The Association between Vaginal Dysbiosis and Reproductive Outcomes in Sub-Fertile Women Undergoing IVF-Treatment: A Systematic PRISMA Review and Meta-Analysis
Abstract
:1. Introduction
2. Results
2.1. Data Characteristics
2.2. Live Birth Rate (LBR)
2.3. Early Pregnancy Loss
2.4. Clinical and Biochemical Pregnancy
3. Discussion
3.1. Main Findings
3.2. Strengths and Limitations
Interpretation
4. Materials and Methods
4.1. Literature Search Strategy
4.2. Quality of Articles
4.3. Data Extraction and VD Definition
4.4. Statistical Meta-Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Evers, J.L. Female subfertility. Lancet 2002, 360, 151–159. [Google Scholar] [CrossRef]
- Thurston, L.; Abbara, A.; Dhillo, W.S. Investigation and management of subfertility. J. Clin. Pathol. 2019, 72, 579–587. [Google Scholar] [CrossRef] [Green Version]
- Haahr, T.; Ersbøll, A.S.; Karlsen, M.A.; Svare, J.; Sneider, K.; Hee, L.; Weile, L.K.; Ziobrowska-Bech, A.; Østergaard, C.; Jensen, J.S.; et al. Treatment of bacterial vaginosis in pregnancy in order to reduce the risk of spontaneous preterm delivery—A clinical recommendation. Acta Obstet. Gynecol. Scand. 2016, 95, 850–860. [Google Scholar] [CrossRef]
- Moreno, I.; Codoner, F.M.; Vilella, F.; Valbuena, D.; Martinez-Blanch, J.F.; Jimenez-Almazan, J.; Alonso, R.; Alama, P.; Remohi, J.; Pellicer, A.; et al. Evidence that the endometrial microbiota has an effect on implantation success or failure. Am. J. Obstet. Gynecol. 2016, 215, 684–703. [Google Scholar] [CrossRef] [Green Version]
- Haahr, T.; Jensen, J.S.; Thomsen, L.; Duus, L.; Rygaard, K.; Humaidan, P. Abnormal vaginal microbiota may be associated with poor reproductive outcomes: A prospective study in IVF patients. Hum. Reprod. 2016, 31, 795–803. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, C.M.; Haick, A.; Nkwopara, E.; Garcia, R.; Rendi, M.; Agnew, K.; Fredricks, D.N.; Eschenbach, D. Colonization of the upper genital tract by vaginal bacterial species in nonpregnant women. Am. J. Obstet. Gynecol. 2015, 212, e611–e619. [Google Scholar] [CrossRef] [Green Version]
- Haahr, T.; Freiesleben, N.C.; Pinborg, A.; Nielsen, H.S.; Hartvig, V.; Mikkelsen, A.L.; Parks, T.; Uldbjerg, N.; Jensen, J.S.; Humaidan, P. Effect of clindamycin and a live biotherapeutic on the reproductive outcomes of IVF patients with abnormal vaginal microbiota: Protocol for a double-blind, placebo-controlled multicentre trial. BMJ Open 2020, 10, e035866. [Google Scholar] [CrossRef] [PubMed]
- Mendling, W. Vaginal Microbiota. Adv. Exp. Med. Biol. 2016, 902, 83–93. [Google Scholar] [CrossRef]
- Donati, L.; Di Vico, A.; Nucci, M.; Quagliozzi, L.; Spagnuolo, T.; Labianca, A.; Bracaglia, M.; Ianniello, F.; Caruso, A.; Paradisi, G. Vaginal microbial flora and outcome of pregnancy. Arch. Gynecol. Obstet. 2010, 281, 589–600. [Google Scholar] [CrossRef]
- Lamont, R.F.; Sobel, J.D.; Akins, R.A.; Hassan, S.S.; Chaiworapongsa, T.; Kusanovic, J.P.; Romero, R. The vaginal microbiome: New information about genital tract flora using molecular based techniques. BJOG Int. J. Obstet. Gynaecol. 2011, 118, 533–549. [Google Scholar] [CrossRef] [Green Version]
