Identification of Phytoplasmas Representing Multiple New Genetic Lineages from Phloem-Feeding Leafhoppers Highlights the Diversity of Phytoplasmas and Their Potential Vectors
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phytoplasma Detection in Leafhopper Samples
2.2. Candidatus Phytoplasma’ Species Affiliation of the Leafhopper Harbored Phytoplasmas
2.3. Virtual RFLP Analysis of PLH Phytoplasma Strains
2.4. Phylogenetic Positions of Newly Identified PLH Strains
2.5. The Geographical Distribution and Potential Vector Relationship between the Newly Identified PLH Strains and the Known Phytoplasma Strains
2.5.1. Kyrgyzstan
2.5.2. China
2.5.3. Australia
2.5.4. South Africa
2.6. An Overview of Widespread BGWL Phytoplasma Disease and Its Possibility in South Africa
2.7. An Expansion of Potential Insect Host Range and Phytoplasma Genetic Diversity
3. Materials and Methods
3.1. Leafhopper Samples and DNA Templates
3.2. PCR Detection and Sequencing of PCR Products
3.3. Virtual RFLP Analysis and Phylogenetic Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Lee, I.M.; Davis, R.E.; Gundersen-Rindal, D.E. Phytoplasma: Phytopathogenic mollicutes. Annu. Rev. Microbiol. 2000, 54, 221–255. [Google Scholar] [CrossRef] [Green Version]
- Weintraub, P.G.; Beanland, L. Insect vectors of phytoplasmas. Annu. Rev. Entomol. 2006, 51, 91–111. [Google Scholar] [CrossRef] [PubMed]
- Hogenhout, S.A.; Oshima, K.; Ammar, E.D.; Kakizawa, S.; Kingdom, H.N.; Namba, S. Phytoplasmas: Bacteria that manipulate plants and insects. Mol. Plant Pathol. 2006, 9, 403–423. [Google Scholar] [CrossRef]
- IRPCM Phytoplasma/Spiroplasma Working Team–Phytoplasma Taxonomy Group. ‘Candidatus Phytoplasma’, a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. Int. J. Syst. Evol. Microbiol. 2004, 54, 1243–1255. [Google Scholar] [CrossRef] [Green Version]
- Šafářová, D.; Zemánek, T.; Válová, P.; Navrátil, M. ‘Candidatus Phytoplasma cirsii’, a novel taxon from creeping thistle [Cirsium arvense (L.) Scop.]. Int. J. Syst. Evol. Microbiol. 2016, 66, 1745–1753. [Google Scholar] [CrossRef]
- Naderali, N.; Nejat, N.; Vadamalai, G.; Davis, R.E.; Wei, W.; Harrison, N.A.; Kong, L.; Kadir, J.; Tan, Y.H.; Zhao, Y. ‘Candidatus Phytoplasma wodyetiae’, a new taxon associated with yellow decline disease of foxtail palm (Wodyetia bifurcata) in Malaysia. Int. J. Syst. Evol. Microbiol. 2017, 67, 3765–3772. [Google Scholar] [CrossRef]
- Kirdat, K.; Tiwarekar, B.; Thorat, V.; Sathe, S.; Shouche, Y.; Yadav, A. ‘Candidatus Phytoplasma sacchari’, a novel taxon-associated with Sugarcane Grassy Shoot (SCGS) disease. Int. J. Syst. Evol. Microbiol. 2020, 71, 004591. [Google Scholar]
- Rodrigues Jardim, B.; Kinoti, W.M.; Tran-Nguyen, L.T.; Gambley, C.; Rodoni, B.; Constable, F.E. ‘Candidatus Phytoplasma stylosanthis’, a novel taxon with a diverse host range in Australia, characterised using multilocus sequence analysis of 16S rRNA, secA, tuf, and rp genes. Int. J. Syst. Evol. Microbiol. 2020, 71, 004589. [Google Scholar]
- Zhao, Y.; Wei, W.; Davis, R.E.; Lee, I.M.; Bottner-Parker, K.D. The agent associated with blue dwarf disease in wheat represents a new phytoplasma taxon, ‘Candidatus Phytoplasma tritici’. Int. J. Syst. Evol. Microbiol. 2020, 71, 004604. [Google Scholar]
