Molecular Pathotyping of Plasmodiophora brassicae—Genomes, Marker Genes, and Obstacles
Abstract
:1. Introduction
2. Genomes and Pathotypes
3. Gene Variation and Molecular Markers
4. Effectors
4.1. Effector Function
4.2. Effector Variation and Pathotypes?
5. Conclusions
6. Materials and Methods
6.1. DNA Extraction and PCR Primers
6.2. Phylogenies
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Dixon, G.R. The Occurrence and Economic Impact of Plasmodiophora brassicae and Clubroot Disease. J. Plant Growth Regul. 2009, 28, 194–202. [Google Scholar] [CrossRef]
- Schwelm, A.; Badstöber, J.; Bulman, S.; Desoignies, N.; Etemadi, M.; Falloon, R.E.; Gachon, C.M.M.; Legreve, A.; Lukes, J.; Merz, U.; et al. Not in Your Usual Top 10: Protists That Infect Plants and Algae. Mol. Plant Pathol. 2017, 19, 1029–1044. [Google Scholar] [CrossRef] [PubMed]
- Bulman, S.; Braselton, J.P. 4 Rhizaria: Phytomyxea. In Systematics and Evolution: Part A; McLaughlin, D.J., Spatafora, J.W., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 99–112. [Google Scholar] [CrossRef]
- Burki, F.; Keeling, P.J. Rhizaria. Curr. Biol. 2014, 24, R103–R107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burki, F.; Roger, A.J.; Brown, M.W.; Simpson, A.G.B. The New Tree of Eukaryotes. Trends Ecol. Evol. 2020, 35, 43–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neuhauser, S.; Kirchmair, M.; Bulman, S.; Bass, D. Cross-kingdom Host Shifts of Phytomyxid Parasites. BMC Evol. Biol. 2014, 14, 33. [Google Scholar] [CrossRef] [Green Version]
- Sierra, R.; Cañas-Duarte, S.J.; Burki, F.; Schwelm, A.; Fogelqvist, J.; Dixelius, C.; González-García, L.N.; Gile, G.H.; Slamovits, C.H.; Klopp, C.; et al. Evolutionary Origins of Rhizarian Parasites. Mol. Biol. Evol. 2015, 33, 980–983. [Google Scholar] [CrossRef] [Green Version]
- Hittorf, M.; Letsch-Praxmarer, S.; Windegger, A.; Bass, D.; Kirchmair, M.; Neuhauser, S. Revised Taxonomy and Expanded Biodiversity of the Phytomyxea (Rhizaria, Endomyxa). J. Eukaryot. Microbiol. 2020, 67, 648–659. [Google Scholar] [CrossRef]
- Hwang, S.F.; Howard, R.J.; Strelkov, S.E.; Gossen, B.D.; Peng, G. Management of Clubroot (Plasmodiophora brassicae) on Canola (Brassica napus) in Western Canada. Can. J. Plant Pathol. 2014, 36, 49–65. [Google Scholar] [CrossRef]
- Kageyama, K.; Asano, T. Life Cycle of Plasmodiophora brassicae. J. Plant Growth Regul. 2009, 28, 203. [Google Scholar] [CrossRef]
- Liu, L.; Qin, L.; Zhou, Z.; Hendriks, W.G.H.M.; Liu, S.; Wei, Y. Refining the Life Cycle of Plasmodiophora brassicae. Phytopathology 2020, 110, 1704–1712. [Google Scholar] [CrossRef]
- Wallenhammar, A.C. Prevalence of Plasmodiophora brassicae in a Spring Oilseed Rape Growing Area in Central Sweden and Factors Influencing Soil Infestation Levels. Plant Pathol. 1996, 45, 710–719. [Google Scholar] [CrossRef]
- Peng, G.; Pageau, D.; Strelkov, S.E.; Gossen, B.D.; Hwang, S.-F.; Lahlali, R. A >2-year Crop Rotation Reduces Resting Spores of Plasmodiophora brassicae in Soil and the Impact of Clubroot on Canola. Eur. J. Agron. 2015, 70, 78–84. [Google Scholar] [CrossRef]
- Peng, G.; Lahlali, R.; Hwang, S.-F.; Pageau, D.; Hynes, R.K.; McDonald, M.R.; Gossen, B.D.; Strelkov, S.E. Crop Rotation, Cultivar Resistance, and Fungicides/Biofungicides for Managing Clubroot (Plasmodiophora brassicae) on Canola. Can. J. Plant Pathol. 2014, 36, 99–112. [Google Scholar] [CrossRef]
- Strelkov, S.E.; Hwang, S.-F.; Manolii, V.P.; Cao, T.; Feindel, D. Emergence of New Virulence Phenotypes of Plasmodiophora brassicae on Canola (Brassica napus) in Alberta, Canada. Eur. J. Plant Pathol. 2016, 145, 517–529. [Google Scholar] [CrossRef]
- Diederichsen, E.; Frauen, M.; Linders, E.G.A.; Hatakeyama, K.; Hirai, M. Status and Perspectives of Clubroot Resistance Breeding in Crucifer Crops. J. Plant Growth Regul. 2009, 28, 265–281. [Google Scholar] [CrossRef]
- Zamani-Noor, N. Variation in Pathotypes and Virulence of Plasmodiophora brassicae Populations in Germany. Plant Pathol. 2017, 66, 316–324. [Google Scholar] [CrossRef]
