 2006, 44, 4515–4527. [Google Scholar] [CrossRef] [Green Version]
- Feßler, A.T.; Wang, Y.; Wu, C.; Schwarz, S. Mobile lincosamide resistance genes in staphylococci. Plasmid 2018, 99, 22–31. [Google Scholar] [CrossRef]
- Feßler, A.T.; Wang, Y.; Wu, C.; Schwarz, S. Mobile macrolide resistance genes in staphylococci. Plasmid 2018, 99, 2–10. [Google Scholar] [CrossRef]
- Vazquez-Laslop, N.; Thum, C.; Mankin, A.S. Molecular mechanism of drug-dependent ribosome stalling. Mol. Cell. 2008, 30, 190–202. [Google Scholar] [CrossRef] [PubMed]
- Wendlandt, S.; Kadlec, K.; Feßler, A.T.; van Duijkeren, E.; Schwarz, S. Two different erm(C)-carrying plasmids in the same methicillin-resistant Staphylococcus aureus CC398 isolate from a broiler farm. Vet. Microbiol. 2014, 171, 382–387. [Google Scholar] [CrossRef] [PubMed]
- Performance Standards for Antimicrobial Susceptibility Testing; M100-S29; Clinical and Laboratory Standards Institute (CLSI): Wayne, PA, USA, 2019.
- EUCAST. Breakpoint Tables for Interpretation of MICs and Zone Diameters; Version 9.0.; The European Committee on Antimicrobial Susceptibility Testing (EUCAST): Copenhagen, Denmark, 2019; pp. 25–28. [Google Scholar]
- Watanabe, A.; Yanagihara, K.; Matsumoto, T.; Kohno, S.; Aoki, N.; Oguri, T.; Sato, J.; Muratani, T.; Yagisawa, M.; Ogasawara, K.; et al. Nationwide surveillance of bacterial respiratory pathogens conducted by the Surveillance Committee of Japanese Society of Chemotherapy, Japanese Association for Infectious Diseases, and Japanese Society for Clinical Microbiology in 2009: General view of the pathogens’ antibacterial susceptibility. J. Infect. Chemother. 2012, 18, 609–620. [Google Scholar] [PubMed] [Green Version]
- Zhang, K.; McClure, J.A.; Elsayed, S.; Louie, T.; Conly, J.M. Novel multiplex PCR assay for simultaneous identification of community-associated methicillin-resistant Staphylococcus aureus strains USA300 and USA400 and detection of mecA and panton-valentine leukocidin genes, with discrimination of Staphylococcus aureus from coagulase-negative staphylococci. J. Clin. Microbiol. 2018, 46, 1118–1122. [Google Scholar]
- Enright, M.C.; Day, N.P.; Davies, C.E.; Peacock, S.J.; Spratt, B.G. Multilocus sequence typing for characterization of methicillin-resistant and methicillin susceptible clones of Staphylococcus aureus. J. Clin. Microbiol. 2000, 38, 1008–1015. [Google Scholar] [CrossRef] [Green Version]
- Kinoshita, M.; Kobayashi, N.; Nagashima, S.; Ishino, M.; Otokozawa, S.; Mise, K.; Sumi, A.; Tsutsumi, H.; Uehara, N.; Watanabe, N.; et al. Diversity of staphylocoagulase and identification of novel variants of staphylocoagulase gene in Staphylococcus aureus. Microbiol. Immunol. 2008, 52, 334–348. [Google Scholar] [CrossRef]
