Prevalence, Virulence and Antimicrobial Susceptibility of Salmonella spp., Yersinia enterocolitica and Listeria monocytogenes in European Wild Boar (Sus scrofa) Hunted in Tuscany (Central Italy)
Abstract
:1. Introduction
2. Results
2.1. Salmonella spp.
2.1.1. Isolation and Characterization
2.1.2. Antimicrobial Resistance
2.1.3. Virulence Genes
2.2. Yersinia enterocolitica
2.2.1. Isolation and Characterization
2.2.2. Antimicrobial Resistance
2.2.3. Virulence Genes
2.3. Listeria monocytogenes
2.3.1. Isolation and Characterization
2.3.2. Antimicrobial Resistance
2.4. Statistical Analysis
3. Discussion
4. Materials and Methods
4.1. Study Area and Sampling
4.2. Bacterial Isolation and Characterization
4.3. Antimicrobial Resistance
4.4. Virulence Genes
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Rock, M.; Buntain, B.J.; Hatfield, J.M.; Hallgrímsson, B. Animal-human connections, “one health,” and the syndemic approach to prevention. Soc. Sci. Med. 2009, 68, 991–995. [Google Scholar] [CrossRef] [PubMed]
- Ryu, S.; Kim, B.I.; Lim, J.S.; Tan, C.S.; Chun, B.C. One health perspectives on emerging public health threats. J. Prev. Med. Public Health 2017, 50, 411–414. [Google Scholar] [CrossRef] [PubMed]
- EFSA, (European Food Safety Authority); ECDC, (European Centre for Disease Prevention and Control). The European Union one health 2018 zoonoses report. EFSA J. 2019, 17, 276. [Google Scholar]
- Bertelloni, F.; Turchi, B.; Vattiata, E.; Viola, P.; Pardini, S.; Cerri, D.; Fratini, F. Serological survey on Leptospira infection in slaughtered swine in North-Central Italy. Epidemiol. Infect. 2018, 146, 1275–1280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cahill, S.; Llimona, F.; Cabañeros, L.; Calomardo, F. Characteristics of wild boar (Sus scrofa) habituation to urban areas in the Collserola Natural Park (Barcelona) and comparison with other locations. Anim. Biodivers. Conserv. 2012, 35, 221–233. [Google Scholar] [CrossRef]
- Massei, G.; Kindberg, J.; Licoppe, A.; Gačić, D.; Šprem, N.; Kamler, J.; Baubet, E.; Hohmann, U.; Monaco, A.; Ozoliņš, J.; et al. Wild boar populations up, numbers of hunters down? A review of trends and implications for Europe. Pest Manag. Sci. 2015, 71, 492–500. [Google Scholar] [CrossRef]
- Bertelloni, F.; Mazzei, M.; Cilia, G.; Forzan, M.; Felicioli, A.; Sagona, S.; Bandecchi, P.; Turchi, B.; Cerri, D.; Fratini, F. Serological survey on bacterial and viral pathogens in wild boars hunted in tuscany. Ecohealth 2020, 17, 85–93. [Google Scholar] [CrossRef]
- Pacini, M.I.; Forzan, M.; Cilia, G.; Bernardini, L.; Marzoli, F.; Pedonese, F.; Bandecchi, P.; Fratini, F.; Mazzei, M. Detection of pseudorabies virus in wild boar foetus. Animals 2020, 10, 366. [Google Scholar] [CrossRef] [Green Version]
- Cilia, G.; Bertelloni, F.; Mignone, W.; Spina, S.; Berio, E.; Razzuoli, E.; Vencia, W.; Franco, V.; Cecchi, F.; Bogi, S.; et al. Molecular detection of Leptospira spp. in wild boar (Sus scrofa) hunted in Liguria region (Italy). Comp. Immunol. Microbiol. Infect. Dis. 2020, 68, 101410. [Google Scholar] [CrossRef]
- Montagnaro, S.; De Martinis, C.; Sasso, S.; Ciarcia, R.; Damiano, S.; Auletta, L.; Iovane, V.; Zottola, T.; Pagnini, U. Viral and antibody prevalence of hepatitis e in european wild boars (Sus scrofa) and hunters at zoonotic risk in the Latium Region. J. Comp. Pathol. 2015, 153, 1–8. [Google Scholar] [CrossRef]
- Ruiz-Fons, F.; Segalés, J.; Gortázar, C. A review of viral diseases of the European wild boar: Effects of population dynamics and reservoir rôle. Vet. J. 2008, 176, 158–169. [Google Scholar] [CrossRef] [PubMed]
- Cilia, G.; Bertelloni, F.; Piredda, I.; Ponti, M.N.; Turchi, B.; Cantinle, C.; Parisi, F.; Pinzauti, P.; Armani, A.; Palmas, B.; et al. Presence of pathogenic Leptospira spp. in the reproductive system and fetuses of wild boars (Sus scrofa) in Italy. PLoS Negl. Trop. Dis. 2020, 14, e0008982. [Google Scholar] [CrossRef] [PubMed]
