Insight into One Health Approach: Endoparasite Infections in Captive Wildlife in Bangladesh
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Area, Study Population, and Sample Collection
4.2. Coprological Examination
4.3. PCR Amplification and Sequencing for Zoonotically Significance Eggs
4.4. Data Collection and Analysis
4.5. Ethics Permission
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- One Health. One Health Commission. 2010. Available online: www.onehealthcommission.org/ (accessed on 19 September 2020).
- Atlas, R.M. One Health: Its Origins and Future. Current Topics in Microbiology and Immunology; Springer: Berlin, Germany, 2012. [Google Scholar]
- Stephen, C. Toward a modernized definition of wildlife health. J. Wildl. Dis. 2014, 50, 427–430. [Google Scholar] [CrossRef]
- Almond, R.E.A.; Grooten, M.; Petersen, T. (Eds.) Living Planet Report 2020—Bending the Curve of Biodiversity Loss; WWF: Gland, Switzerland, 2020. [Google Scholar]
- Kirkwood, J.K. Special challenges of maintaining wildlife in captivity in Europe and Asia. Rev. Sci. Tech. Off. Int. Epiz. 1996, 15, 309–321. [Google Scholar] [CrossRef]
- Schieber, M.C.; Strkolcova, G. Prevalence of Endoparasites in Carnivores in a Zoo and a Wolves park in Germany. Folia Vet. 2019, 63, 54–59. [Google Scholar] [CrossRef] [Green Version]
- Parsani, H.R.; Momin, R.R.; Maradin, M.G.; Veer, S. A survey of gastrointestinal parasites of captive animals at Rajkot munipical corporation zoo, Rajkot, Gujarat. Zoos’ Print J. 2001, 16, 604–606. [Google Scholar] [CrossRef] [Green Version]
- Cleaveland, S.; Larurenson, K.; Milengeya, T. Impacts of Wildlife Infections on Human and Livestock Health with Special Reference to Tanzania: Implications for Protected Area Management; Osofsky, S.A., Cleaveland, S., Karesh, W.B., Kock, M.D., Nyhus, P.J., Starr, L., Yang, A., Eds.; Conservation and Development Interventions at the Wildlife/Livestock Interface: Implications for Wildlife, Livestock and Human Health; IUCN: Gland, Switzerland; Cambridge, UK, 2005. [Google Scholar]
- Mackenstedt, U.; Jenkins, D.; Romig, T. The role of wildlife in the transmission of parasitic zoonoses in peri-urban and urban areas. Int. J. Parasitol. Parasites Wildl. 2015, 4, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Romanelli, C.; Cooper, H.D.; de Souza, D.B.F. The integration of biodiversity into One health. Rev. Sci. Tech. Off. Int. Epiz. 2014, 33, 487–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Omemo, P.; Ogola, E.; Omondi, G.; Wasonga, J.; Knobel, D. Knowledge, attitude and practice towards zoonoses among public health workers in Nyanza province, Kenya. J. Public Health Afr. 2012, 3, e22. [Google Scholar] [CrossRef] [Green Version]
- Deem, S.; Dennis, P. Role of zoos in one health. One Health Newsl. 2012, 5, 4–7. [Google Scholar]
- Deem, S.L. Conservation Medicine to One Health: The Role of Zoologic Veterinarians; Miller, R.E., Fowler, M.E., Eds.; Fowler’s Zoo and Wild Animal Medicine; Saunders Elsevier: St. Louis, MO, USA, 2015; pp. 698–703. [Google Scholar]
- Sprenger, L.K.; Yoshitani, U.Y.; Buzatti, A.; Molento, M.B. Occurrence of gastrointestinal parasites in wild animals in State of Paraná, Brazil. An. Acad. Bras. Ciênc. 2018, 90, 231–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adetunji, V.E. Prevalence of gastro-intestinal parasites in primates and their keepers from two zoological gardens in Ibadan, Nigeria. Sokoto J. Vet. Sci. 2014, 12, 25–30. [Google Scholar]