- Witkin, S.S.; Linhares, I.M. Why do lactobacilli dominate the human vaginal microbiota? BJOG Int. J. Obstet. Gynaecol. 2017, 124, 606–611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serrano, M.G.; Parikh, H.I.; Brooks, J.P.; Edwards, D.J.; Arodz, T.J.; Edupuganti, L.; Huang, B.; Girerd, P.H.; Bokhari, Y.A.; Bradley, S.P.; et al. Racioethnic diversity in the dynamics of the vaginal microbiome during pregnancy. Nat. Med. 2019, 25, 1001–1011. [Google Scholar] [CrossRef]
- Spear, G.T.; French, A.L.; Gilbert, D.; Zariffard, M.R.; Mirmonsef, P.; Sullivan, T.H.; Spear, W.W.; Landay, A.; Micci, S.; Lee, B.H.; et al. Human α-amylase present in lower-genital-tract mucosal fluid processes glycogen to support vaginal colonization by Lactobacillus. J. Infect. Dis. 2014, 210, 1019–1028. [Google Scholar] [CrossRef] [Green Version]
- Gong, Z.; Luna, Y.; Yu, P.; Fan, H. Lactobacilli inactivate Chlamydia trachomatis through lactic acid but not H2O2. PLoS ONE 2014, 9, e107758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fettweis, J.M.; Serrano, M.G.; Brooks, J.P.; Edwards, D.J.; Girerd, P.H.; Parikh, H.I.; Huang, B.; Arodz, T.J.; Edupuganti, L.; Glascock, A.L.; et al. The vaginal microbiome and preterm birth. Nat. Med. 2019, 25, 1012–1021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Oostrum, N.; De Sutter, P.; Meys, J.; Verstraelen, H. Risks associated with bacterial vaginosis in infertility patients: A systematic review and meta-analysis. Hum. Reprod. 2013, 28, 1809–1815. [Google Scholar] [CrossRef] [Green Version]
- Swidsinski, A.; Mendling, W.; Loening-Baucke, V.; Ladhoff, A.; Swidsinski, S.; Hale, L.P.; Lochs, H. Adherent biofilms in bacterial vaginosis. Obstet. Gynecol. 2005, 106, 1013–1023. [Google Scholar] [CrossRef] [Green Version]
- Castro, J.; Machado, D.; Cerca, N. Unveiling the role of Gardnerella vaginalis in polymicrobial Bacterial Vaginosis biofilms: The impact of other vaginal pathogens living as neighbors. ISME J. 2019, 13, 1306–1317. [Google Scholar] [CrossRef]
- Klebanoff, M.A.; Schwebke, J.R.; Zhang, J.; Nansel, T.R.; Yu, K.F.; Andrews, W.W. Vulvovaginal symptoms in women with bacterial vaginosis. Obstet. Gynecol. 2004, 104, 267–272. [Google Scholar] [CrossRef]
- Ralph, S.G.; Rutherford, A.J.; Wilson, J.D. Influence of bacterial vaginosis on conception and miscarriage in the first trimester: Cohort study. BMJ (Clin. Res. Ed.) 1999, 319, 220–223. [Google Scholar] [CrossRef] [Green Version]
- Haahr, T.; Zacho, J.; Brauner, M.; Shathmigha, K.; Skov Jensen, J.; Humaidan, P. Reproductive outcome of patients undergoing in vitro fertilisation treatment and diagnosed with bacterial vaginosis or abnormal vaginal microbiota: A systematic PRISMA review and meta-analysis. BJOG Int. J. Obstet. Gynaecol. 2019, 126, 200–207. [Google Scholar] [CrossRef] [Green Version]
- Amsel, R.; Totten, P.A.; Spiegel, C.A.; Chen, K.C.; Eschenbach, D.; Holmes, K.K. Nonspecific vaginitis. Diagnostic criteria and microbial and epidemiologic associations. Am. J. Med. 1983, 74, 14–22. [Google Scholar] [CrossRef]