- Lee, I.-M.; Gundersen-Rindal, D.E.; Davis, R.E.; Bartoszyk, I.M. Revised classification scheme of phytoplasmas based on RFLP analyses of 16S rRNA and ribosomal protein gene sequences. Int. J. Syst. Bacteriol. 1998, 48, 1153–1169. [Google Scholar] [CrossRef] [Green Version]
- Seemüller, E.; Marcone, C.; Lauer, U.; Ragozzino, A.; Göschl, M. Current status of molecular classification of the phytoplasmas. J. Plant Pathol. 1998, 80, 3–26. [Google Scholar]
- Wei, W.; Davis, R.E.; Lee, I.-M.; Zhao, Y. Computer simulated RFLP analysis of 16S rRNA genes: Identification of ten new phytoplasma groups. Int. J. Syst. Evol. Microbiol. 2007, 57, 1855–1867. [Google Scholar] [CrossRef]
- Zhao, Y.; Wei, W.; Lee, I.-M.; Shao, J.; Suo, X.; Davis, R.E. Construction of an interactive online phytoplasma classification tool, iPhyClassifier, and its application in analysis of the peach X-disease phytoplasma group (16SrIII). Int. J. Syst. Evol. Microbiol. 2009, 59, 2582–2593. [Google Scholar] [CrossRef]
- Wei, W.; Cai, H.; Jiang, Y.; Lee, I.M.; Davis, R.E.; Ding, Y.; Yuan, E.; Chen, H.; Zhao, Y. A new phytoplasma associated with little leaf disease in azalea: Multilocus sequence characterization reveals a distinct lineage within the aster yellows phytoplasma group. Ann. Appl. Biol. 2011, 158, 318–330. [Google Scholar] [CrossRef]
- Wei, W.; Davis, R.E.; Nuss, D.L.; Zhao, Y. Phytoplasmal infection derails genetically preprogrammed meristem fate and alters plant architecture. Proc. Natl. Acad. Sci. USA 2013, 110, 19149–19154. [Google Scholar] [CrossRef] [Green Version]
- Wei, W.; Davis, R.E.; Bauchan, G.R.; Zhao, Y. New symptoms identified in phytoplasma-infected plants reveal extra stages of pathogen-induced meristem fate-derailment. Mol. Plant Microbe Interact. 2019, 32, 1314–1323. [Google Scholar] [CrossRef] [PubMed]
- MacLean, A.M.; Sugio, A.; Makarova, O.V.; Findlay, K.C.; Grieve, V.M.; Tóth, R.; Nicolaisen, M.; Hogenhout, S.A. Phytoplasma effector SAP54 induces indeterminate leaf-like flower development in Arabidopsis plants. Plant Physiol. 2011, 157, 831–841. [Google Scholar] [CrossRef] [Green Version]
- MacLean, A.M.; Orlovskis, Z.; Kowitwanich, K.; Zdziarska, A.M.; Angenent, G.C.; Immink, R.G.; Hogenhout, S.A. Phytoplasma effector SAP54 hijacks plant reproduction by degrading MADS-box proteins and promotes insect colonization in a RAD23-dependent manner. PLoS Biol. 2014, 12, e1001835. [Google Scholar] [CrossRef]
- Orlovskis, Z.; Hogenhout, S.A. A bacterial parasite effector mediates insect vector attraction in host plants independently of developmental changes. Front. Plant Sci. 2016, 7, 885. [Google Scholar] [CrossRef]
- Purcell, A.H. Increased survival of Dalbulus maidis, a specialist on maize, on non-host plants infected with mollicute plant pathogens. Entomol. Exp. Appl. 1988, 46, 187–196. [Google Scholar] [CrossRef]
- Maixner, M.; Albert, A.; Johannesen, J. Survival relative to new and ancestral host plants, phytoplasma infection, and genetic constitution in host races of a polyphagous insect disease vector. Ecol. Evol. 2014, 4, 3082–3092. [Google Scholar] [CrossRef]
- Imo, M.; Maixner, M.; Johannesen, J. Sympatric diversification vs. immigration: Deciphering host-plant specialization in a polyphagous insect, the stolbur phytoplasma vector Hyalesthes obsoletus (C ixiidae). Mol. Ecol. 2013, 22, 2188–2203. [Google Scholar] [CrossRef] [PubMed]