- Schwelm, A.; Fogelqvist, J.; Knaust, A.; Jülke, S.; Lilja, T.; Bonilla-Rosso, G.; Karlsson, M.; Shevchenko, A.; Dhandapani, V.; Choi, S.R.; et al. The Plasmodiophora brassicae Genome Reveals Insights in its Life Cycle and Ancestry of Chitin Synthases. Sci. Rep. 2015, 5, 11153. [Google Scholar] [CrossRef] [Green Version]
- Decroes, A.; Calusinska, M.; Delfosse, P.; Bragard, C.; Legreve, A. First Draft Genome Sequence of a Polymyxa Genus Member, Polymyxa betae, the Protist Vector of Rhizomania. Microbiol. Resour. Announc. 2019, 8, e01509–e01518. [Google Scholar] [CrossRef] [Green Version]
- Ciaghi, S.; Neuhauser, S.; Schwelm, A. Draft Genome Resource for the Potato Powdery Scab Pathogen Spongospora subterranea. Mol. Plant Microb. Interact. 2018, 31, 1227–1229. [Google Scholar] [CrossRef] [Green Version]
- Rolfe, S.A.; Strelkov, S.E.; Links, M.G.; Clarke, W.E.; Robinson, S.J.; Djavaheri, M.; Malinowski, R.; Haddadi, P.; Kagale, S.; Parkin, I.A.P.; et al. The Compact Genome of the Plant Pathogen Plasmodiophora brassicae is Adapted to Intracellular Interactions with Host Brassica spp. BMC Genom. 2016, 17, 272. [Google Scholar] [CrossRef] [Green Version]
- Daval, S.; Belcour, A.; Gazengel, K.; Legrand, L.; Gouzy, J.; Cottret, L.; Lebreton, L.; Aigu, Y.; Mougel, C.; Manzanares-Dauleux, M.J. Computational Analysis of the Plasmodiophora brassicae Genome: Mitochondrial Sequence Description and Metabolic Pathway Database Design. Genomics 2019, 111, 1629–1640. [Google Scholar] [CrossRef]
- Bi, K.; He, Z.; Gao, Z.; Zhao, Y.; Fu, Y.; Cheng, J.; Xie, J.; Jiang, D.; Chen, T. Integrated Omics Study of Lipid Droplets from Plasmodiophora brassicae. Sci. Rep. 2016, 6, 36965. [Google Scholar] [CrossRef] [Green Version]
- Sedaghatkish, A.; Gossen, B.D.; Yu, F.; Torkamaneh, D.; McDonald, M.R. Whole-Genome DNA Similarity and Population Structure of Plasmodiophora brassicae Strains from Canada. BMC Genom. 2019, 20, 744. [Google Scholar] [CrossRef] [PubMed]
- Stjelja, S.; Fogelqvist, J.; Tellgren-Roth, C.; Dixelius, C. The Architecture of the Plasmodiophora brassicae Nuclear and Mitochondrial Genomes. Sci. Rep. 2019, 9, 15753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-López, E.; Waldner, M.; Hossain, M.; Kusalik, A.J.; Wei, Y.; Bonham-Smith, P.C.; Todd, C.D. Identification of Plasmodiophora brassicae Effectors—A Challenging Goal. Virulence 2018, 9, 1344–1353. [Google Scholar] [CrossRef]
- Schwelm, A.; Dixelius, C.; Ludwig-Müller, J. New Kid on the Block—the Clubroot Pathogen Genome Moves the Plasmodiophorids into the Genomic Era. Eur. J. Plant Pathol. 2016, 145, 531–542. [Google Scholar] [CrossRef]
- Spanu, P.D.; Abbott, J.C.; Amselem, J.; Burgis, T.A.; Soanes, D.M.; Stüber, K.; Loren van Themaat, E.V.; Brown, J.K.M.; Butcher, S.A.; Gurr, S.J.; et al. Genome Expansion and Gene Loss in Powdery Mildew Fungi Reveal Tradeoffs in Extreme Parasitism. Science 2010, 330, 1543. [Google Scholar] [CrossRef] [PubMed]
- Baxter, L.; Tripathy, S.; Ishaque, N.; Boot, N.; Cabral, A.; Kemen, E.; Thines, M.; Ah-Fong, A.; Anderson, R.; Badejoko, W.; et al. Signatures of Adaptation to Obligate Biotrophy in the Hyaloperonospora arabidopsidis Genome. Science 2010, 330, 1549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ludwig-Müller, J.; Jülke, S.; Geiß, K.; Richter, F.; Mithöfer, A.; Šola, I.; Rusak, G.; Keenan, S.; Bulman, S. A Novel Methyltransferase from the Intracellular Pathogen Plasmodiophora brassicae Methylates Salicylic Acid. Mol. Plant Pathol. 2015, 16, 349–364. [Google Scholar] [CrossRef]
- Yu, F.; Wang, S.; Zhang, W.; Tang, J.; Wang, H.; Yu, L.; Zhang, X.; Fei, Z.; Li, J. Genome-wide Identification of Genes Encoding Putative Secreted E3 Ubiquitin Ligases and Functional Characterization of PbRING1 in the Biotrophic Protist Plasmodiophora brassicae. Curr. Genet. 2019, 65, 1355–1365. [Google Scholar] [CrossRef]