- Bertelloni, F.; Cilia, G.; Bogi, S.; Ebani, V.V.; Turini, L.; Nuvoloni, R.; Cerri, D.; Fratini, F.; Turchi, B. Pathotypes and antimicrobial susceptibility of Escherichia coli isolated from wild boar (Sus scrofa) in Tuscany. Animals 2020, 10, 744. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Fons, F. A review of the current status of relevant zoonotic pathogens in wild swine (Sus scrofa ) populations: Changes modulating the risk of transmission to humans. Transbound. Emerg. Dis. 2017, 64, 68–88. [Google Scholar] [CrossRef]
- Kock, R. Drivers of disease emergence and spread: Is wildlife to blame? Onderstepoort J. Vet. Res. 2014, 81, 1–4. [Google Scholar] [CrossRef]
- Meng, X.J.; Lindsay, D.S.; Sriranganathan, N. Wild boars as sources for infectious diseases in livestock and humans. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009, 364, 2697–2707. [Google Scholar] [CrossRef] [Green Version]
- Barth, S.; Geue, L.; Hinsching, A.; Jenckel, M.; Schlosser, J.; Eiden, M.; Pietschmann, J.; Menge, C.; Beer, M.; Groschup, M.; et al. Experimental evaluation of faecal escherichia coli and hepatitis E virus as biological indicators of contacts between domestic pigs and eurasian wild boar. Transbound. Emerg. Dis. 2017, 64, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Fretin, D.; Mori, M.; Czaplicki, G.; Quinet, C.; Maquet, B.; Godfroid, J.; Saegerman, C. Unexpected Brucella suis biovar 2 Infection in a dairy cow, Belgium. Emerg. Infect. Dis. 2013, 19, 2053–2054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barlozzari, G.; Franco, A.; Macrì, G.; Lorenzetti, S.; Maggiori, F.; Dottarelli, S.; Maurelli, M.; Di Giannatale, E.; Tittarelli, M.; Battisti, A.; et al. First report of Brucella suis biovar 2 in a semi free-range pig farm, Italy. Vet. Ital. 2015, 51, 151–154. [Google Scholar] [PubMed]
- Bertelloni, F.; Turchi, B.; Cerri, D.; Pinzauti, P.; Fratini, F. Leptospira spp. and Brucella ovis seroprevalence in sheep: Preliminary results of one year surveillance program. J. Hell. Vet. Med. Soc. 2017, 68, 567–572. [Google Scholar] [CrossRef] [Green Version]
- Jajere, S.M. A review of Salmonella enterica with particular focus on the pathogenicity and virulence factors, host specificity and adaptation and antimicrobial resistance including multidrug resistance. Vet. World 2019, 12, 504–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eng, S.-K.; Pusparajah, P.; Ab Mutalib, N.-S.; Ser, H.-L.; Chan, K.-G.; Lee, L.-H. Salmonella: A review on pathogenesis, epidemiology and antibiotic resistance. Front. Life Sci. 2015, 8, 284–293. [Google Scholar] [CrossRef] [Green Version]
- Bertelloni, F.; Tosi, G.; Massi, P.; Fiorentini, L.; Parigi, M.; Cerri, D.; Ebani, V.V. Some pathogenic characters of paratyphoid Salmonella enterica strains isolated from poultry. Asian Pac. J. Trop. Med. 2017, 10, 1161–1166. [Google Scholar] [CrossRef] [PubMed]
- Mezal, E.H.; Sabol, A.; Khan, M.A.; Ali, N.; Stefanova, R.; Khan, A.A. Isolation and molecular characterization of Salmonella enterica serovar Enteritidis from poultry house and clinical samples during 2010. Food Microbiol. 2014, 38, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Bottone, E.J. Yersinia enterocolitica: The charisma continues. Clin. Microbiol. Rev. 1997, 10, 257–276. [Google Scholar] [CrossRef]
- Wren, B.W. The Yersiniae—A model genus to study the rapid evolution of bacterial pathogens. Nat. Rev. Microbiol. 2003, 1, 55–64. [Google Scholar] [CrossRef]
- Tirziu, E.; Cumpanasoiu, C.; Gros, R.V.; Seres, M. Yersinia enterocolitica Monographic Study. J. Anim. Sci. Biotechnol. 2011, 44, 144–149. [Google Scholar]
- Wauters, G.; Kandolo, K.; Janssens, M. Revised biogrouping scheme of Yersinia enterocolitica. Contrib. Microbiol. Immunol. 1987, 9, 14–21. [Google Scholar]
- Farber, J.M.; Peterkin, P.I. Listeria monocytogenes, a food-borne pathogen. Microbiol. Rev. 1991, 55, 476–511. [Google Scholar] [CrossRef]