- Trivellone, V.; Dietrich, C.H. Evolutionary Diversification in Insect Vector–Phytoplasma–Plant Associations. Ann. Entomol. Soc. Am. 2020, 114, 137–150. [Google Scholar] [CrossRef]
- Trivellone, V.; Wei, W.; Filippin, L.; Dietrich, C.H. Screening potential insect vectors in a museum biorepository reveals undiscovered diversity of plant pathogens in natural areas. Ecol. Evol. 2021. preprint. [Google Scholar] [CrossRef]
- Dietrich, C.H. New species of Mayawa Fletcher and description of a related new Australian leafhopper genus (Hemiptera: Cicadellidae: Deltocephalinae: Paralimnini). Zootaxa 2021, 4933, 575–585. [Google Scholar] [CrossRef]
- Wei, W.; Lee, M.; Davis, R.E.; Suo, X.; Zhao, Y. Automated RFLP pattern comparison and similarity coefficient calculation for rapid delineation of new and distinct phytoplasma 16Sr subgroup lineages. Int. J. Syst. Evol. Microbiol. 2008, 58, 2368–2377. [Google Scholar] [CrossRef]
- Bai, X.; Zhang, J.; Ewing, A.; Miller, S.A.; Radek, A.J.; Shevchenko, D.V.; Tsukerman, K.; Walunas, T.; Lapidus, A.; Campbell, J.W.; et al. Living with genome instability: The adaptation of phytoplasmas to diverse environments of their insect and plant hosts. J. Bacteriol. 2006, 188, 3682–3696. [Google Scholar] [CrossRef] [Green Version]
- Oshima, K.; Kakizawa, S.; Nishigawa, H.; Jung, H.Y.; Wei, W.; Suzuki, S.; Arashida, R.; Nakata, D.; Miyata, S.I.; Ugaki, M.; et al. Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nat. Genet. 2004, 36, 27–29. [Google Scholar] [CrossRef] [Green Version]
- Lee, I.M.; Gundersen-Rindal, D.E.; Davis, R.E.; Bottner, K.D.; Marcone, C.; Seemüller, E. ‘Candidatus Phytoplasma asteris’, a novel phytoplasma taxon associated with aster yellows and related diseases. Int. J. Syst. Evol. Microbiol. 2004, 54, 1037–1038. [Google Scholar] [CrossRef] [Green Version]
- Jomantiene, R.; Davis, R.E.; Maas, J.; Dally, E.L. Classification of new phytoplasmas associated with diseases of strawberry in Florida, based on analysis of 16S rRNA and ribosomal protein gene operon sequences. Int. J. Syst. Evol. Microbiol. 1998, 48, 269–277. [Google Scholar] [CrossRef] [Green Version]
- Jomantiene, R.; Davis, R.E.; Lee, I.M.; Zhao, Y.; Bottner-Parker, K.; Valiunas, D.; Petkauskaite, R. Onion is host for two phytoplasma lineages, subgroups 16SrI-a and 16SrI-(B/L) L, in Lithuania: A HinfI site revealed a SNP marking divergent branches of evolution. J. Plant Pathol. 2010, 92, 461–470. [Google Scholar]
- Lee, M.E.; Grau, C.R.; Lukaesko, L.A.; Lee, I.M. Identification of aster yellows phytoplasmas in soybean in Wisconsin based on RFLP analysis of PCR-amplified products (16S rDNAs). Can. J. Plant Pathol. 2002, 24, 125–130. [Google Scholar] [CrossRef]
- Šeruga, M.; Škorić, D.; Botti, S.; Paltrinieri, S.; Juretić, N.; Bertaccini, A.F. Molecular characterization of a phytoplasma from the aster yellows (16SrI) group naturally infecting Populus nigra L ‘Italica’trees in Croatia. For. Pathol. 2003, 33, 113–125. [Google Scholar] [CrossRef]
- Valiunas, D.; Jomantiene, R.; Davis, R.E. Establishment of a new phytoplasma subgroup, 16SrI-Q, to accommodate a previously undescribed phytoplasma found in diseased cherry in Lithuania. J. Plant Pathol. 2009, 91, 71–75. [Google Scholar]
- Jomantiene, R.; Zhao, Y.; Lee, M.; Davis, R.E. Phytoplasmas infecting sour cherry and lilac represent two distinct lineages having close evolutionary affinities with clover phyllody phytoplasma. Eur. J. Plant Pathol. 2011, 130, 97–107. [Google Scholar] [CrossRef]