- Aung, M.S.; Urushibara, N.; Kawaguchiya, M.; Aung, T.S.; Mya, S.; San, T.; Nwe, K.M.; Kobayashi, N. Virulence factors and genetic characteristics of methicillin-resistant and -susceptible Staphylococcus aureus isolates in Myanmar. Microb. Drug Resist. 2011, 17, 525–535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isogai, N.; Urushibara, N.; Kawaguchiya, M.; Ghosh, S.; Suzaki, K.; Watanabe, N.; Quiñones, D.; Kobayashi, N. Characterization of Enterococcus faecium with macrolide resistance and reduced susceptibility to quinupristin/dalfopristin in a Japanese hospital: Detection of extensive diversity in erm(B)-regulator regions. Microb. Drug Resist. 2013, 19, 298–307. [Google Scholar] [CrossRef]
Specimens, Virulence Factor (-Associated) Genes | Number of Isolates (%) | |||
---|---|---|---|---|
ST1223 (n = 25) | ST2198 (n = 20) | ST2250 (n = 37) | Total (n = 82) | |
specimens | ||||
wound | 1 (4) | 0 (0) | 0 (0) | 1 (1.2) |
pus | 0 (0) | 1 (5) | 1 (2.7) | 2 (2.4) |
ear pus | 3 (12) | 2 (10) | 2 (5.4) | 7 (8.5) |
ear discharge | 2 (8) | 3 (15) | 5 (13.5) | 10 (12.2) |
nasal discharge | 0 (0) | 4 (20) | 7 (18.9) | 11 (13.4) |
pharynx | 4 (16) | 0 (0) | 2 (5.4) | 6 (7.3) |
sputum | 6 (24) | 5 (25) | 5 (13.5) | 16 (19.5) |
stool | 3 (12) | 2 (10) | 7 (18.9) | 12 (14.6) |
urine | 3 (12) | 0 (0) | 4 (10.8) | 7 (8.5) |
punctured fluid | 1 (4) | 1 (5) | 0 (0) | 2 (2.4) |
vaginal discharge | 1 (4) | 2 (10) | 1 (2.7) | 4 (4.9) |
intestinal juice | 1 (4) | 0 (0) | 0 (0) | 1 (1.2) |
blood | 0 (0) | 0 (0) | 1 (2.7) | 1 (1.2) |
skin | 0 (0) | 0 (0) | 1 (2.7) | 1 (1.2) |
tongue coating | 0 (0) | 0 (0) | 1 (2.7) | 1 (1.2) |
Leukocidin, haemolysins, enterotoxins, TSST-1 1 | ||||
hla | 25 (100) | 20 (100) | 37 (100) | 82 (100) |
hlb | 25 (100) | 20 (100) | 37 (100) | 82 (100) |
hld | 25 (100) | 20 (100) | 37 (100) | 82 (100) |
hlg | 20 (80) | 19 (95) | 32 (86.5) | 71 (86.6) |
lukS-PV-lukF-PV | 0 (0) | 0 (0) | 1 (2.7) | 1 (1.2) |
sea | 0 (0) | 1 (5) | 0 (0) | 1 (1.2) |
seb | 15 (60) * | 0 (0) | 0 (0) | 15 (18.3) |
sec | 0 (0) | 0 (0) | 4 (10.8) | 4 (4.9) |
egc-2 (seg-sei-sem-sen-seo-seu) | 25 (100) * | 0 (0) | 0 (0) | 25 (30.5) |
selx | 6 (24) | 12 (60) * | 2 (5.4) | 20 (24.4) |
sey | 0 (0) | 0 (0) | 37 (100) * | 37 (45.1) |
selw | 21 (84) * | 0 (0) | 0 (0) | 21 (25.6) |
selz | 8 (32) | 0 (0) | 11 (29.7) | 19 (23.2) |
sel26-sel27 | 0 (0) | 0 (0) | 25 (67.6) * | 25 (30.5) |
tst-1 | 0 (0) | 0 (0) | 4 (10.8) | 4 (4.9) |
Adhesins, modulators of host defense 1 | ||||
ebpS | 25 (100) | 20 (100) | 37 (100) | 82 (100) |
fnbA | 25 (100) | 20 (100) | 37 (100) | 82 (100) |
fnbB | 25 (100) | 20 (100) | 37 (100) | 82 (100) |
clfB | 20 (80) | 16 (80) | 32 (86.5) | 68 (82.9) |
eno | 21 (84) | 18 (90) | 35 (94.6) | 74 (90.2) |
cna | 19 (76) | 12 (60) | 26 (70.3) | 57 (69.5) |
icaA | 19 (76) | 17 (85) | 27 (73) | 63 (76.8) |
sdrC | 18 (72) * | 3 (15) | 21 (56.8) | 42 (51.2) |