- Singh, K.; Tzelepis, G.; Zouhar, M.; Ryšánek, P.; Dixelius, C. The Immunophilin Repertoire of Plasmodiophora brassicae and Functional Analysis of PbCYP3 Cyclophilin. Mol. Genet. Genom. 2018, 293, 381–390. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Li, Y.; Yan, R.; Xu, L.; Ren, L.; Liu, F.; Zeng, L.; Yang, H.; Chi, P.; Wang, X.; et al. Identification and Characterization of Plasmodiophora brassicae Primary Infection Effector Candidates that Suppress or Induce Cell Death in Host and Nonhost Plants. Phytopathology 2019, 109, 1689–1697. [Google Scholar] [CrossRef] [PubMed]
- Pérez-López, E.; Hossain, M.M.; Tu, J.; Waldner, M.; Todd, C.D.; Kusalik, A.J.; Wei, Y.; Bonham-Smith, P.C. Transcriptome Analysis Identifies Plasmodiophora brassicae Secondary Infection Effector Candidates. J. Eukaryot. Microbiol. 2020, 67, 337–351. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Fredua-Agyeman, R.; Hwang, S.-F.; Strelkov, S.E. Differentially Expressed Genes in Canola (Brassica napus) During Infection by Virulent and Avirulent Plasmodiophora brassicae Pathotypes. Plant Pathol. 2020. [Google Scholar] [CrossRef]
- Ciaghi, S.; Schwelm, A.; Neuhauser, S. Transcriptomic Response in Symptomless Roots of Clubroot Infected Kohlrabi (Brassica oleracea var. gongylodes) Mirrors Resistant Plants. BMC Plant Biol. 2019, 19, 288. [Google Scholar] [CrossRef] [Green Version]
- Schuller, A.; Kehr, J.; Ludwig-Müller, J. Laser Microdissection Coupled to Transcriptional Profiling of Arabidopsis Roots Inoculated by Plasmodiophora brassicae Indicates a Role for Brassinosteroids in Clubroot Formation. Plant Cell Physiol. 2014, 55, 392–411. [Google Scholar] [CrossRef]
- Buczacki, S.T.; Toxopeus, H.; Mattusch, P.; Johnston, T.D.; Dixon, G.R.; Hobolth, L.A. Study of physiologic specialization in Plasmodiophora brassicae: Proposals for attempted rationalization through an international approach. Trans. Br. Mycol. Soc. 1975, 65, 295–303. [Google Scholar] [CrossRef]
- Somé, A.; Manzanares, M.J.; Laurens, F.; Baron, F.; Thomas, G.; Rouxel, F. Variation for Virulence on Brassica napus L. Amongst Plasmodiophora brassicae Collections from France and Derived Single-Spore Isolates. Plant Pathol. 1996, 45, 432–439. [Google Scholar] [CrossRef]
- Williams, P.H. A System for the Determination of Races of Plasmodiophora brassicae That Infect Cabbage and Rutabaga. Phytopathology 1966, 56, 624–626. [Google Scholar]
- Strelkov, S.E.; Hwang, S.-F.; Manolii, V.P.; Cao, T.; Fredua-Agyeman, R.; Harding, M.W.; Peng, G.; Gossen, B.D.; McDonald, M.R.; Feindel, D. Virulence and Pathotype Classification of Plasmodiophora brassicae Populations Collected from Clubroot Resistant Canola (Brassica napus) in Canada. Can. J. Plant Pathol. 2018, 40, 284–298. [Google Scholar] [CrossRef]
- Pang, W.; Liang, Y.; Zhan, Z.; Li, X.; Piao, Z. Development of a Sinitic Clubroot Differential Set for the Pathotype Classification of Plasmodiophora brassicae. Front. Plant Sci. 2020, 11, 1360. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Jo, E.J.; Choi, Y.H.; Jang, K.S.; Choi, G.J. Pathotype Classification of Plasmodiophora brassicae Isolates Using Clubroot-Resistant Cultivars of Chinese Cabbage. Plant Pathol. J. 2016, 32, 423–430. [Google Scholar] [CrossRef] [Green Version]
- Hatakeyama, K.; Fujimura, M.; Ishida, M.; Suzuki, T. New Classification Method for Plasmodiophora brassicae Field Isolates in Japan Based on Resistance of F1 Cultivars of Chinese Cabbage (Brassica rapa L.) to Clubroot. Breed. Sci. 2004, 54, 197–201. [Google Scholar] [CrossRef] [Green Version]
- Strelkov, S.E.; Manolii, V.P.; Cao, T.; Xue, S.; Hwang, S.F. Pathotype Classification of Plasmodiophora brassicae and its Occurrence in Brassica napus in Alberta, Canada. J. Phytopathol. 2007, 155, 706–712. [Google Scholar] [CrossRef]
- Strelkov, S.E.; Hwang, S.-F.; Manolii, V.P.; Turnbull, G.; Fredua-Agyeman, R.; Hollman, K.; Kaus, S. Characterization of Clubroot (Plasmodiophora brassicae) from Canola (Brassica napus) in the Peace Country of Alberta, Canada. Can. J. Plant Pathol. 2020. [Google Scholar] [CrossRef]