- Santos-Cervantes, M.E.; Chávez-Medina, J.A.; Acosta-Pardini, J.; Flores-Zamora, G.L.; Mendez-Lozano, J.; Leyva-Lopez, N.E. Genetic diversity and geographical distribution of phytoplasmas associated with potato purple top disease in Mexico. Plant Dis. 2010, 94, 388–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acosta, K.; Silva, F.N.; Zamora, L.; Quiñones, M.; Martínez, R.; Piñol, B.; Urquiza, G.P.C.; Carvalho, C.M.; Zerbini, F.M. Detection and molecular characterization of an aster yellows group phytoplasma associated with soybean and evidence of two new 16SrI subgroups in Cuba. J. Plant Pathol. 2015, 97, 339–344. [Google Scholar]
- Acosta, K.; Zamora, L.; Piñol, B.; Fernández, A.; Chávez, A.; Flores, G.; Méndez, J.; Santos, M.E.; Leyva, N.E.; Arocha, Y. Identification and molecular characterization of phytoplasmas and rickettsia pathogens associated with ‘Bunchy Top Symptom’(BTS) and ‘Papaya Bunchy Top’(PBT) of papaya in Cuba. Crop Prot. 2013, 45, 49–56. [Google Scholar] [CrossRef]
- Jones, P.; Arocha, Y.; Antesana, O.; Montellano, E.; Franco, P. ‘Brotes grandes’ (big bud) of potato: A new disease associated with a 16SrI-B subgroup phytoplasma in Bolivia. Plant Pathol. 2005, 54, 234. [Google Scholar] [CrossRef]
- Pérez-López, E.; Luna-Rodríguez, M.; Olivier, C.Y.; Dumonceaux, T.J. The underestimated diversity of phytoplasmas in Latin America. Int. J. Syst. Evol. Microbiol. 2016, 66, 492–513. [Google Scholar] [CrossRef]
- Perilla-Henao, L.M.; Dickinson, M.; Franco-Lara, L. First report of ‘Candidatus Phytoplasma asteris’ affecting woody hosts (Fraxinus uhdei, Populus nigra, Pittosporum undulatum, and Croton spp.) in Colombia. Plant Dis. 2012, 96, 1372. [Google Scholar] [CrossRef] [PubMed]
- Arocha, Y.; Piñol, B.; Picornell, B.; Almeida, R.; Jones, P.; Boa, E. Basil little leaf: A new disease associated with a phytoplasma of the 16SrI (Aster Yellows) group in Cuba. Plant Pathol. 2006, 55, 822. [Google Scholar] [CrossRef]
- Arocha, Y.; Piñol, B.; Picornell, B.; Almeida, R.; Jones, P. Broad bean and sweet pepper: Two new hosts associated with Candidatus Phytoplasma asteris (16SrI phytoplasma group) in Cuba. Plant Pathol. 2007, 56, 345. [Google Scholar] [CrossRef]
- Rojas-Martínez, R.I.; Zavaleta-Mejía, E.; Lee, M.; Martini, M.; Aspiros, H.S. Detection and characterization of the phytoplasma associated with marigold phyllody in Mexico. J. Plant Pathol. 2003, 85, 81–86. [Google Scholar]
- Perez-Lopez, E.; Vincent, C.; Moreau, D.; Hammond, C.; Town, J.; Dumonceaux, T.J. A novel ‘Candidatus Phytoplasma asteris’ subgroup 16SrI-(E/AI) AI associated with blueberry stunt disease in eastern Canada. Int. J. Syst. Evol. Microbiol. 2019, 69, 322–332. [Google Scholar] [CrossRef] [PubMed]
- Tseng, Y.W.; Deng, W.L.; Chang, C.J.; Shih, H.T.; Su, C.C.; Jan, F.J. The phytoplasma associated with purple woodnettle witches’-broom disease in Taiwan represents a new subgroup of the aster yellows phytoplasma group. Ann. Appl. Biol. 2016, 169, 298–310. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, P.P.; Ma, Q.; Xu, X.Z.; Zhou, H.Y.; Li, Z.N. Molecular detection and identification of phytoplasmas in a novel 16SrI subgroup in sunflowers and cocklebur weeds. J. Plant Pathol. 2019, 101, 701–706. [Google Scholar] [CrossRef]