- Nugent, R.P.; Krohn, M.A.; Hillier, S.L. Reliability of diagnosing bacterial vaginosis is improved by a standardized method of gram stain interpretation. J. Clin. Microbiol. 1991, 29, 297–301. [Google Scholar] [CrossRef] [Green Version]
- Singer, M.; Borg, M.; Ouburg, S.; Morre, S.A. The relation of the vaginal microbiota to early pregnancy development during in vitro fertilization treatment-A meta-analysis. J. Gynecol. Obstet. Hum. Reprod. 2019, 48, 223–229. [Google Scholar] [CrossRef]
- Bernabeu, A.; Lledo, B.; Diaz, M.C.; Lozano, F.M.; Ruiz, V.; Fuentes, A.; Lopez-Pineda, A.; Moliner, B.; Castillo, J.C.; Ortiz, J.A.; et al. Effect of the vaginal microbiome on the pregnancy rate in women receiving assisted reproductive treatment. J. Assist. Reprod. Genet. 2019, 36, 2111–2119. [Google Scholar] [CrossRef]
- Koedooder, R.; Singer, M.; Schoenmakers, S.; Savelkoul, P.H.M.; Morre, S.A.; de Jonge, J.D.; Poort, L.; Cuypers, W.; Beckers, N.G.M.; Broekmans, F.J.M.; et al. The vaginal microbiome as a predictor for outcome of in vitro fertilization with or without intracytoplasmic sperm injection: A prospective study. Hum. Reprod. 2019, 34, 1042–1054. [Google Scholar] [CrossRef]
- Kyono, K.; Hashimoto, T.; Nagai, Y.; Sakuraba, Y. Analysis of endometrial microbiota by 16S ribosomal RNA gene sequencing among infertile patients: A single-center pilot study. Reprod. Med. Biol. 2018, 17, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Vergaro, P.; Tiscornia, G.; Barragan, M.; Garcia, D.; Rodriguez, A.; Santalo, J.; Vassena, R. Vaginal microbiota profile at the time of embryo transfer does not affect live birth rate in IVF cycles with donated oocytes. Reprod. Biomed. Online 2019, 38, 883–891. [Google Scholar] [CrossRef]
- Haahr, T.; Humaidan, P.; Elbaek, H.O.; Alsbjerg, B.; Laursen, R.J.; Rygaard, K.; Johannesen, T.B.; Andersen, P.S.; Ng, K.L.; Jensen, J.S. Vaginal Microbiota and In Vitro Fertilization Outcomes: Development of a Simple Diagnostic Tool to Predict Patients at Risk of a Poor Reproductive Outcome. J. Infect. Dis. 2019, 219, 1809–1817. [Google Scholar] [CrossRef]
- France, M.T.; Ma, B.; Gajer, P.; Brown, S.; Humphrys, M.S.; Holm, J.B.; Waetjen, L.E.; Brotman, R.M.; Ravel, J. VALENCIA: A nearest centroid classification method for vaginal microbial communities based on composition. Microbiome 2020, 8, 166. [Google Scholar] [CrossRef]
- Ravel, J.; Gajer, P.; Abdo, Z.; Schneider, G.M.; Koenig, S.S.; McCulle, S.L.; Karlebach, S.; Gorle, R.; Russell, J.; Tacket, C.O.; et al. Vaginal microbiome of reproductive-age women. Proc. Natl. Acad. Sci. USA 2011, 108, 4680–4687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babu, G.; Singaravelu, B.G.; Srikumar, R.; Reddy, S.V.; Kokan, A. Comparative Study on the Vaginal Flora and Incidence of Asymptomatic Vaginosis among Healthy Women and in Women with Infertility Problems of Reproductive Age. J. Clin. Diagn. Res. JCDR 2017, 11, Dc18–Dc22. [Google Scholar] [CrossRef] [PubMed]