- McLauchlin, J. Animal and human listeriosis: A shared problem? Vet. J. 1997, 153, 3–5. [Google Scholar] [CrossRef]
- Vázquez-Boland, J.A.; Kuhn, M.; Berche, P.; Chakraborty, T.; Domínguez-Bernal, G.; Goebel, W.; González-Zorn, B.; Wehland, J.; Kreft, J. Listeria pathogenesis and molecular virulence determinants. Clin. Microbiol. Rev. 2001, 14, 584–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kathariou, S. Listeria monocytogenes virulence and pathogenicity, a food safety perspective. J. Food Prot. 2002, 65, 1811–1829. [Google Scholar] [CrossRef] [PubMed]
- Torres, R.T.; Fernandes, J.; Carvalho, J.; Cunha, M.V.; Caetano, T.; Mendo, S.; Serrano, E.; Fonseca, C. Wild boar as a reservoir of antimicrobial resistance. Sci. Total Environ. 2019, 717, 135001. [Google Scholar] [CrossRef] [PubMed]
- Zottola, T.; Montagnaro, S.; Magnapera, C.; Sasso, S.; De Martino, L.; Bragagnolo, A.; D’Amici, L.; Condoleo, R.; Pisanelli, G.; Iovane, G.; et al. Prevalence and antimicrobial susceptibility of Salmonella in European wild boar (Sus scrofa); Latium Region—Italy. Comp. Immunol. Microbiol. Infect. Dis. 2013, 36, 161–168. [Google Scholar] [CrossRef]
- Sannö, A.; Jacobson, M.; Sterner, S.; Thisted-Lambertz, S.; Aspán, A. The development of a screening protocol for Salmonella spp. and enteropathogenic Yersinia spp. in samples from wild boar (Sus scrofa) also generating MLVA–data for Y. enterocolitica and Y. pseudotuberculosis. J. Microbiol. Methods 2018, 150, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, T.; Kabeya, H.; Sato, S.; Yamazaki, A.; Kamata, Y.; Taira, K.; Asakura, H.; Sugiyama, H.; Takai, S.; Maruyama, S. Prevalence of yersinia among wild sika deer (Cervus nippon) and boars (sus scrofa) in Japan. J. Wildl. Dis. 2020, 56, 270–277. [Google Scholar] [CrossRef]
- Wacheck, S.; Giezendanner, N.; König, M.; Fredriksson-Ahomaa, M.; Stephan, R. Phenotypical and genotypical traits of Listeria monocytogens strains isolated from tonsils of wild boars hunted in Switzerland. Int. J. Infect. Dis. 2010, 14, e162. [Google Scholar] [CrossRef] [Green Version]
- Sarangi, L.N.; Panda, H.K. Occurrence of Listeria species in different captive wild animals of Nandankanan Zoo, Baranga, Odisha, India. J. Threat. Taxa 2013, 5, 3542–3547. [Google Scholar] [CrossRef] [Green Version]
- Sannö, A.; Rosendal, T.; Aspán, A.; Backhans, A.; Jacobson, M. Distribution of enteropathogenic Yersinia spp. and Salmonella spp. in the Swedish wild boar population, and assessment of risk factors that may affect their prevalence. Acta Vet. Scand. 2018, 60, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Cilia, G.; Bertelloni, F.; Angelini, M.; Cerri, D.; Fratini, F. Leptospira Survey in Wild Boar (Sus scrofa) Hunted in Tuscany, Central Italy. Pathogens 2020, 9, 377. [Google Scholar] [CrossRef]
- Botti, V.; Valérie Navillod, F.; Domenis, L.; Orusa, R.; Pepe, E.; Robetto, S.; Guidetti, C. Salmonella spp. and antibiotic-resistant strains in wild mammals and birds in north-western Italy from 2002 to 2010. Vet. Ital. 2013, 49, 195–202. [Google Scholar] [PubMed]
- Molino, G.M.; Sánchez, G.A.; Pérez, R.D.; Blanco, G.P.; Molina, Q.A.; Pérez, R.J.; Cano, M.F.E.; Horrillo, C.R.; Salcedo, H.-d.-M.J.; Llario, F.P. Prevalence of Salmonella spp. in tonsils, mandibular lymph nodes and faeces of wild boar from Spain and genetic relationship between isolates. Transbound. Emerg. Dis. 2019, 66, 1218–1226. [Google Scholar] [CrossRef] [PubMed]
- Sannö, A.; Aspán, A.; Hestvik, G.; Jacobson, M. Presence of Salmonella spp., Yersinia enterocolitica, Yersinia pseudotuberculosis and Escherichia coli O157:H7 in wild boars. Epidemiol. Infect. 2014, 142, 2542–2547. [Google Scholar] [CrossRef] [PubMed]