- Donald, E.C.; Cross, S.J.; Lawrence, J.M.; Porter, I.J. Pathotypes of Plasmodiophora brassicae, the cause of clubroot, in Australia. Ann. Appl. Biol. 2006, 148, 239–244. [Google Scholar] [CrossRef]
- Fu, H.; Yang, Y.; Mishra, V.; Zhou, Q.; Zuzak, K.; Feindel, D.; Harding, M.W.; Feng, J. Most Plasmodiophora brassicae Populations in Single Canola Root Galls from Alberta Fields are Mixtures of Multiple Strains. Plant Dis. 2019, 104, 116–120. [Google Scholar] [CrossRef]
- Fähling, M.; Graf, H.; Siemens, J. Pathotype Separation of Plasmodiophora brassicae by the Host Plant. J. Phytopathol. 2003, 151, 425–430. [Google Scholar] [CrossRef]
- Graf, H.; Fähling, M.; Siemens, J. Chromosome Polymorphism of the Obligate Biotrophic Parasite Plasmodiophora brassicae. J. Phytopathol. 2004, 152, 86–91. [Google Scholar] [CrossRef]
- Fuchs, H.; Sacristán, M. Identification of a Gene in Arabidopsis thaliana Controlling Resistance to Clubroot (Plasmodiophora brassicae) and Characterization of the Resistance Response. Mol. Plant Microb. Interact. 1996, 9, 91–97. [Google Scholar] [CrossRef]
- Manzanares-Dauleux, M.J.; Divaret, I.; Baron, F.; Thomas, G. Assessment of Biological and Molecular Variability Between and Within Field Isolates of Plasmodiophora brassicae. Plant Pathol. 2001, 50, 165–173. [Google Scholar] [CrossRef] [Green Version]
- Strehlow, B.; de Mol, F.; Struck, C. History of Oilseed Rape Cropping and Geographic Origin Affect the Genetic Structure of Plasmodiophora brassicae Populations. Phytopathology 2013, 104, 532–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, T.; Manolii, V.P.; Strelkov, S.E.; Hwang, S.-F.; Howard, R.J. Virulence and Spread of Plasmodiophora brassicae [clubroot] in Alberta, Canada. Can. J. Plant Pathol. 2009, 31, 321–329. [Google Scholar] [CrossRef]
- Xue, S.; Cao, T.; Howard, R.J.; Hwang, S.F.; Strelkov, S.E. Isolation and Variation in Virulence of Single-Spore Isolates of Plasmodiophora brassicae from Canada. Plant Dis. 2008, 92, 456–462. [Google Scholar] [CrossRef] [Green Version]
- Deora, A.; Gossen, B.D.; McDonald, M.R. Cytology of Infection, Development and Expression of Resistance to Plasmodiophora brassicae in Canola. Ann. Appl. Biol. 2013, 163, 56–71. [Google Scholar] [CrossRef]
- McDonald, M.R.; Al-Daoud, F.; Sedaghatkish, A.; Moran, M.; Cranmer, T.J.; Gossen, B.D. Changes in the Range and Virulence of Plasmodiophora brassicae across Canada. Can. J. Plant Pathol. 2020, 1–7. [Google Scholar] [CrossRef]
- Al-Daoud, F.; Moran, M.; Gossen, B.; McDonald, M.R. First Report of Clubroot (Plasmodiophora brassicae) on Canola in Ontario. Can. J. Plant Pathol. 2018, 40, 96–99. [Google Scholar] [CrossRef]
- Strelkov, S.E.; Tewari, J.P.; Smith-Degenhardt, E. Characterization of Plasmodiophora brassicae Populations from Alberta, Canada. Can. J. Plant Pathol. 2006, 28, 467–474. [Google Scholar] [CrossRef]
- Schwelm, A.; Berney, C.; Dixelius, C.; Bass, D.; Neuhauser, S. The Large Subunit rDNA Sequence of Plasmodiophora brassicae Does not Contain Intra-species Polymorphism. Protist 2016, 167, 544–554. [Google Scholar] [CrossRef] [PubMed]
- Schwelm, A.; Neuhauser, S. Letter to the Editor: “Detection of Ribosomal DNA Sequence Polymorphisms in the Protist Plasmodiophora brassicae for the Identification of Geographical Isolates”. Int. J. Mol. Sci. 2017, 18, 1454. [Google Scholar] [CrossRef] [Green Version]
- Laila, R.; Park, J.-I.; Robin, A.H.K.; Yang, K.; Choi, G.J.; Nou, I.-S. Reply to the Letter to the Editor by A. Schwelm and S. Neuhauser: “Detection of Ribosomal DNA Sequence Polymorphisms in the Protist Plasmodiophora brassicae for the Identification of Geographical Isolates”. Int. J. Mol. Sci. 2017, 18, 1455. [Google Scholar] [CrossRef] [Green Version]
- Jeong Ji, Y.; Robin Arif Hasan, K.; Natarajan, S.; Laila, R.; Kim, H.-T.; Park, J.-I.; Nou, I.-S. Race- and Isolate-specific Molecular Marker Development through Genome-Realignment Enables Detection of Korean Plasmodiophora brassicae Isolates, Causal agents of Clubroot Disease. Plant Pathol. J. 2018, 34, 506–513. [Google Scholar] [CrossRef]