- Amato, V.; Papaleo, E.; Pasciuta, R.; Vigano, P.; Ferrarese, R.; Clementi, N.; Sanchez, A.M.; Quaranta, L.; Burioni, R.; Ambrosi, A.; et al. Differential Composition of Vaginal Microbiome, but Not of Seminal Microbiome, Is Associated With Successful Intrauterine Insemination in Couples With Idiopathic Infertility: A Prospective Observational Study. Open Forum Infect. Dis. 2020, 7, ofz525. [Google Scholar] [CrossRef]
- Kong, Y.; Liu, Z.; Shang, Q.; Gao, Y.; Li, X.; Zheng, C.; Deng, X.; Chen, T. The Disordered Vaginal Microbiota Is a Potential Indicator for a Higher Failure of in vitro Fertilization. Front. Med. 2020, 7, 217. [Google Scholar] [CrossRef] [PubMed]
- Riganelli, L.; Iebba, V.; Piccioni, M.; Illuminati, I.; Bonfiglio, G.; Neroni, B.; Calvo, L.; Gagliardi, A.; Levrero, M.; Merlino, L.; et al. Structural Variations of Vaginal and Endometrial Microbiota: Hints on Female Infertility. Front. Cell. Infect. Microbiol. 2020, 10, 350. [Google Scholar] [CrossRef] [PubMed]
- Štšepetova, J.; Baranova, J.; Simm, J.; Parm, Ü.; Rööp, T.; Sokmann, S.; Korrovits, P.; Jaagura, M.; Rosenstein, K.; Salumets, A.; et al. The complex microbiome from native semen to embryo culture environment in human in vitro fertilization procedure. Reprod. Biol. Endocrinol. RBE 2020, 18, 3. [Google Scholar] [CrossRef]
- Moragianni, D.; Dryllis, G.; Andromidas, P.; Kapeta-Korkouli, R.; Kouskouni, E.; Pessach, I.; Papalexis, P.; Kodonaki, A.; Athanasiou, N.; Pouliakis, A.; et al. Genital tract infection and associated factors affect the Reprod. outcome in fertile females and females undergoing in vitro fertilization. Biomed. Rep. 2019, 10, 231–237. [Google Scholar] [CrossRef]
- Mangot-Bertrand, J.; Fenollar, F.; Bretelle, F.; Gamerre, M.; Raoult, D.; Courbiere, B. Molecular diagnosis of bacterial vaginosis: Impact on IVF outcome. Eur. J. Clin. Microbiol. Infect. Dis. 2013, 32, 535–541. [Google Scholar] [CrossRef]
- Selim, S.A.; El Alfy, S.M.; Aziz, M.H.; Mohamed, H.M.; Alasbahi, A.A. Effective of metronidazole to bacterial flora in vagina and the impact of microbes on live birth rate during intracytoplasmic sperm injection (ICSI). Arch. Gynecol. Obstet. 2011, 284, 1449–1453. [Google Scholar] [CrossRef]
- Eckert, L.O.; Moore, D.E.; Patton, D.L.; Agnew, K.J.; Eschenbach, D.A. Relationship of vaginal bacteria and inflammation with conception and early pregnancy loss following in-vitro fertilization. Infect. Dis. Obstet. Gynecol. 2003, 11, 11–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liversedge, N.H.; Turner, A.; Horner, P.J.; Keay, S.D.; Jenkins, J.M.; Hull, M.G. The influence of bacterial vaginosis on in-vitro fertilization and embryo implantation during assisted reproduction treatment. Hum. Reprod. 1999, 14, 2411–2415. [Google Scholar] [CrossRef]
- Gaudoin, M.; Rekha, P.; Morris, A.; Lynch, J.; Acharya, U. Bacterial vaginosis and past chlamydial infection are strongly and independently associated with tubal infertility but do not affect in vitro fertilization success rates. Fertil. Steril. 1999, 72, 730–732. [Google Scholar] [CrossRef]
- Boomsma, C.M.; Kavelaars, A.; Bozkurt, N.; Eijkemans, M.J.; Fauser, B.C.; Heijnen, C.J.; Macklon, N.S. Is bacterial vaginosis associated with a pro-inflammatory cytokine profile in endometrial secretions of women undergoing IVF? Reprod. Biomed. Online 2010, 21, 133–141. [Google Scholar] [CrossRef] [Green Version]