- Fagiolini, M.; Riccardo, P.L.; Piero, L.; Paolo, C.; Riccardo, M.; Stefania, P. Gastrointestinal parasites in mammals of two Italian zoological gardens. J. Zoo Wild. Med. 2010, 41, 662–670. [Google Scholar] [CrossRef] [PubMed]
- Shalaby, H.A. Anthelmintic Resistance; How to Overcome it? Iran. J. Parasitol. 2013, 8, 18–32. [Google Scholar] [PubMed]
- Young, K.; Jensen, J.; Craig, T. Evaluation of Anthelmintic Activity in Captive Wild Ruminants by Fecal Egg Reduction Tests and a Larval Development Assay. J. Zoo Wildl. Med. 2000, 31, 348–352. [Google Scholar] [PubMed]
- Lim, Y.A.L.; Ngui, R.; Shukri, J.; Rohela, M.; Mat Naim, H.R. Intestinal parasites in various animals at a zoo in Malaysia. Vet. Parasitol. 2008, 157, 154–159. [Google Scholar] [CrossRef]
- Papini, R.; Girivetto, M.; Marangi, M.; Mancianti, F.; Annunziata, G.A. Endoparasite Infections in Pet and Zoo Birds in Italy. Sci. World J. 2012, 2012, 253127. [Google Scholar] [CrossRef] [Green Version]
- Utzinger, J.; Bergquist, R.; Olveda, R.; Zhou, X.N. Important helminth infections in Southeast Asia; Diversity and Potential for Control and Prospects for Elimination. Adv. Parasitol. 2010, 72, 1–30. [Google Scholar] [PubMed]
- Gawor, J.; Gawor, J.; Gromadka, R.; Zwijacz-Kozica, T.; Zieba, F. A modified method for molecular identification of Baylisascaris transfuga in European brown bears (Ursus arctos). Parasitol. Res. 2017, 116, 3447–3452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strand, T.M.; Lundkvist, Å. Rat-borne diseases at the horizon. A systematic review on infectious agents carried by rats in Europe 1995–2016. Infect. Ecol. Epidemiol. 2019, 9, 1553461. [Google Scholar] [CrossRef] [Green Version]
- Thienpont, D.; Rochette, F.; Vanparijs, O.F.J. Diagnosing Helminthiasis by Coprological Examination, 2nd ed.; Jansen Research Foundation: Beerse, Belgium, 1986; p. 33. [Google Scholar]
- Fedynich, A.M. Heterakis and Ascaridia. In Parasitic Diseases of Wild Birds; Atkinson, C.T., Thomas, N.J., Hunter, D.B., Eds.; John Wiley & Sons: Oxford, UK, 2009; pp. 388–412. [Google Scholar]
- Dos Santos, T.C.; Gallo, S.S.; Ederli, N.B.; Berto, B.P.; de Oliveira, F.C. Isospora dromaii n. sp. (Apicomplexa, Eimeriidae) isolated from emus, Dromaius novaehollandiae (Casuariiformes, Casuariidae). Parasitol. Res. 2014, 113, 3953–3955. [Google Scholar] [CrossRef] [PubMed]
- Gallo, S.S.M.; Teixeiraa, C.S.; Ederlib, N.B.; Oliveiraa, F.C.R. Gastrointestinal parasites of a population of emus (Dromaius novaehollandiae) in Brazil. Braz. J. Biol. 2020, 80, 66–72. [Google Scholar] [CrossRef] [Green Version]
- Khatri, K.; Maharjan, M. Gastrointestinal parasites of Emu (Dromaius novaehollandiae Latham, 1790) in Ostrich Nepal Pvt. Ltd. Gongoliya, Rupandehi. Nepal. J. Nat. Hist. Mus. 2016, 30, 269–273. [Google Scholar] [CrossRef]
- Berto, B.P.; Flausino, W.; McIntosh, D.; Teixeira-Filho, W.L.; Lopes, C.W. Coccidia of New World passerine birds (Aves: Passeriformes): A review of Eimeria Schneider, 1875 and Isospora Schneider, 1881 (Apicomplexa: Eimeridae). Syst. Parasitol. 2011, 80, 159–204. [Google Scholar] [CrossRef] [PubMed]
- Mirzapour, A.; Kiani, H.; Mobedi, I.; Spotin, A.; Tabaei, S.J.S.; Rahimi, M. Frequency of intestinal parasites among zoo animal by morphometric criteria and first report of the Bivitellobilharzia nairi from Elephant (Elephasmaximus maximus) in Iran. Iran J. Parasitol. 2018, 13, 611–617. [Google Scholar]