- Zheng, J.; Wang, X.; Li, Q.; Yuan, S.; Wei, S.; Tian, X.; Huang, Y.; Wang, W.; Yang, H. Characterization of Five Molecular Markers for Pathotype Identification of the Clubroot Pathogen Plasmodiophora brassicae. Phytopathology 2018, 108, 1486–1492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, J.; Wang, X.; Xiao, Y.; Wei, S.; Wang, D.; Huang, Y.; Wang, W.; Yang, H. Specific Genes Identified in Pathotype 4 of the Clubroot Pathogen Plasmodiophora brassicae. Plant Dis. 2018, 103, 495–503. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Zheng, J.; Fu, Y.D.; Zhang, Y.H.; Yi, C.L.; Jin, C.; Huang, Y.; Wang, W. Specific Genes and Sequence Variation in Pathotype 7 of the Clubroot Pathogen Plasmodiophora brassicae. Eur. J. Plant Pathol. 2020, 157, 17–28. [Google Scholar] [CrossRef]
- Feng, J.; Jiang, J.; Feindel, D.; Strelkov, S.E.; Hwang, S.-F. The Gene Cr811 is Present Exclusively in Pathotype 5 and New Emerged Pathotypes of the Clubroot Pathogen Plasmodiophora brassicae. Eur. J. Plant Pathol. 2016, 145, 615–620. [Google Scholar] [CrossRef]
- Zhou, Q.; Hwang, S.F.; Strelkov, S.E.; Fredua-Agyeman, R.; Manolii, V.P. A Molecular Marker for the Specific Detection of New Pathotype 5-like Strains of Plasmodiophora brassicae in Canola. Plant Pathol. 2018, 67, 1582–1588. [Google Scholar] [CrossRef]
- Yang, Y.; Zuzak, K.; Harding, M.; Strelkov, S.; Hwang, S.-F.; Feindel, D.; Feng, J. DNA Sequence Dimorphisms in Populations of the Clubroot Pathogen Plasmodiophora brassicae. Plant Dis. 2018, 102, 1703–1707. [Google Scholar] [CrossRef] [Green Version]
- Toruño, T.Y.; Stergiopoulos, I.; Coaker, G. Plant-Pathogen Effectors: Cellular Probes Interfering with Plant Defenses in Spatial and Temporal Manners. Annu. Rev. Phytopathol. 2016, 54, 419–441. [Google Scholar] [CrossRef] [Green Version]
- Djavaheri, M.; Ma, L.; Klessig, D.F.; Mithöfer, A.; Gropp, G.; Borhan, H. Mimicking the Host Regulation of Salicylic Acid: A Virulence Strategy by the Clubroot Pathogen Plasmodiophora brassicae. Mol. Plant Microb. Interact. 2018, 32, 296–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bulman, S.; Richter, F.; Marschollek, S.; Benade, F.; Jülke, S.; Ludwig-Müller, J. Arabidopsis thaliana Expressing PbBSMT, a Gene Encoding a SABATH-type Methyltransferase from the Plant Pathogenic Protist Plasmodiophora brassicae, Show Leaf Chlorosis and Altered Host Susceptibility. Plant Biol. 2019, 21, 120–130. [Google Scholar] [CrossRef] [PubMed]
- Badstöber, J.; Gachon, C.M.M.; Ludwig-Müller, J.; Sandbichler, A.M.; Neuhauser, S. Demystifying Biotrophs: FISHing for mRNAs to Decipher Plant and Algal Pathogen–Host Interaction at the Single Cell Level. Sci. Rep. 2020, 10, 14269. [Google Scholar] [CrossRef]
- Pusztahelyi, T. Chitin and Chitin-Related Compounds in Plant–Fungal Interactions. Mycology 2018, 9, 189–201. [Google Scholar] [CrossRef] [PubMed]
- Daval, S.; Gazengel, K.; Belcour, A.; Linglin, J.; Guillerm-Erckelboudt, A.-Y.; Sarniguet, A.; Manzanares-Dauleux, M.J.; Lebreton, L.; Mougel, C. Soil Microbiota Influences Clubroot Disease by Modulating Plasmodiophora brassicae and Brassica napus Transcriptomes. Microb. Biotechnol. 2020, 13, 1648–1672. [Google Scholar] [CrossRef]
- Volk, H.; Marton, K.; Flajšman, M.; Radišek, S.; Tian, H.; Hein, I.; Podlipnik, Č.; Thomma, B.P.H.J.; Košmelj, K.; Javornik, B.; et al. Chitin-Binding Protein of Verticillium nonalfalfae Disguises Fungus from Plant Chitinases and Suppresses Chitin-Triggered Host Immunity. Mol. Plant Microbe Interact. 2019, 32, 1378–1390. [Google Scholar] [CrossRef] [Green Version]
- Muirhead, K.; Pérez-López, E. Plasmodiophora brassicae Chitin-Binding Effectors guard and Mask Spores During Infection. bioRxiv 2020. [Google Scholar] [CrossRef]