- Eldivan, O.; Evliyaoglu, O.; Ersoy, E.; Aksu, G.; Dilbaz, S.; Goktolga, U. Does screening for vaginal infection have an impact on pregnancy rates in intracytoplasmic sperm injection cycles? Turk. J. Obstet. Gynecol. 2016, 13, 11–15. [Google Scholar] [CrossRef]
- Moini, A.; Mohammadi Yeganeh, L.; Shiva, M.; Ahmadieh, M.; Salman Yazdi, R.; Hasani, F.; Bagheri Lankarani, N.; Sanati, A. Bacterial vaginosis and the risk of early miscarriage in women undergoing intracytoplasmic sperm injection cycles: A prospective cohort study. Hum. Fertil. 2018, 21, 263–268. [Google Scholar] [CrossRef]
- Moore, D.E.; Soules, M.R.; Klein, N.A.; Fujimoto, V.Y.; Agnew, K.J.; Eschenbach, D.A. Bacteria in the transfer catheter tip influence the live-birth rate after in vitro fertilization. Fertil. Steril. 2000, 74, 1118–1124. [Google Scholar] [CrossRef]
- Spandorfer, S.D.; Neuer, A.; Giraldo, P.C.; Rosenwaks, Z.; Witkin, S.S. Relationship of abnormal vaginal flora, proinflammatory cytokines and idiopathic infertility in women undergoing IVF. J. Reprod. Med. 2001, 46, 806–810. [Google Scholar]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- Holger Schünemann, J.B. Gordon Guyatt, and Andrew Oxman GRADE Handbook. Available online: https://gdt.gradepro.org/app/handbook/handbook.html (accessed on 20 January 2021).
- Hyman, R.W.; Herndon, C.N.; Jiang, H.; Palm, C.; Fukushima, M.; Bernstein, D.; Vo, K.C.; Zelenko, Z.; Davis, R.W.; Giudice, L.C. The dynamics of the vaginal microbiome during infertility therapy with in vitro fertilization-embryo transfer. J. Assist. Reprod. Genet. 2012, 29, 105–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brooks, J.P.; Edwards, D.J.; Blithe, D.L.; Fettweis, J.M.; Serrano, M.G.; Sheth, N.U.; Strauss, J.F., 3rd; Buck, G.A.; Jefferson, K.K. Effects of combined oral contraceptives, depot medroxyprogesterone acetate and the levonorgestrel-releasing intrauterine system on the vaginal microbiome. Contraception 2017, 95, 405–413. [Google Scholar] [CrossRef] [Green Version]
- Kalia, N.; Singh, J.; Kaur, M. Microbiota in vaginal health and pathogenesis of recurrent vulvovaginal infections: A critical review. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 5. [Google Scholar] [CrossRef] [PubMed]
- Tettamanti Boshier, F.A.; Srinivasan, S.; Lopez, A.; Hoffman, N.G.; Proll, S.; Fredricks, D.N.; Schiffer, J.T. Complementing 16S rRNA Gene Amplicon Sequencing with Total Bacterial Load To Infer Absolute Species Concentrations in the Vaginal Microbiome. Msystems 2020, 5. [Google Scholar] [CrossRef] [Green Version]
- MacIntyre, D.A.; Chandiramani, M.; Lee, Y.S.; Kindinger, L.; Smith, A.; Angelopoulos, N.; Lehne, B.; Arulkumaran, S.; Brown, R.; Teoh, T.G.; et al. The vaginal microbiome during pregnancy and the postpartum period in a European population. Sci. Rep. 2015, 5, 8988. [Google Scholar] [CrossRef] [Green Version]
- Witkin, S.S.; Linhares, I.M.; Giraldo, P. Bacterial flora of the female genital tract: Function and immune regulation. Best Pract. Res. Clin. Obstet. Gynaecol. 2007, 21, 347–354. [Google Scholar] [CrossRef]