- Mir, A.Q.; Dua, K.; Singla, L.D.; Sharma, S.; Singh, M.P. Prevalence of parasitic infection in captive wild animals in Bir Moti Bagh mini zoo (Deer Park), Patiala, Punjab. Vet. World 2016, 9, 540–543. [Google Scholar] [CrossRef] [Green Version]
- Atanaskova, E. Endo-parasites in wild animals at the zoological garden in Skopje, Macedonia. J. Threat. Taxa 2011, 3, 1955–1958. [Google Scholar] [CrossRef]
- Lv, S.; Zhang, Y.; Steinmann, P.; Zhou, X.N.; Utzinger, J. Helminth infections of the central nervous system occurring in Southeast Asia and the Far East. Adv. Parasitol. 2010, 72, 351–408. [Google Scholar] [PubMed]
- Otranto, D.; Deplazes, P. Zoonotic nematodes of wild carnivores. Int. J. Parasitol. Parasites Wildl. 2019, 9, 370–383. [Google Scholar] [CrossRef] [PubMed]
- Rogers, L.L. Parasites of black bears of the Lake Superior region. J. Wildl. Dis. 1975, 11, 189–192. [Google Scholar] [CrossRef] [PubMed]
- Bauer, C. Baylisascariosis-infections of animals and humans with unusual’ roundworms. Vet. Parasitol. 2013, 193, 404–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kazacos, K.R.; Turek, J.J. Scanning electron microscopy of the eggs of Baylisascaris procyonis, Baylisascaris transfuga and Parascaris equorum, and their comparison with Toxocara canis and Ascaris suum. Proc. Helminthol. Soc. Wash 1983, 50, 36–42. [Google Scholar]
- Papini, R.; Casarosa, L. Observations on the infectivity of Baylisascaris transfuga eggs for mice. Vet. Parasitol. 1994, 51, 283–288. [Google Scholar] [CrossRef]
- Lee, R.M.; Moore, L.B.; Bottazzi, M.E.; Hotez, P.J. Toxocariasis in North America: A systematic review. PLoS Negl. Trop. Dis. 2014, 8, e3116. [Google Scholar] [CrossRef] [Green Version]
- Eslahi, A.V.; Badri, M.; Khorshidi, A.; Hooshmand, E.; Hossein, H.; Taghipour, A.; Foroutan, M.; Firoozeh, F.; Zibaei, M. Prevalence of Toxocara and Toxascaris infection among human and animals in Iran with meta-analysis approach. BMC Infect. Dis. 2020, 20, 20. [Google Scholar] [CrossRef] [PubMed]
- Maharjan, M. Endoparasites of primates and their zoonotic importance. Zoonoses Food Hyg. News 2015, 21, 2091–2932. [Google Scholar]
- King, S.; Scholz, T. Trematodes of the family Opisthorchiidae: A minireview. Korean J. Parasitol. 2001, 39, 209–221. [Google Scholar] [CrossRef] [Green Version]
- Seryodkin, I.V.; Goodrich, D.M.; Lewis, D.; Miquelle, D.G.; Esaulova, N.V.; Konyaev, S.V.; Quigley, K.S.; Roelke, M.; Petrunenko, Y.K.; Kerley, L.L.; et al. Infectious and endoparasitic deseases of the Amur tiger. Vestn. Kras GAU 2015, 12, 186–191. [Google Scholar]
- Stuti, V.; Swaid, A.; Deepesh, S.; Mir, M. Parasitic ova and oocysts observed in intestinal contents of a Leopard (Panthera pardus)-A case report. J. Vet. Parasitol. 2012, 26, 170–171. [Google Scholar]
- Liu, Q.; Li, M.W.; Wang, Z.D.; Zhao, G.H.; Zhu, X.Q. Human sparganosis, a neglected food borne zoonoses. Lancet Infect. Dis. 2015, 15, 1226–1235. [Google Scholar] [CrossRef]
- Jeon, H.K.; Park, H.; Lee, D.; Choe, S.; Sohn, W.M.; Eom, K.S. Molecular Detection of Spirometra decipiens in the United States. Korean J. Parasitol. 2016, 54, 503–507. [Google Scholar] [CrossRef]
- Yamasaki, H.; Sanpool, O.; Rodpai, R.; Sadaow, L.; Laummaunwai, P.; Un, M.; Thaanchomnang, T.; Laymanivong, S.; Aung, W.P.P.; Intapan, P.M.; et al. Spirometra species from Asia: Genetic diversity and taxonomic challenges. Parasitol. Int. 2021, 80, 102181. [Google Scholar] [CrossRef]