- Wacheck, S.; Fredriksson-Ahomaa, M.; König, M.; Stolle, A.; Stephan, R. Wild Boars as an important reservoir for foodborne pathogens. Foodborne Pathog. Dis. 2010, 7, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Vieira-Pinto, M.; Morais, L.; Caleja, C.; Themudo, P.; Torres, C.; Igrejas, G.; Poeta, P.; Martins, C. Salmonella sp. in Game (Sus scrofa and Oryctolagus cuniculus ). Foodborne Pathog. Dis. 2011, 8, 739–740. [Google Scholar] [CrossRef]
- Wahlström, H.; Tysén, E.; Engvall, E.O.; Brändström, B.; Eriksson, E.; Mörner, T.; Vågsholm, I. Survey of Campylobacter species, VTEC 0157 and Salmonella species in Swedish wildlife. Vet. Rec. 2003, 153, 74–80. [Google Scholar] [CrossRef]
- Vieira-Pinto, M.; Morais, L.; Caleja, C.; Themudo, P.; Aranha, J.; Torres, C.; Igrejas, G.; Poeta, P.; Martins, C. Salmonella spp. in wild boar (Sus scrofa): A public and animal health concern. In Game Meat Hygiene in Focus; Wageningen Academic Publishers: Wageningen, The Netherlands, 2011; pp. 131–136. [Google Scholar]
- Chiari, M.; Zanoni, M.; Tagliabue, S.; Lavazza, A.; Alborali, L.G. Salmonella serotypes in wild boars (Sus scrofa) hunted in northern Italy. Acta Vet. Scand. 2013, 55, 42. [Google Scholar] [CrossRef] [Green Version]
- Methner, U.; Heller, M.; Bocklisch, H. Salmonella enterica subspecies enterica serovar Choleraesuis in a wild boar population in Germany. Eur. J. Wildl. Res. 2010, 56, 493–502. [Google Scholar] [CrossRef]
- Caleja, C.; de Toro, M.; Gonçalves, A.; Themudo, P.; Vieira-Pinto, M.; Monteiro, D.; Rodrigues, J.; Sáenz, Y.; Carvalho, C.; Igrejas, G.; et al. Antimicrobial resistance and class I integrons in Salmonella enterica isolates from wild boars and Bísaro pigs. Int. Microbiol. 2011, 14, 19–24. [Google Scholar]
- Bonardi, S.; Alpigiani, I.; Bruini, I.; Barilli, E.; Brindani, F.; Morganti, M.; Cavallini, P.; Bolzoni, L.; Pongolini, S. Detection of Salmonella enterica in pigs at slaughter and comparison with human isolates in Italy. Int. J. Food Microbiol. 2016, 218, 44–50. [Google Scholar] [CrossRef]
- Fois, F.; Piras, F.; Torpdahl, M.; Mazza, R.; Consolati, S.G.; Spanu, C.; Scarano, C.; De Santis, E.P.L. Occurrence, characterization, and antimicrobial susceptibility of salmonella enterica in slaughtered pigs in Sardinia. J. Food Sci. 2017, 82, 969–976. [Google Scholar] [CrossRef] [PubMed]
- Proroga, Y.T.R.; Mancusi, A.; Peruzy, M.F.; Carullo, M.R.; Montone, A.M.I.; Fulgione, A.; Capuano, F. Characterization of salmonella typhimurium and its monophasic variant 1,4, [5],12:i:- isolated from different sources. Folia Microbiol. 2019, 64, 711–718. [Google Scholar] [CrossRef] [PubMed]
- Nguyen Thi, H.; Pham, T.-T.-T.; Turchi, B.; Fratini, F.; Virginia Ebani, V.; Cerri, D.; Bertelloni, F. Characterization of salmonella spp. isolates from swine: Virulence and antimicrobial resistance. Animals 2020, 10, 2418. [Google Scholar] [CrossRef] [PubMed]
- Bertelloni, F.; Chemaly, M.; Cerri, D.; Le Gall, F.; Ebani, V.V. Salmonella infection in healthy pet reptiles: Bacteriological isolation and study of some pathogenic characters. Acta Microbiol. Immunol. Hung. 2016, 63, 203–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Altrock, A.; Seinige, D.; Kehrenberg, C. Yersinia enterocolitica isolates from wild boars hunted in Lower Saxony, Germany. Appl. Environ. Microbiol. 2015, 81, 4835–4840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bancerz-Kisiel, A.; Platt-Samoraj, A.; Szczerba-Turek, A.; SyczyŁo, K.; Szweda, W. The first pathogenic Yersinia enterocolitica bioserotype 4/O: 3 strain isolated from a hunted wild boar (Sus scrofa) in Poland. Epidemiol. Infect. 2015, 143, 2758–2765. [Google Scholar] [CrossRef]
- Bancerz-Kisiel, A.; Socha, P.; Szweda, W. Detection and characterisation of Yersinia enterocolitica strains in cold-stored carcasses of large game animals in Poland. Vet. J. 2016, 208, 102–103. [Google Scholar] [CrossRef]
- Syczyło, K.; Platt-Samoraj, A.; Bancerz-Kisiel, A.; Szczerba-Turek, A.; Pajdak-Czaus, J.; Łabuć, S.; Procajło, Z.; Socha, P.; Chuzhebayeva, G.; Szweda, W. The prevalence of Yersinia enterocolitica in game animals in Poland. PLoS ONE 2018, 13, e0195136. [Google Scholar] [CrossRef]