- Olszak, M.; Truman, W.; Stefanowicz, K.; Sliwinska, E.; Ito, M.; Walerowski, P.; Rolfe, S.; Malinowski, R. Transcriptional Profiling Identifies Critical Steps of Cell Cycle Reprogramming Necessary for Plasmodiophora brassicae-Driven Gall Formation in Arabidopsis. Plant J. 2019, 97, 715–729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franceschetti, M.; Maqbool, A.; Jiménez-Dalmaroni, M.J.; Pennington, H.G.; Kamoun, S.; Banfield, M.J. Effectors of Filamentous Plant Pathogens: Commonalities amid Diversity. Microbiol. Mol. Biol. Rev. 2017, 81, e00066-16. [Google Scholar] [CrossRef] [Green Version]
- Lo Presti, L.; Lanver, D.; Schweizer, G.; Tanaka, S.; Liang, L.; Tollot, M.; Zuccaro, A.; Reissmann, S.; Kahmann, R. Fungal Effectors and Plant Susceptibility. Annu. Rev. Plant Biol. 2015, 66, 513–545. [Google Scholar] [CrossRef]
- Lévesque, C.A.; Brouwer, H.; Cano, L.; Hamilton, J.P.; Holt, C.; Huitema, E.; Raffaele, S.; Robideau, G.P.; Thines, M.; Win, J.; et al. Genome Sequence of the Necrotrophic Plant Pathogen Pythium ultimum Reveals Original Pathogenicity Mechanisms and Effector Repertoire. Genome Biol. 2010, 11, R73. [Google Scholar] [CrossRef]
- Al-Khodor, S.; Price, C.T.; Kalia, A.; Abu Kwaik, Y. Functional Diversity of Ankyrin Repeats in Microbial Proteins. Trends Microbiol. 2010, 18, 132–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, M.; Pandey, G.K. Expansion and Function of Repeat Domain Proteins During Stress and Development in Plants. Front. Plant Sci. 2016, 6, 1218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stecher, G.; Tamura, K.; Kumar, S. Molecular Evolutionary Genetics Analysis (MEGA) for macOS. Mol. Biol. Evol. 2020, 37, 1237–1239. [Google Scholar] [CrossRef] [PubMed]
- Doyle, J.J.; Doyle, J.L. A Rapid DNA Isolation Procedure for Small Quantities of Fresh Leaf Tissue. Phytochem. Bull. 1987, 19, 11–15. [Google Scholar]
- Hall, T. BioEdit: An important software for molecular biology. GERF Bull. Biosci. 2011, 2, 60–61. [Google Scholar]
- Larsson, A. AliView: A fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 2014, 30, 3276–3278, btu531. [Google Scholar] [CrossRef]
Name in This Review Isolate-Host-(Williams/Some/ECD/CCD)-Origin | Isolate Name in NCBI Genbank (Other Names) | Origin | Host Origin | Bioproject Accession (NCBI) | Pathotypes | Single Spore | |||
---|---|---|---|---|---|---|---|---|---|
Williams [38] | Somé [39] | ECD [40] | CCD [41] | ||||||
Canada | |||||||||
P.b-38-soil-(6/3/-/-)-CAN/BC * | P.b-38 (BC1-ss2-P6; AbotJE-ss2) | BC | soil | SAMN10755763 | 6 | P3 | SSI | ||
P.b-6-BNAP-(6/3/-/-)-CAN/BC * | P.b-6 (BC2-ss4-P6; AbotJE-ss4) | BC | soil | SAMN10755731 | 6 | P3 | SSI | ||
P.b-35-BNAP-(6/3/(16-2-14)/-)-CAN/BC | P.b-35 (BC3-P6; AbotJE-04-01) | BC | soil | SAMN10755760 | 6 | P3 | 16/2/14 | ||
P.b-36-BOLE-(6/-/-/-)-CAN/BC | P.b-36 (BC4-P6; P6) | BC | Brussels sprouts (Brassica oleracea var. gemmifera) | SAMN10755761 | 6 | ||||
P.b-41-BOLE-(6/-/-/-)-CAN/BC | P.b-41 (BC5-P6; P6) | BC | Cauliflower (Brassica oleracea var. botrytis) | SAMN10755766 | 6 | ||||
P.b-13-BNAP-(3/2/-/-)-CAN/AB * | P.b-13 (SCAN-ss1; AB1-P3) | AB | Canola (Brassica napus) | SAMN10755738 | 3 | P2 | SSI | ||
P.b-16-BNAP-(3/2/-/H)-CAN/AB * | P.b-16 (SCAN-ss2; AB2-P3) | AB | Canola (Brassica napus) | SAMN10755741 | 3 | P2 | H | SSI | |
P.b-17-BNAP-(3/2/-/F)-CAN/AB * | P.b-17 (CAN-ss3; AB3-P2) | AB | Canola (Brassica napus) | SAMN10755742 | 2 | P2 | F | SSI | |
P.b-5-BNAP-(3/2/-/-)-CAN/AB * | P.b-5 (SCAN-ss4; AB4-P3) | AB | Canola (Brassica napus) | SAMN10755730 | 3 | P2 | SSI | ||
P.b-14-BNAP-(8/6/-/-)-CAN/AB * | P.b-14 (CDCN-ss1; AB6-P8) | AB | Canola (Brassica napus) | SAMN10755739 | 8 | P6 | SSI | ||
P.b-3-BNAP-(5/-/(16-15-0)/-)-CAN/AB | P.b-3 (CDCN-04-01; AB7) | AB | Canola (Brassica napus) | SAMN10755728 | 5 | 16/15/0 | |||
P.b-10-BNAP-(2/-/-/-)-CAN/AB | P.b-10 (F-1-05; AB8-P2) | AB | Canola (Brassica napus | SAMN10755735 | 2 | ||||
P.b-24-BNAP-(5/-/-/-)-CAN/AB | P.b-24 (F290-07; AB9) | AB | Canola (Brassica napus) | SAMN10755749 | 5 | ||||
P.b-1-BNAP-(3/-/-/-)-CAN/AB | P.b-1 (AB10-P3) | AB | Canola (Brassica napus) | SAMN10755726 | 3 | ||||
P.b-37-BNAP-(3/-/-/-)-CAN/AB | P.b-37 (Deora; AB11- P3) | AB | Canola (Brassica napus) | SAMN10755762 | 3 | ||||