- Jeon, H.K.; Park, H.; Lee, D.; Choe, S.; Kang, Y.; Bia, M.; Lee, S.H.; Eom, K.S. Complete sequence of the mitochondrial genome of Spirometra ranarum: Comparison with S. erinaceieuropaei and S. decipiens. Korean J. Parasitol. 2019, 57, 55–60. [Google Scholar] [CrossRef]
- Sabu, L.; Lakshmanan, B.; Kumar, P.S. Occurrence of Human Sparganosis in Kerala. J. Parasit. Dis. 2015, 39, 777–779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eom, K.S.; Park, H.; Lee, D.; Choe, S.; Kim, K.H.; Jeon, H.K. Mitochondrial genome sequences of Spirometra erinaceieuropaei and S. decipiens (Cestoda: Diphyllobothriidae). Korean J. Parasitol. 2015, 53, 455–463. [Google Scholar] [CrossRef]
- Kamo, H. Guide to Identification of Diphyllobothriid Cestodes; Gendai kikaku: Tokyo, Japan, 1999. [Google Scholar]
- Iwata, S. Experimental and morphological studies of Manson’s tapeworm Diphyllobothrium erinacei (Rudolphi) special reference to its scientific name and relationship with Sparganum proliferum Ijima. Progr. Med. Parasitol. Jpn. 1972, 4, 536–590. [Google Scholar]
- Gusset, M.; Dick, G. The global reach of zoos and aquariums in visitor numbers and conservation expenditures. Zoo Biol. 2011, 30, 566–569. [Google Scholar] [CrossRef]
- Robinette, C.; Saffran, L.; Ruple, A.; Deem, S.L. Zoos and public health: A partnership on the One health frontier. One Health 2017, 3, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Soulsby, E.S.L. Helminths, Arthropods and Protozoa of Domesticated Animals, 7th ed.; Bailliere Tindall: London, UK, 1982. [Google Scholar]
- Jeon, H.K.; Park, H.; Lee, D.; Choe, S.; Kim, K.H.; Huh, S.; Sohn, W.M.; Chai, J.Y.; Eom, K.S. Human infections with Spirometra decipiens plerocercoids identified by morphologic and genetic analyses in Korea. Korean J. Parasitol. 2015, 53, 299–305. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawrence, C. Hamilton. In Statistics with Stata: Version 12, 8th ed.; Cengage: Boston, MA, USA, 2013. [Google Scholar]
Animal | Scientific Name | Feed Given | Anthelmintic | Frequency |
---|---|---|---|---|
Horse | Equus caballus | Grass, cereal grains | Albendazole Or Triclabendazole with Levamisole | Every 3–4 months |
Donkey | Equus asinus | Grass, cereal grains | ||
Black bear | Ursus americanus | Bread, mixed boiled feed (rice, milk, egg, fruits, vegetables) | ||
Spotted deer | Axis axis | Grass, cereal grains, vegetables | ||
Porcupine | Hystrix indica | Vegetables, grass, cereal grains | ||
Lion | Panthera leo | Meat | Ivermectin Or Albendazole | Every 3–4 months |
African civet | Civettictis civetta | Meat, fruits | ||
Wild cat (bon biral) | Felis silvestris | Meat | ||
Royal Bengal tiger | Panthera tigris | Meat | ||
Hanuman langur | Semnopithecus entellus | Fruits, bread, vegetables, cereal grains, | ||
Monkey | Rhesus macaque | Fruits, bread, cereal grains, eggs | ||
Turkey | Meleagris gallopavo | Nuts, commercial poultry feed | Piperazine | Every 3–4 months |
Peacock | Pavo cristatus | Nuts, vegetables, commercial poultry feed | ||
Owl | Bubo bengalensis | Meat, nuts | ||
Vulture | Aegypius monachus | Meat, nuts | ||
Ostrich | Struthio camelus | Fruits, bread, commercial poultry feed | ||
Emu | Dromaius novaehollandiae | Fruits, bread, commercial poultry feed | ||
Python | Morelia spilota variegata | Meat | Albendazole | Every 3–4 months |