- Bonardi, S.; Brémont, S.; Vismarra, A.; Poli, I.; Diegoli, G.; Bolzoni, L.; Corradi, M.; Gilioli, S.; Le Guern, A.S. Is Yersinia bercovieri Surpassing Yersinia enterocolitica in Wild Boars (Sus scrofa)? Ecohealth 2020, 17, 388–392. [Google Scholar] [CrossRef]
- Bancerz-Kisiel, A.; Szczerba-Turek, A.; Platt-Samoraj, A.; Michalczyk, M.; Szweda, W. A study of single nucleotide polymorphism in the ystB gene of Yersinia enterocolitica strains isolated from various wild animal species. Ann. Agric. Environ. Med. 2017, 24, 56–61. [Google Scholar] [CrossRef]
- Weiner, M.; Kubajka, M.; Szulowski, K.; Iwaniak, W.; Krajewska, M.; Lipiec, M. Genotypic virulence markers of Yersinia enterocolitica O:9 isolated from pigs and wild boars serologically positive and negative for brucellosis. Bull. Vet. Inst. Pulawy 2014, 58, 541–545. [Google Scholar] [CrossRef] [Green Version]
- Fredriksson-Ahomaa, M.; Wacheck, S.; Bonke, R.; Stephan, R. Different enteropathogenic Yersinia strains found in wild boars and domestic pigs. Foodborne Pathog. Dis. 2011, 8, 733–737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fàbrega, A.; Vila, J. Yersinia enterocolitica: Pathogenesis, virulence and antimicrobial resistance. Enferm. Infecc. Microbiol. Clin. 2012, 30, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Bancerz-Kisiel, A.; Pieczywek, M.; Łada, P.; Szweda, W. The most important virulence markers of yersinia enterocolitica and their role during infection. Genes 2018, 9, 235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terentjeva, M.; Bẽrziņš, A. Prevalence and antimicrobial resistance of Yersinia enterocolitica and Yersinia pseudotuberculosis in Slaughter Pigs in Latvia. J. Food Prot. 2010, 73, 1335–1338. [Google Scholar] [CrossRef]
- Baumgartner, A.; Küffer, M.; Suter, D.; Jemmi, T.; Rohner, P. Antimicrobial resistance of Yersinia enterocolitica strains from human patients, pigs and retail pork in Switzerland. Int. J. Food Microbiol. 2007, 115, 110–114. [Google Scholar] [CrossRef]
- Von Altrock, A.; Roesler, U.; Merle, R.; Waldmann, K.H. Prevalence of pathogenic Yersinia enterocolitica strains on liver surfaces of pigs and their antimicrobial susceptibility. J. Food Prot. 2010, 73, 1680–1683. [Google Scholar] [CrossRef]
- Younis, G.; Mady, M.; Awad, A. Yersinia enterocolitica: Prevalence, virulence, and antimicrobial resistance from retail and processed meat in Egypt. Vet. World 2019, 12, 1078–1084. [Google Scholar] [CrossRef]
- Andualem, B.; Geyid, A. Antimicrobial responses of Yersinia enterocolitica isolates in comparison to other commonly encountered bacteria that causes diarrhoea. East Afr. Med. J. 2005, 82, 241–246. [Google Scholar] [CrossRef]
- Bhaduri, S.; Wesley, I.; Richards, H.; Draughon, A.; Wallace, M. Clonality and antibiotic susceptibility of Yersinia enterocolitica isolated from U.S. market weight hogs. Foodborne Pathog. Dis. 2009, 6, 351–356. [Google Scholar] [CrossRef] [Green Version]
- CLSI (Clinical and Laboratory Standards Institute). M100 Performance Standards for Antimicrobial Susceptibility Testing A CLSI Supplement for Global Application, 28th ed.; CLSI supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Olga, V.L.; Natalia, R.N.; Marina, K.S.; Margarita, K.A.; Andrey, S.N.; Ekaterina, A.I.; Irina Yu, E.; Denis, K.V.; Svetlana, E.A.; Alexander, G.L. Diversity and pathogenic potential of listeria monocytogenes isolated from environmental sources in the Russian Federation. Int. J. Mod. Eng. Res. 2015, 5, 5–15. [Google Scholar]
- Hayashidani, H.; Kanzaki, N.; Kaneko, Y.; Okatani, A.T.; Taniguchi, T.; Kaneko, K.I.; Ogawa, M. Occurrence of Yersiniosis and listeriosis in wild boars in Japan. J. Wildl. Dis. 2002, 38, 202–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakulov, I.A.; Egorova, I.Y.; Fertikov, V.I.; Voronin, M.S. Spread of Listeria in fauna of the central region of Russia. Russ. Agric. Sci. 2010, 36, 58–60. [Google Scholar] [CrossRef]