- Oerlemans, E.F.M.; Wuyts, S.; Bellen, G.; Wittouck, S.; De Boeck, I.; Ruban, K.; Allonsius, C.N.; van den Broek, M.F.L.; Donders, G.G.G.; Lebeer, S. The Dwindling Microbiota of Aerobic Vaginitis, an Inflammatory State Enriched in Pathobionts with Limited TLR Stimulation. Diagnostics 2020, 10, 879. [Google Scholar] [CrossRef]
- Norenhag, J.; Du, J.; Olovsson, M.; Verstraelen, H.; Engstrand, L.; Brusselaers, N. The vaginal microbiota, human papillomavirus and cervical dysplasia: A systematic review and network meta-analysis. BJOG Int. J. Obstet. Gynaecol. 2020, 127, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Med. 2009, 6, e1000100. [Google Scholar] [CrossRef]
- Stroup, D.F.; Berlin, J.A.; Morton, S.C.; Olkin, I.; Williamson, G.D.; Rennie, D.; Moher, D.; Becker, B.J.; Sipe, T.A.; Thacker, S.B. Meta-analysis of observational studies in epidemiology: A proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 2000, 283, 2008–2012. [Google Scholar] [CrossRef]
- Wells, G.A.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. Available online: http://www.ohri.ca/programs/clinical_epidemiology/nosgen.pdf (accessed on 20 January 2021).
- Hay, P.E.; Lamont, R.F.; Taylor-Robinson, D.; Morgan, D.J.; Ison, C.; Pearson, J. Abnormal bacterial colonisation of the genital tract and subsequent preterm delivery and late miscarriage. BMJ (Clin. Res. Ed.) 1994, 308, 295–298. [Google Scholar] [CrossRef] [Green Version]
- Vaneechoutte, M.; Guschin, A.; Van Simaey, L.; Gansemans, Y.; Van Nieuwerburgh, F.; Cools, P. Emended description of Gardnerella vaginalis and description of Gardnerella leopoldii sp. nov., Gardnerella piotii sp. nov. and Gardnerella swidsinskii sp. nov., with delineation of 13 genomic species within the genus Gardnerella. Int. J. Syst. Evol. Microbiol. 2019, 69, 679–687. [Google Scholar] [CrossRef]
- Menard, J.P.; Fenollar, F.; Henry, M.; Bretelle, F.; Raoult, D. Molecular quantification of Gardnerella vaginalis and Atopobium vaginae loads to predict bacterial vaginosis. Clin. Infect. Dis. 2008, 47, 33–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menard, J.P.; Mazouni, C.; Fenollar, F.; Raoult, D.; Boubli, L.; Bretelle, F. Diagnostic accuracy of quantitative real-time PCR assay versus clinical and Gram stain identification of bacterial vaginosis. Eur. J. Clin. Microbiol. Infect. Dis. 2010, 29, 1547–1552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Nordic Cochrane Centre. Review Manager (RevMan) [Computer Program]; Version 5.3; The Nordic Cochrane Centre: Copenhagen, Denmark, 2014. [Google Scholar]
Study | Method | VD Prevalence | Age (Normal Microbiota) | Age BV | Antibiotics | Timing of Sampling | Country/Ethnicity | IVF Cycle of Sampling |
---|---|---|---|---|---|---|---|---|
Haahr et al. [5] | qPCR-Nugent | 27.7% | 31 (median) | 30 (median) | No | 2–4 weeks prior to IVF treatment. Maximum 2 months before transfer. | Denmark/90% Caucasian | Before IVF cycle sampling |
Mangot-Bertrand et al. [38] | qPCR-Nugent score | 9.4% | 33.5 (mean) | 33.9 (mean) | No | On the day of the oocyte retrieval | French/No data | 4 cycles: T1, T2, T3 and ≥ T4 |