Type of Host | Host | Scientific Name | No. of Examined Samples | No. of Positives | Egg or Oocyst Observed | Size (μm) (n = 7) | |
---|---|---|---|---|---|---|---|
Helminths | Protozoa | ||||||
Mammals (Carnivores/Omnivores) | Lion | Panthera leo | 2 | 2 | - | Spirometra sp. | 61–65 × 31–33 |
Toxocara sp. | 65–68 × 63–64 | ||||||
Tiger | Panthera tigris | 2 | 1 | - | Opisthorchiid | 26–29 × 13–14 | |
African civet | Civettictis civetta | 3 | 3 | - | Spirometra sp. | 60–63 × 29–31 | |
Hookworms | 68–72 × 39–41 | ||||||
Bon biral | Felis silvestris | 1 | - | - | - | - | |
Black bear | Ursus americanus | 2 | 2 | - | Hookworms | 72–77 × 38–40 | |
Baylisascaris transfuga | 63–65 × 58–60 | ||||||
5 host species | 10 | 8 (80%) | - | Genera of helminth: 5; Genera of protozoa: 0 | |||
Mammals (Herbivores) | Donkey | Equus asinus | 5 | 2 | - | Gastrointestinal Strongyles | 67–69 × 47–48 |
Horse | Equus caballus | 4 | - | - | - | - | |
Spotted deer | Axis axis | 2 | - | 1 | Eimeria spp. | 35–36 × 19–24 | |
Porcupine | Hystrix indica | 2 | - | - | - | - | |
Monkey | Rhesus macaque | 4 | 3 | - | Gastrointestinal Strongyles | 74–78 × 43–46 | |
Hanuman | Semnopithecus entellus | 2 | 2 | - | Gastrointestinal Strongyles | 68–71 × 45–48 | |
6 host species | 19 | 7 (36.9%) | 1 (5.3%) | Genera of helminth: 1; Genera of protozoa: 1 | |||
Avian | Turkey | Meleagris gallopavo | 2 | 1 | 1 | Capillaria sp. | 48–51 × 27–29 |
Eimeria spp. | 31–35 × 22–26 | ||||||
Owl | Bubo bengalensis | 2 | - | - | - | - | |
Vulture | Aegypius monachus | 1 | 1 | - | Roundworms | 49–52 × 28–29 | |
Ostrich | Struthio camelus | 4 | - | - | - | - | |
Peacock | Pavo cristatus | 4 | 3 | 1 | Capillaria sp. | 49–51 × 28–29 | |
Roundworms | 73–75 × 49–51 | ||||||
Acuariid | 34–36 × 17–19 | ||||||
Eimeria spp. | 29–31 × 18–21 | ||||||
Emu | Dromaius novaehollandiae | 2 | 1 | 1 | Unidentified nematodes | length.: 2.1–2.4 mm width: 0.79–0.84 μm | |
Coccidian oocysts | 27–32 × 21–24 | ||||||
6 host species | 15 | 6 (40%) | 3 (20%) | Genera of helminth: 4; Genera of protozoa: 2 | |||
Reptile | Python | Morelia spilota variegata | 1 | - | - | - | - |
Total | 18 | 45 | 21 (46.5%) | 4 (8.9%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nath, T.C.; Eom, K.S.; Choe, S.; Hm, S.; Islam, S.; Ndosi, B.A.; Kang, Y.; Bia, M.M.; Kim, S.; Eamudomkarn, C.; et al. Insight into One Health Approach: Endoparasite Infections in Captive Wildlife in Bangladesh. Pathogens 2021, 10, 250. https://doi.org/10.3390/pathogens10020250
Nath TC, Eom KS, Choe S, Hm S, Islam S, Ndosi BA, Kang Y, Bia MM, Kim S, Eamudomkarn C, et al. Insight into One Health Approach: Endoparasite Infections in Captive Wildlife in Bangladesh. Pathogens. 2021; 10(2):250. https://doi.org/10.3390/pathogens10020250
Chicago/Turabian StyleNath, Tilak Chandra, Keeseon S. Eom, Seongjun Choe, Shahadat Hm, Saiful Islam, Barakaeli Abdieli Ndosi, Yeseul Kang, Mohammed Mebarek Bia, Sunmin Kim, Chatanun Eamudomkarn, and et al. 2021. "Insight into One Health Approach: Endoparasite Infections in Captive Wildlife in Bangladesh" Pathogens 10, no. 2: 250. https://doi.org/10.3390/pathogens10020250
APA StyleNath, T. C., Eom, K. S., Choe, S., Hm, S., Islam, S., Ndosi, B. A., Kang, Y., Bia, M. M., Kim, S., Eamudomkarn, C., Jeon, H. -K., Park, H., & Lee, D. (2021). Insight into One Health Approach: Endoparasite Infections in Captive Wildlife in Bangladesh. Pathogens, 10(2), 250. https://doi.org/10.3390/pathogens10020250