- Stella, S.; Tirloni, E.; Castelli, E.; Colombo, F.; Bernardi, C. Microbiological evaluation of carcasses of wild boar hunted in a hill area of northern Italy. J. Food Prot. 2018, 81, 1519–1525. [Google Scholar] [CrossRef] [PubMed]
- Weindl, L.; Frank, E.; Ullrich, U.; Heurich, M.; Kleta, S.; Ellerbroek, L.; Gareis, M. Listeria monocytogenes in different specimens from healthy red deer and wild boars. Foodborne Pathog. Dis. 2016, 13, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Kanai, Y.; Hayashidani, H.; Kaneko, K.I.; Ogawa, M.; Takahashi, T.; Nakamura, M. Occurrence of zoonotic bacteria in retail game meat in Japan with special reference to Erysipelothrix. J. Food Prot. 1997, 60, 328–331. [Google Scholar] [CrossRef] [PubMed]
- Zaytseva, E.; Ermolaeva, S.; Somov, G.P. Low genetic diversity and epidemiological significance of Listeria monocytogenes isolated from wild animals in the far east of Russia. Infect. Genet. Evol. 2007, 7, 736–742. [Google Scholar] [CrossRef]
- Consiglio Regionale della Toscana. Nota Informativa Sull’attuazione delle Politiche Regionali n° 40; Consiglio Regionale della Toscana: Tuscany, Italy, 2018. [Google Scholar]
- Sáez-Royuela, C.; Gomariz, R.P.; Luis Tellería, J. Age determination of European wild boar. Wildl. Soc. Bull. 1989, 17, 326–329. [Google Scholar]
- Fredriksson-Ahomaa, M.; Korkeala, H. Low occurrence of pathogenic Yersinia enterocolitica in clinical, food, and environmental samples: A methodological problem. Clin. Microbiol. Rev. 2003, 16, 220–229. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Cui, Z.; Jin, D.; Tang, L.; Xia, S.; Wang, H.; Xiao, Y.; Qiu, H.; Hao, Q.; Kan, B.; et al. Distribution of pathogenic Yersinia enterocolitica in China. Eur. J. Clin. Microbiol. Infect. Dis. 2009, 28, 1237–1244. [Google Scholar] [CrossRef]
- Demaître, N.; Van Damme, I.; De Zutter, L.; Geeraerd, A.H.; Rasschaert, G.; De Reu, K. Occurrence, distribution and diversity of Listeria monocytogenes contamination on beef and pig carcasses after slaughter. Meat Sci. 2020, 169, 108177. [Google Scholar] [CrossRef]
- D’Agostino, M.; Wagner, M.; Vazquez-Boland, J.A.; Kuchta, T.; Karpiskova, R.; Hoorfar, J.; Novella, S.; Scortti, M.; Ellison, J.; Murray, A.; et al. A validated PCR-based method to detect Listeria monocytogenes using raw milk as a food model—Towards an international standard. J. Food Prot. 2004, 67, 1646–1655. [Google Scholar] [CrossRef] [PubMed]
- Doumith, M.; Buchrieser, C.; Glaser, P.; Jacquet, C.; Martin, P. Differentiation of the major listeria monocytogenes serovars by multiplex PCR. J. Clin. Microbiol. 2004, 42, 3819–3822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borucki, M.K.; Call, D.R. Listeria monocytogenes serotype identification by PCR. J. Clin. Microbiol. 2003, 41, 5537–5540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clinical and Laboratory Standards Institute. M02-A12 Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard, 12th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2015. [Google Scholar]
- Skyberg, J.A.; Logue, C.M.; Nolan, L.K. Virulence genotyping of Salmonella spp. with multiplex PCR. Avian Dis. 2006, 50, 77–81. [Google Scholar] [CrossRef] [Green Version]
- Huehn, S.; La Ragione, R.M.; Anjum, M.; Saunders, M.; Woodward, M.J.; Bunge, C.; Helmuth, R.; Hauser, E.; Guerra, B.; Beutlich, J.; et al. Virulotyping and antimicrobial resistance typing of salmonella enterica serovars relevant to human health in Europe. Foodborne Pathog. Dis. 2010, 7, 523–535. [Google Scholar] [CrossRef]
- Paban Bhowmick, P.; Devegowda, D.; Karunasagar, I. Virulotyping of seafood associated Salmonella enterica subsp. enterica isolated from Southwest coast of India. Res. Artic. Biotechnol. Bioinf. Bioeng. 2011, 1, 63–69. [Google Scholar]