Selim et al. [39] | Nugent score | 37% | 21–44 (range) for all included patients | Metronidazole at oocyte retrieval (twice daily for five days) | At the time of embryo transfer | Egypt/No data | First cycle | |
Eckert et al. [40] | Nugent score | 11% | 21–45 (range) for all included patients | Doxycycline (100 mg orally, twice daily for 5 days) at oocyte retrieval. | At the time of embryo transfer | USA (Washington)/No data | First cycle | |
Liversedge et al. [41] | MSC | 25.6% | 33.4 (median) | 33.6 (median) | Positive C. trachomatis serology was treated with ofloxacin. | On the day of the oocyte retrieval | England/No data | Any cycle |
Gaudoin et al. [42] | Nugent score | 16.3% | No data | No data | On the day of the oocyte retrieval | Scotland/No data | No data on cycle | |
Boomsma et al. [43] | Nugent score | 8.6% | 34.8 (mean) | 36.7 (mean) | Endometriosis or tubal pathology (17%) received a single dose of antibiotics (Ampicillin+clavulanic acid and doxycycline) before oocyte retrieval. | At the time of embryo transfer | The Netherlands/No data | No data on cycle |
Eldivan et al. [44] | Nugent score | 37.8% | 31 (mean) for all included patients | BV+: Metronidazole 500mg oral x2 for 7 days + metronidazole intravaginally. Azitromycin 1g was given to Chlamydia positives | Specimens were collected immediately after menses | Turkey/No data | No data on cycle | |
Moini et al. [45] | Nugent score | 7.3% | 28.6 (mean) | 28.3 (mean) | No data | On the day of the oocyte retrieval | Iran/No data | No data on cycle |
Moore et al. [46] | Nugent score | 13.2% | 21–45 (range) for all included patients | Doxycycline treatment was started after egg retrieval for 5 days. | Vaginal swab at oocyte retrieval and embryo transfer | USA (Washington)/No data | No data on cycle. Only one cycle per patient was included, although it was not necessarily the subject’s first IVF cycle. | |
Ralph et al. [20] | MSC | 24.6% | 33 (median) for all included patients | No data | On the day of the oocyte retrieval | England/95% Caucasian. | No data on cycle | |
Spandorfer et al. [47] | Nugent score | 4.23% | No data | All patients: tetracycline and methylprednisolone at oocyte retrieval and for four days. | On the day of the oocyte retrieval | USA/No data | No data on cycle | |
Moragianni et al. [37] | Nugent score | 36.9% | 32 (median) for all included patients | No data | No data | Greece | No data on cycle | |
Vergaro et al. [28] | qPCR | 23.3% | 41.2 | 42.3 | No data | At the time of embryo transfer | Spain/100% Caucasian | Donated oocytes (no data on cycle) |
Koedooder et al. [26] | IS-pro™ | 17.7% | 20–44 (range) for all included patients | No data | Within 2 months prior to ET: self-collected vaginal swab + midstream urine sample before IVF or IVF-ICSI start. | The Netherlands/No data | No data on cycle | |
Kyono et al. [27] | 16S rRNA | 44.3% | 37 (mean) for all included patients | No data | Vaginal swab: collected in different cycles and different menstrual phases. | Japan/100% Japanese | Follicular phase, Ovulation phase, Luteal phase | |