P.b-8-BNAP-(5/-/-/-)-CAN/AB | P.b-8 (Deora; AB12- P5) | AB | Canola (Brassica napus) | SAMN10755733 | 5 | ||||
P.b-21-BNAP-(5/3/(16-16-8)/X)-CAN/AB | P.b-21 (LG1; AB13-P5X) | AB | Canola (Brassica napus) | SAMN10755746 | 5 | P3 | 16/6/8 | X | |
P.b-20-BNAP-(5/3/(16-16-8)/X)-CAN/AB | P.b-20 (LG3; AB14-P5X) | AB | Canola Brassica napus | SAMN10755745 | 5 | P3 | 16/6/8 | X | |
P.b-2-BNAP-(3/-/(16-15-12)/-)-CAN/AB | P.b-2 (SCAN-03-01; AB15- P3) | AB | Canola (Brassica napus) | SAMN10755727 | 3 | 16/15/12 | |||
P.b-11-BNAP-(3/-/-/-)-CAN/SK | P.b-11 (SK1-P3) | SK | Canola (Brassica napus) | SAMN10755736 | 3 | ||||
P.b-4-BNAP-(-/-/-/-)-CAN/SK | P.b-4 (CD1A; SK2) | SK | Canola (Brassica napus) | SAMN10755729 | |||||
P.b-22-BNAP-(-/-/-/-)-CAN/SK | P.b-22 (SK3) | SK | Canola (Brassica napus) | SAMN10755747 | |||||
P.b-23-BNAP-(-/-/-/-)-CAN/SK | P.b-23 (SK3) | SK | Canola (Brassica napus) | SAMN10755748 | |||||
P.b-12-BNAP-(-/-/-/-)-CAN/MB | P.b-12 (MB) | MB | Canola (Brassica napus) | SAMN10755737 | |||||
P.b-7-BOLE-(8/2/-/N)-CAN/ON * | P.b-7 (ORCA-ss2; ON1- P8) | ON | Cabbage (Brassica oleracea L. var. capitata) | SAMN10755732 | 8 | P2 | N | SSI | |
P.b-18-BOLE-(5/3/-/I)-CAN/ON * | P.b-18 (ORCA-ss3; ON2- P5) | ON | Cabbage (Brassica oleracea L. var. capitata) | SAMN10755743 | 5 | P3 | I | SSI | |
P.b-19-BOLE-(6/-/(16-0-14)/-)-CAN/ON | P.b-19 (ORCA.04; ON3) | ON | Cabbage (Brassica oleracea L. var. capitata) | SAMN10755744 | 6 | 16/0/14 | |||
P.b-29-BNAP-(6/-/-/-)-CAN/ON | P.b-29 (ON4-P6) | ON | Canola (Brassica napus) | SAMN10755754 | 6 | ||||
P.b-28-BNAP-(2/-/-/-)-CAN/ON | P.b-28 (ON5-P2) | ON | Canola (Brassica napus) | SAMN10755753 | 2 | ||||
P.b-34-BNAP-(6/-/-/-)-CAN/ON | P.b-34 (ON6-P6) | ON | Canola (Brassica napus) | SAMN10755759 | 6 | ||||
P.b-33-BRAP-(2/-/-/-)-CAN/ON | P.b-33 (ON7- P2) | ON | Canola/ Pak Choi Brassica rapa (Brassica napus) | SAMN10755758 | 2 | ||||
P.b-43-BNAP-(5/-/-/X)-CAN/QC | P.b-43 (QC1- P5X) | QC | Canola (Brassica napus) | SAMN10755768 | 5 | X | |||
P.b-40-BNAP-(2/-/-/-)-CAN/QC | P.b-40 (QC2- P2) | QC | Canola (Brassica napus) | SAMN10755765 | 2 | ||||
P.b-30-BNAP-(5/-/-/-)-CAN/PEI | P.b-30 (PEI1-P5) | PEI | Canola (Brassica napus) | SAMN10755755 | 5 | ||||
P.b-42-VEG-(-/-/-/-)-CAN/NF | P.b-42 (DD1- NF1) | NF | Vegetable | SAMN10755767 | |||||
P.b-39-VEG-(1/-/-/-)-CAN/NF | P.b-39 (DD2A; NF2-P1) | NF | Vegetable | SAMN10755764 | 1 | ||||
AAFC-SK-Pb3-BNAP-(3/2/-/-)-CAN/AB * | AAFC-SK-Pb3 (Pb3; SACAN-ss1) | AB | Canola (Brassica napus) | SAMN06010517 | 3 | P2 | SSI | ||
AAFC-SK-Pb6-BNAP-(6/-/-/M)-CAN/AB * | AAFC-SK-Pb6 (Pb6; AbotJE-ss1) | BC | Vegetable soil | SAMN10342669 | 6 | M | SSI | ||
USA | |||||||||
P.b-31-BNAP-(8/-/-/-)-USA/ND | P.b-31 (ND1-P8; NDCR1) | ND | Canola (Brassica napus) | SAMN10755756 | 8 | ||||
P.b-32-BNAP-(8/-/-/-)-USA/ND | P.b-32 (ND2-P8; NDCR2) | ND | Canola (Brassica napus) | SAMN10755757 | 8 | ||||
China | |||||||||
P.b-15-BOLE-(1/-/-/-)-CHN/JIA | P.b-15 (CH1-P1) | Jiangsu, Ganyu | Kai-lan (Brassica oleracea var. alboglabra) | SAMN10755740 | 1 | ||||
P.b-26-BRAP-(-/-/-/-)-CHN/YUN | P.b-26 (CH2) | Yunnan, Muding | Chinese cabbage (Brassica rapa L. subsp. Pekinensis) | SAMN10755751 | |||||
P.b-27-BRAP-(-/-/-/-)-CHN/YUN | P.b-27 (CH3) | Yunnan, Muding | Chinese cabbage (Brassica rapa L. subsp. Pekinensis) | SAMN10755752 | |||||
P.b-25-BOLE-(-/-/-/-)-CHN/YUN | P.b-25 (CH4) | Yunnan, Lufong | Cabbage (Brassica oleracea L. var. capitata) | SAMN10755750 | |||||
P.b-9-BOLE-(-/-/-/-)-CHN/HEB | P.b-9 (CH5) | Hebei, Kuyuang | Broccoli (Brassica oleracea var. italica) | SAMN10755734 | |||||
ZJ-1-BNAP-(1/-/-/-)-CHN/HUB * | ZJ-1 | Hubei | Canola (Brassica napus) | SAMN05440575 | 1 | SSI | |||
Germany | |||||||||
e3_2015-BRAP-(-/-/-/-)-GER * | e3 | stubble turnip (Brassica rapa subsp. rapa) | SAMEA3232990 | SSI | |||||
e3_2018-BRAP-(-/-/-/-)-GER * | e3 | stubble turnip (Brassica rapa subsp. rapa) | SAMEA104666271 | SSI | |||||