- Parvathi, A.; Vijayan, J.; Murali, G.; Chandran, P. Comparative virulence genotyping and antimicrobial susceptibility profiling of environmental and clinical salmonella enterica from Cochin, India. Curr. Microbiol. 2011, 62, 21–26. [Google Scholar] [CrossRef]
- Karasova, D.; Havlickova, H.; Sisak, F.; Rychlik, I. Deletion of sodCI and spvBC in Salmonella enterica serovar Enteritidis reduced its virulence to the natural virulence of serovars Agona, Hadar and Infantis for mice but not for chickens early after infection. Vet. Microbiol. 2009, 139, 304–309. [Google Scholar] [CrossRef]
- Thoerner, P.; Kingombe, C.I.B.; Bögli-Stuber, K.; Bissig-Choisat, B.; Wassenaar, T.M.; Frey, J.; Jemmi, T. PCR detection of virulence genes in Yersinia enterocolitica and Yersinia pseudotuberculosis and investigation of virulence gene distribution. Appl. Environ. Microbiol. 2003, 69, 1810–1816. [Google Scholar] [CrossRef] [Green Version]
- Thisted Lambertz, S.; Danielsson-Tham, M.L. Identification and characterization of pathogenic Yersinia enterocolitica isolates by PCR and pulsed-field gel electrophoresis. Appl. Environ. Microbiol. 2005, 71, 3674–3681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falcão, J.P.; Falcão, D.P.; Pitondo-Silva, A.; Malaspina, A.C.; Brocchi, M. Molecular typing and virulence markers of Yersinia enterocolitica strains from human, animal and food origins isolated between 1968 and 2000 in Brazil. J. Med. Microbiol. 2006, 55, 1539–1548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Isolate | Serotype | Source | Wild Boar | Province | Hunting Season | Virulence Genes Profile | Antimicrobial Resistance Profile |
---|---|---|---|---|---|---|---|
S345 | Newport | L | C12 | Siena | 2018/2019 | KF | |
S346 | Newport | Sp | C12 | Siena | 2018/2019 | KF | |
S347 | London | R | C51 | Grosseto | 2018/2019 | pipB | |
S349 | Infantis | Sp | C103 | Pisa | 2018/2019 | sopB, sodCI | TE, ENR, S, F, NA |
S352 | 50:r:1,5,7 | L | C141 | Grosseto | 2018/2019 | sopB, sopE | S |
S353 | 50:r:1,5,7 | Sp | C141 | Grosseto | 2018/2019 | sopB, sopE | S |
S354 | 50:r:1,5,7 | Sp | C196 | Grosseto | 2018/2019 | pipB, spvC, spvR, sodCI | |
S355 | 50:r:1,5,7 | R | C196 | Grosseto | 2018/2019 | pipB, spvC, spvR, sodCI | |
S382 | 50:r:1,5,7 | Sp | C203 | Grosseto | 2019/2020 | spvC, spvR | S |
S383 | 50:r:1,5,7 | R | C209 | Lucca | 2019/2020 | sopB, pipB, mgtC, sopE, sodCI | IPM |
S387 | Rubislaw | L | C209 | Lucca | 2019/2020 | sopB, pipB, mgtC, sopE, sodCI | S |
S386 | 50:r:1,5,7 | R | C216 | Grosseto | 2019/2020 | mgtC, sodCI | S |
S389 | Kottbus | R | C218 | Grosseto | 2019/2020 | pipB, sopE | |
S390 | Kottbus | Sp | C218 | Grosseto | 2019/2020 | pipB, sopE | |
S391 | 1,40:z4,z23 | R | C263 | Lucca | 2019/2020 | spvC, spvR | S |
S394 | 1,40:z4,z23 | L | C270 | Lucca | 2019/2020 | spvC, spvR, sopE | S |
S392 | 1,40:z4,z23 | R | C271 | Lucca | 2019/2020 | spvC, spvR, sopE, sodCI | S |
S393 | 1,40:z4,z23 | L | C271 | Lucca | 2019/2020 | spvC, spvR, sopE, sodCI | S |
Isolate | Biotype | Wild Boar | Province | Hunting Season | Virulence Genes Profile | Antimicrobial Resistance Profile |
---|---|---|---|---|---|---|
YC1 | 1 | C10 | Siena | 2018/2019 | AMP, AMC, KF | |
YC2 | 1 | C11 | Siena | 2018/2019 | inv | KF, FOX |
YC4 | 3 | C24 | Livorno | 2018/2019 | AMP, AMC, KF, FOX | |
YC6 | 3 | C36 | Grosseto | 2018/2019 | ystA | AMP, AMC, KF, FOX |
YC7 | 3 | C37 | Grosseto | 2018/2019 | ail | AMP, KF, FOX |
YC11 | 3 | C23 | Livorno | 2018/2019 | virF | AMP, KF, FOX |
YC12 | 1 | C30 | Pisa | 2018/2019 | ystA | AMP, KF |
YC13 | 3 | C54 | Grosseto | 2018/2019 | ystA, ystB, inv | AMP, AMC, KF, FOX |
YC14 | 3 | C53 | Grosseto | 2018/2019 | ail | AMP, KF, FOX |
YC15 | 1 | C49 | Livorno | 2018/2019 | virF | AMP, KF |
YC16 | 1 | C74 | Pisa | 2018/2019 | ystA | AMP, KF |
YC17 | 1 | C92 | Pisa | 2018/2019 | AMP, KF, FOX | |
YC18 | 1 | C94 | Pisa | 2018/2019 | ail, ystB | KF |
YC20 | 3 | C56 | Grosseto | 2018/2019 | virF, inv | KF |
YC21 | 2 | C48 | Siena | 2018/2019 | ystA | KF |