sdrD | 14 (56) | 9 (45) | 25 (67.6) | 48 (58.5) |
sdrE | 3 (12) | 9 (45) | 20 (54.1) * | 32 (39) |
sak, chp, scn | 0 (0) | 7 (35) * | 0 (0) | 7 (8.5) |
sak, scn (chp-negative) | 0 (0) | 0 (0) | 25 (67.6) * | 25 (30.5) |
scn (sak-, chp-negative) | 7 (28)* | 0 (0) | 0 (0) | 7 (8.5) |
Antimicrobials, Resistance Genes | Number of Isolates (%) | |||
---|---|---|---|---|
ST1223 (n = 25) | ST2198 (n = 20) | ST2250 (n = 37) | Total (n = 82) | |
Antimicrobials 1 | ||||
OXA | 0 (0) | 0 (0) | 1 (2.7) | 1 (1.2) |
FOX | 0 (0) | 0 (0) | 1 (2.7) | 1 (1.2) |
AMP | 1 (4) | 12 (60) ** | 3 (8.1) | 16 (19.5) |
ERY | 0 (0) | 7 (35) ** | 0 (0) | 7 (8.5) |
CLA | 0 (0) | 7 (35) ** | 0 (0) | 7 (8.5) |
AZM | 0 (0) | 7 (35) ** | 0 (0) | 7 (8.5) |
LIN | 0 (0) | 5 (25) ** | 0 (0) | 5 (6.1) |
CLI | 0 (0) | 1 (5) | 0 (0) | 1 (1.2) |
TET | 0 (0) | 0 (0) | 1 (2.7) | 1 (1.2) |
GEN | 1 (4) | 5 (25) ** | 0 (0) | 6 (7.3) |
KAN | 1 (4) | 5 (25) * | 2 (5.4) | 8 (9.8) |
ABK, CFZ, CMZ, DOX, Q-D, V-G, FMX, FOF, IPM, LVX, LZD, MIN, SXT, TEC, VAN | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
Drug resistance genes 2 | ||||
mecA | 0 (0) | 0 (0) | 1 (2.7) | 1 (1.2) |
blaZ | 1 (4) | 12 (60) ** | 3 (8.1) | 16 (19.5) |
erm(C) | 0 (0) | 1 (5) | 0 (0) | 1 (1.2) |
msr(A) | 0 (0) | 5 (25) ** | 0 (0) | 5 (6.1) |
lnu(A) | 0 (0) | 4 (20) ** | 0 (0) | 4 (4.9) |
tet(K) | 0 (0) | 0 (0) | 1 (2.7) | 1 (1.2) |
aac(6′)-Ie-aph(2″)-Ia | 1 (4) | 5 (25) ** | 0 (0) | 6 (7.3) |
aph(3′)-IIIa | 0 (0) | 0 (0) | 2 (5.4) | 2 (2.4) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aung, M.S.; Urushibara, N.; Kawaguchiya, M.; Hirose, M.; Ike, M.; Ito, M.; Kobayashi, N. Distribution of Virulence Factors and Resistance Determinants in Three Genotypes of Staphylococcus argenteus Clinical Isolates in Japan. Pathogens 2021, 10, 163. https://doi.org/10.3390/pathogens10020163
Aung MS, Urushibara N, Kawaguchiya M, Hirose M, Ike M, Ito M, Kobayashi N. Distribution of Virulence Factors and Resistance Determinants in Three Genotypes of Staphylococcus argenteus Clinical Isolates in Japan. Pathogens. 2021; 10(2):163. https://doi.org/10.3390/pathogens10020163
Chicago/Turabian StyleAung, Meiji Soe, Noriko Urushibara, Mitsuyo Kawaguchiya, Mina Hirose, Miyo Ike, Masahiko Ito, and Nobumichi Kobayashi. 2021. "Distribution of Virulence Factors and Resistance Determinants in Three Genotypes of Staphylococcus argenteus Clinical Isolates in Japan" Pathogens 10, no. 2: 163. https://doi.org/10.3390/pathogens10020163
APA StyleAung, M. S., Urushibara, N., Kawaguchiya, M., Hirose, M., Ike, M., Ito, M., & Kobayashi, N. (2021). Distribution of Virulence Factors and Resistance Determinants in Three Genotypes of Staphylococcus argenteus Clinical Isolates in Japan. Pathogens, 10(2), 163. https://doi.org/10.3390/pathogens10020163