Bernabeu et al. [25] | 16S rRNA | 6.5% | 40 (median) for all included patients | No data | At the time of embryo transfer | Spain/100% Caucasians | All cycles were of frozen embryo transfers under artificial endometrium preparation |
Outcome | RR (CI 95%) | No. Of Participants (Studies) | Quality of Evidence (GRADE) | Reference & Comments |
---|---|---|---|---|
Primary outcomes | ||||
Live birth rate | 1.03 (0.79–1.33) | 1699 (9 studies) | ⊕⊖⊖⊖ Very low * | See Supplementary Materials 4 and 8. |
Microscopy | 1.10 (0.80–1.50) | 1231 (6 studies) | ⊕⊝⊝⊝ Very low * | See Supplementary Materials 4 and 8 |
Molecular | 0.80 (0.47–1.35) | 543 (4 Studies) | ⊕⊝⊝⊝ Very low * | See Supplementary Materials 4 and 8 |
Early pregnancy loss | 1.71 (1.29–2.27) | 1386 (14 studies) | ⊕⊝⊝⊝ Very low * | See Supplementary Materials 5 and 9. |
Microscopy | 1.61 (1.17–2.20) | 1179 (11 studies) | ⊕⊝⊝⊝ Very low * | See Supplementary Materials 5 and 9. |
Molecular | 2.12 (0.91–4.90) | 245 (4 studies) | ⊕⊝⊝⊝ Very low * | See Supplementary Materials 5 and 9. |
Secondary outcomes | ||||
Clinical pregnancy rate | 0.84 (0.68–1.04) | 3315 (17 studies) | ⊕⊝⊝⊝ Very low * | See Supplementary Materials 6 and 10. From Moore et al. [46] we used LBR. |
Microscopy | 0.95 (0.78–1.16) | 2573 (12 studies) | ⊕⊝⊝⊝ Very low * | See Supplementary Materials 6 and 10. |
Molecular | 0.55 (0.32–0.93) | 826 (6 studies) | ⊕⊝⊝⊝ Very low * | See Supplementary Materials 6 and 10. |
Biochemical pregnancy rate | 0.95 (0.79–1.15) | 2845 (14 studies) | ⊕⊝⊝⊝ Very low * | See Supplementary Materials 7 and 11. From Moore et al. [46] we used LBR. |
Microscopy | 0.98 (0.78–1.23) | 2374 (11 studies) | ⊕⊝⊝⊝ Very low * | See Supplementary Materials 7 and 11. |
Molecular | 0.78 (0.58–1.04) | 555 (4 studies) | ⊕⊝⊝⊝ Very low * | See Supplementary Materials 7 and 11 |
Eligibility Criteria |
---|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skafte-Holm, A.; Humaidan, P.; Bernabeu, A.; Lledo, B.; Jensen, J.S.; Haahr, T. The Association between Vaginal Dysbiosis and Reproductive Outcomes in Sub-Fertile Women Undergoing IVF-Treatment: A Systematic PRISMA Review and Meta-Analysis. Pathogens 2021, 10, 295. https://doi.org/10.3390/pathogens10030295
Skafte-Holm A, Humaidan P, Bernabeu A, Lledo B, Jensen JS, Haahr T. The Association between Vaginal Dysbiosis and Reproductive Outcomes in Sub-Fertile Women Undergoing IVF-Treatment: A Systematic PRISMA Review and Meta-Analysis. Pathogens. 2021; 10(3):295. https://doi.org/10.3390/pathogens10030295
Chicago/Turabian StyleSkafte-Holm, Axel, Peter Humaidan, Andrea Bernabeu, Belen Lledo, Jørgen Skov Jensen, and Thor Haahr. 2021. "The Association between Vaginal Dysbiosis and Reproductive Outcomes in Sub-Fertile Women Undergoing IVF-Treatment: A Systematic PRISMA Review and Meta-Analysis" Pathogens 10, no. 3: 295. https://doi.org/10.3390/pathogens10030295
APA StyleSkafte-Holm, A., Humaidan, P., Bernabeu, A., Lledo, B., Jensen, J. S., & Haahr, T. (2021). The Association between Vaginal Dysbiosis and Reproductive Outcomes in Sub-Fertile Women Undergoing IVF-Treatment: A Systematic PRISMA Review and Meta-Analysis. Pathogens, 10(3), 295. https://doi.org/10.3390/pathogens10030295