- Fernández, F.D.; Galdeano, E.; Conci, L.R. Phytoplasmas diversity and identification of new aster yellows subgroup (16SrI) associated with weed species in Argentina. Int. J. Syst. Evol. Microbiol. 2020, 70, 35–43. [Google Scholar] [CrossRef]
- Li, Z.N.; Sun, P.P.; Zhang, L. Campsisgrandiflora as a new host species harbouring two novel 16SrI subgroups of phytoplasmas. For. Pathol. 2020, 50, e12619. [Google Scholar] [CrossRef]
- Santos-Cervantes, M.E.; Camacho-Bojórquez, J.E.; Escobedo-Rivera, U.R.; Méndez-Lozano, J.; Leyva-López, N.E. Molecular characterization of group 16SrI and 16SrIII phytoplasmas associated with loofah witches’ broom disease in Sinaloa, Mexico. Can. J. Plant Pathol. 2020, 1–8. [Google Scholar] [CrossRef]
- Marcone, C.; Schneider, B.; Seemüller, E. ‘Candidatus Phytoplasma cynodontis’, the phytoplasma associated with Bermuda grass white leaf disease. Int. J. Syst. Evol. Microbiol. 2004, 54, 1077–1082. [Google Scholar] [CrossRef] [Green Version]
- Salehi, M.; Izadpanah, K.; Siampour, M.; Taghizadeh, M. Molecular characterization and transmission of Bermuda grass white leaf phytoplasma in Iran. J. Plant Pathol. 2009, 91, 655–661. [Google Scholar]
- Mitrović, J.; Smiljković, M.; Seemüller, E.; Reinhardt, R.; Huttel, B.; Bertaccini, A.; Kube, M.; Duduk, B. Differentiation of ‘Candidatus Phytoplasma cynodontis’ based on 16S rRNA and groEL genes and identification of a new subgroup, 16SrXIV-C. Plant Dis. 2015, 99, 1578–1583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular Evolutionary 477 Genetics Analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [Green Version]
- Wei, W. (Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA). A proposal for merge two groups (16SrXI and 16SrXIV) into one. 2021; Unpublished work. [Google Scholar]
- Sukhov, K.C.; Vovk, A.M. Potato stolbur. Rep. All-Union Acad. Agric. Sci. 1946, 1–2, 24–29. (In Russian) [Google Scholar]
- Wei, W. (Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA). The updated classification scheme of phytoplasmas. 2021; Unpublished work. [Google Scholar]
- Trivellone, V. An online global database of Hemiptera-Phytoplasma-Plant biological interactions. Biodivers. Data J. 2019, 7, e32910. [Google Scholar] [CrossRef] [PubMed]
- Tan, W.; Chen, Y.; Zhang, W.; Han, C.; Tan, Z.; Zhang, J. Association of phytoplasma with Bermuda grass white-leaf disease. Acta Microbiol. Sin. 2008, 48, 1393–1397. [Google Scholar]
- Blanche, K.R.; Tran-Nguyen, L.T.T.; Gibb, K.S. Detection, identification and significance of phytoplasmas in grasses in northern Australia. Plant Pathol. 2003, 52, 505–512. [Google Scholar] [CrossRef]
- Botti, S.; Bertaccini, A. First report of phytoplasmas in grapevine in South Africa. Plant Dis. 2006, 90, 1360. [Google Scholar] [CrossRef]
- Engelbrecht, M.; Joubert, J.; Burger, J.T. First report of aster yellows phytoplasma in grapevines in South Africa. Plant Dis. 2010, 94, 373. [Google Scholar] [CrossRef]
- CABI. Invasive Species Compendium. In Cynodon Nlemfuensis (African Bermuda-Grass); CAB International: Wallingford, UK, 2019; Available online: www.cabi.org/isc (accessed on 29 November 2019).
- Double, R.L. Bermudagrass: The sports turf of the South. Aggie Horticulture. Available online: https://aggie-horticulture.tamu.edu/plantanswers/turf/publications/Bermuda.html (accessed on 29 November 2019).