eH-BRAP-(-/1/-/-)-GER | eH | stubble turnip (Brassica rapa subsp. rapa) | SAMN08196759 | P1 |
Effector Candidate | Effector Candidate Characteristics | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Genbank Accession | e3_2015 Protein Name | Expressed in Clubroots [36] | Effector Candidate [33] | Effector Candidate [34] | Amplified from TUD Isolates | Effector Candidate [18] | Secreted in Yeast Assay [33,34] | Domains | Introns | Present in All Genomes |
CEP03656.1 | PBRA_003263 | n.d. | - | 0 | Partial in AAFC-SK-Pb6 | |||||
CEP00016.1 | PBRA_007750 | n.d. | DNA_BRE_C | 6 | Not in AAFC-SK- Pb6 | |||||
CEO97274.1 | PBRA_000619 | PBCN_000619 | YES | YES | - | 0 | YES | |||
CEO97388.1 | PBRA_000733 | PBCN_000733 | Heff | YES | recA | |||||
CEO97459.1 | PBRA_000804 | SSPbP01 | YES | 0 | YES | |||||
CEO99285.1 | PBRA_001191 | YES | PBCN_001191 | YES | YES | - | ||||
CEP01250.1 | PBRA_001856 | PBCN_001856 | SSPbP18 | Pleff | YES | - | 0 | YES | ||
CEP01381.1 | PBRA_001987 | PBCN_001987 | YES | zf-MYND | 0 | YES | ||||
CEP02197.1 | PBRA_002462 | PBCN_002462 | YES | PLeff | YES | - | 0 | YES | ||
CEP02583.1 | PBRA_002550 | PBCN_002550 | PLeff | YES | - | 0 | YES | |||
CEP02651.1 | PBRA_002618 | SSPbP03 | YES | GlpG | 0 | YES | ||||
CEP03198.1 | PBRA_002958 | PBCN_002958 | YES | ChtBD1 | 0 | YES | ||||
CEO95618.1 | PBRA_004344 | PBCN_004344 | YES | - | 0 | YES | ||||
CEO95633.1 | PBRA_004359 | SSPb11P | YES | PLN02633 | 3 | YES | ||||
CEO96073.1 | PBRA_004763 | YES | PBCN_004763 | YES | - | 0 | Partial in AAFC-SK-Pb6 | |||
CEO96517.1 | PBRA_005126 | YES | PBCN_005126 | YES | YES | vWFA | 0 | YES | ||
CEO96836.1 | PBRA_005440 | PBCN_005440 | SSPbP31 | NO/YES | - | 0 | Partial in AAFC-SK-Pb6 | |||
CEO96852.1 | PBRA_005456 | PBCN_005456 | YES | Ank_2 | 0 | YES | ||||
CEO97087.1 | PBRA_005691 | PBCN_005691 | NO | - | 1 | YES | ||||
CEO97112.1 | PBRA_005716 | SSPbP44 | YES | |||||||
CEO97859.1 | PBRA_005973 | YES | SSPbP04 | YES | ||||||
CEO98671.1 | PBRA_006785 | PBCN_006785 | YES | eIF3_subunit | 1 | YES | ||||
CEP00097.1 | PBRA_007831 | YES | SSPbP10 | YES | - | 0 | ||||
CEP03502.1 | PBRA_009387 | YES | PBCN_009387 | NO | Ribosomal_L22 | 0 | YES | |||
CEO95090.1 | PBRA_009622 | PBCN_009622 | YES | - | 0 | YES | ||||
CEO98583.1 | PBRA_006697 | PBCN_006697 | YES | ANK | 1 | Not in AAFC-SK- Pb6; partial in AAFC-SK-Pb3 |
Isolate | Origin | Original Host | ECD Pathotype | Name in Phylogeny (Figure 3) |
---|---|---|---|---|
TUD-Pb2 | Switzerland | unknown | 16/15/31 | TUDPb2-(-/-/(16-15-31)/-)-SUI |
TUD-Pb15 | Berlin, Germany | unknown | 16/31/31 | TUDPb15-(-/-/(16/31/31)/-)-GER |
TUD-Pb25 | Leipzig, Germany | unknown | 16/02/30 | TUDPb25-(-/-/(16-02-30)/-)-GER |
TUD-Pb33 | Nordrhein-Westfalen, Germany | unknown | 16/31/31 | TUDPb33-(-/-/(16-31-31)/-)-GER |
TUD-Pb34 | Rheinland-Pfalz, Germany | unknown | 16/03/31 | TUDPb34-(-/-/(16-03-31)/-)-GER |
TUD-Pb63 | Switzerland | unknown | 16/22/08 | TUDPb63-(-/-/(16-22-08)/-)-SUI |
TUD-PbE | Germany | Sugar beet 1 (Beta vulgaris) | unknown | TUDPbE-BVUL-(-/-/-/-)-GER |
TUD-PbI | Frankfurt, Germany | Savoy cabbage (Brassica oleracea convar. capitata var. sabauda) | unknown | TUDPbI-BOLE-(-/-/-/-)-GER |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schwelm, A.; Ludwig-Müller, J. Molecular Pathotyping of Plasmodiophora brassicae—Genomes, Marker Genes, and Obstacles. Pathogens 2021, 10, 259. https://doi.org/10.3390/pathogens10030259
Schwelm A, Ludwig-Müller J. Molecular Pathotyping of Plasmodiophora brassicae—Genomes, Marker Genes, and Obstacles. Pathogens. 2021; 10(3):259. https://doi.org/10.3390/pathogens10030259
Chicago/Turabian StyleSchwelm, Arne, and Jutta Ludwig-Müller. 2021. "Molecular Pathotyping of Plasmodiophora brassicae—Genomes, Marker Genes, and Obstacles" Pathogens 10, no. 3: 259. https://doi.org/10.3390/pathogens10030259
APA StyleSchwelm, A., & Ludwig-Müller, J. (2021). Molecular Pathotyping of Plasmodiophora brassicae—Genomes, Marker Genes, and Obstacles. Pathogens, 10(3), 259. https://doi.org/10.3390/pathogens10030259