YC27 | 2 | C113 | Grosseto | 2018/2019 | AMP, AMC, KF, FOX | |
YC29 | 1 | C140 | Grosseto | 2018/2019 | AMP, AMC, KF, FOX | |
YC30 | 2 | C139 | Grosseto | 2018/2019 | ystA | AMP, AMC, KF |
YC31 | 3 | C124 | Siena | 2018/2019 | inv | AMP, KF |
YC32 | 3 | C132 | Grosseto | 2018/2019 | ail, ystA | KF |
YC33 | 5 | C134 | Grosseto | 2018/2019 | ail, ystB, inv | KF |
YC34 | 1 | C145 | Pisa | 2018/2019 | AMP, AMC, KF, FOX | |
YC35 | 3 | C146 | Pisa | 2018/2019 | ail, ystA, ystB | AMP, AMC, KF |
YC37 | 2 | C149 | Pisa | 2018/2019 | AMP, KF | |
YC38 | 2 | C150 | Pisa | 2018/2019 | KF, F | |
YC39 | 2 | C151 | Pisa | 2018/2019 | AMP, AMC, KF, FOX | |
YC44 | 3 | C163 | Grosseto | 2018/2019 | ail, ystB | KF |
YC45 | 2 | C172 | Pisa | 2018/2019 | KF | |
YC46 | 3 | C173 | Pisa | 2018/2019 | ystA | AMP, KF, S, ATM, NA |
YC47 | 2 | C176 | Pisa | 2018/2019 | KF, CTX, TE, ENR, FOX, ATM, NA | |
YC48 | 3 | C174 | Pisa | 2018/2019 | inv | AMP, ATM, KF, FOX |
YC49 | 2 | C193 | Grosseto | 2018/2019 | virF | AMP, KF |
YC50 | 3 | C197 | Grosseto | 2018/2019 | AMP, KF | |
YC51 | 3 | C202 | Grosseto | 2019/2020 | ail, inv | AMP, AMC, KF, FOX |
YC52 | 1 | C229 | Grosseto | 2019/2020 | ystA | AMC, KF |
YC53 | 1 | C230 | Grosseto | 2019/2020 | KF, FOX | |
YC54 | 1 | C232 | Pisa | 2019/2020 | AMP, AMC, KF | |
YC55 | 1 | C241 | Pisa | 2019/2020 | virF | AMP, AMC, KF, FOX |
YC56 | 3 | C240 | Pisa | 2019/2020 | ail | KF |
YC57 | 4 | C244 | Pisa | 2019/2020 | ystB, inv | AMP, AMC, KF |
YC58 | 1 | C249 | Grosseto | 2019/2020 | AMP, AMC, KF, FOX | |
YC59 | 1 | C252 | Pisa | 2019/2020 | inv | AMP, KF |
YC60 | 1 | C261 | Pisa | 2019/2020 | ystA | AMP, AMC, KF |
YC61 | 1 | C258 | Pisa | 2019/2020 | ystB, inv | AMP, AMC, KF, FOX |
YC62 | 1 | C263 | Lucca | 2019/2020 | AMP, AMC, KF, FOX | |
YC63 | 3 | C262 | Lucca | 2019/2020 | ail, virF | AMC, KF |
YC64 | 1 | C264 | Lucca | 2019/2020 | AMC, KF, FOX | |
YC65 | 1 | C265 | Pisa | 2019/2020 | ystA, inv | AMP, AMC, KF, FOX |
YC66 | 1 | C269 | Pisa | 2019/2020 | AMP, AMC, KF, FOX | |
YC67 | 1 | C266 | Pisa | 2019/2020 | inv | AMP, AMC, KF |
YC68 | 1 | C272 | Lucca | 2019/2020 | ystA | AMP, AMC, KF |
YC69 | 1 | C275 | Lucca | 2019/2020 | AMP, AMC, KF | |
YC70 | 1 | C281 | Pisa | 2019/2020 | AMC, KF | |
YC71 | 1 | C282 | Pisa | 2019/2020 | ystB | AMC, KF |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cilia, G.; Turchi, B.; Fratini, F.; Bilei, S.; Bossù, T.; De Marchis, M.L.; Cerri, D.; Pacini, M.I.; Bertelloni, F. Prevalence, Virulence and Antimicrobial Susceptibility of Salmonella spp., Yersinia enterocolitica and Listeria monocytogenes in European Wild Boar (Sus scrofa) Hunted in Tuscany (Central Italy). Pathogens 2021, 10, 93. https://doi.org/10.3390/pathogens10020093
Cilia G, Turchi B, Fratini F, Bilei S, Bossù T, De Marchis ML, Cerri D, Pacini MI, Bertelloni F. Prevalence, Virulence and Antimicrobial Susceptibility of Salmonella spp., Yersinia enterocolitica and Listeria monocytogenes in European Wild Boar (Sus scrofa) Hunted in Tuscany (Central Italy). Pathogens. 2021; 10(2):93. https://doi.org/10.3390/pathogens10020093
Chicago/Turabian StyleCilia, Giovanni, Barbara Turchi, Filippo Fratini, Stefano Bilei, Teresa Bossù, Maria Laura De Marchis, Domenico Cerri, Maria Irene Pacini, and Fabrizio Bertelloni. 2021. "Prevalence, Virulence and Antimicrobial Susceptibility of Salmonella spp., Yersinia enterocolitica and Listeria monocytogenes in European Wild Boar (Sus scrofa) Hunted in Tuscany (Central Italy)" Pathogens 10, no. 2: 93. https://doi.org/10.3390/pathogens10020093
APA StyleCilia, G., Turchi, B., Fratini, F., Bilei, S., Bossù, T., De Marchis, M. L., Cerri, D., Pacini, M. I., & Bertelloni, F. (2021). Prevalence, Virulence and Antimicrobial Susceptibility of Salmonella spp., Yersinia enterocolitica and Listeria monocytogenes in European Wild Boar (Sus scrofa) Hunted in Tuscany (Central Italy). Pathogens, 10(2), 93. https://doi.org/10.3390/pathogens10020093