- Koh, L.H.; Yap, M.L.; Yik, C.P. First report of phytoplasma infection of grasses in Singapore. Plant Dis. 2008, 92, 317. [Google Scholar] [CrossRef] [PubMed]
- Çağlar, B.K.; Satar, S.; Elbeaino, T. Detection and molecular characterization of Bermuda grass (Cynodon dactylon) white leaf phytoplasma from Turkey. Int. J. Agric. Biol. 2013, 15, 90–94. [Google Scholar]
- Sunpapao, A. Association of ‘Candidatus Phytoplasma cynodontis’ with the yellow leaf diseases of ivy gourd in Thailand. Australs Plant Dis. Notes 2014, 9, 127. [Google Scholar] [CrossRef]
- Rao, G.P.; Raj, S.K.; Nehi, S.K.; Mall, S.; Singh, M.; Marcone, C. Molecular evidence for the presence of ‘Candidatus Phytoplasma cynodontis’ the Bermuda grass white leaf agent, in India. Bull. Insectol. 2007, 60, 145–146. [Google Scholar]
- Snehi, S.K.; Khan, M.S.; Raj, S.K.; Mall, S.; Singh, M.; Rao, G.P. Molecular identification of ‘Candidatus Phytoplasma cynodontis’ associated with Bermuda grass white leaf disease in India. Plant Pathol. 2008, 57, 770. [Google Scholar] [CrossRef]
- Kumar, S.; Jadon, V.; Tiwari, A.K.; Rao, G.P. Exitianus indicus (Distant): A putative vector for ‘Candidatus Phytoplasma cynodontis’ in India. Phytopathog. Mollicutes 2015, 5, S51–S52. [Google Scholar] [CrossRef]
- Nejat, N.; Sijam, K.; Abdullah, S.N.A.; Vadamalai, G.; Dickinson, M. First report of a 16Sr XIV ‘Candidatus Phytoplasma cynodontis’ group phytoplasma associated with coconut yellow decline in Malaysia. Plant Pathol. 2009, 58, 389. [Google Scholar] [CrossRef]
- Naderali, N.; Nejat, N.; Vadamalai, G.; Tan, Y.H. First report of two distinct phytoplasma species, ‘Candidatus Phytoplasma cynodontis’ and ‘Candidatus Phytoplasma asteris’, simultaneously associated with yellow decline of Wodyetia bifurcata (foxtail palm) in Malaysia. Plant Dis. 2013, 97, 1504. [Google Scholar] [CrossRef]
- Win, N.K.K.; Kim, Y.H.; Jung, H.Y.; Ohga, S. Molecular characterization of white leaf phytoplasma associated with the Graminae in Myanmar. J. Fac. Agric. Kyushu Univ. 2013, 58, 225–229. [Google Scholar]
- Omar, A.F. Association of ‘Candidatus Phytoplasma cynodontis’ with Bermuda grass white leaf disease and its new hosts in Qassim province, Saudi Arabia. J. Plant Interact. 2016, 11, 101–107. [Google Scholar] [CrossRef] [Green Version]
- Dafalla, G.A.; Cousin, M.T. Fluorescence and electron microscopy of Cynodon dactylon affected with a white leaf disease in Sudan. J. Phytopathol. 1988, 122, 25–34. [Google Scholar] [CrossRef]
- Asudi, G.O.; Van den Berg, J.; Midega, C.A.O.; Schneider, B.; Seemüller, E.; Pickett, J.A.; Khan, Z.R. Detection, identification, and significance of phytoplasmas in wild grasses in East Africa. Plant Dis. 2015, 100, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Marcone, C.; Ragozzino, A. Detection of Bermuda grass white leaf disease in Italy and characterization of the associated phytoplasma by RFLP analysis. Plant Dis. 1997, 81, 862–866. [Google Scholar] [CrossRef] [PubMed]
- Arocha, Y.; Lopez, M.; Pinol, B.; Fernandez, M.; Picornell, B.; Almeida, R.; Palenzuela, I.; Wilson, M.R.; Jones, P. ‘Candidatus Phytoplasma graminis’ and ‘Candidatus Phytoplasma caricae’, two novel phytoplasmas associated with diseases of sugarcane, weeds and papaya in Cuba. Int. J. Syst. Evol. Microbiol. 2005, 55, 2451–2463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tran-Nguyen, L.; Blanche, K.R.; Egan, B.; Gibb, K.S. Diversity of phytoplasmas in northern Australian sugarcane and other grasses. Plant Pathol. 2000, 49, 666–679. [Google Scholar] [CrossRef]
- Holm, L.G.; Plucknett, D.L.; Pancho, J.V.; Herberger, J.P. The World’s Worst Weeds. Distribution and Biology; University Press of Hawaii: Honolulu, HI, USA, 1977. [Google Scholar]
- Girolamo-Neto, C.D.; Sanches, I.D.A.; Neves, A.K.; Prudente, V.H.R.; Körting, T.S.; Picoli, M.C.A. Assessment of Texture Features for Bermudagrass (Cynodon Dactylon) Detection in Sugarcane Plantations. Drones 2019, 3, 36. [Google Scholar] [CrossRef] [Green Version]
- Davis, M.J.; Gillaspie, A.G., Jr.; Vidaver, A.K.; Harris, R.W. Clavibacter: A new genus containing some phytopathogenic coryneform bacteria, including Clavibacter xyli subsp. xyli sp. nov., subsp. nov. and Clavibacter xyli subsp. cynodontis subsp. nov., pathogens that cause ratoon stunting disease of sugarcane and bermudagrass stunting disease. Int. J. Syst. Evol. Microbiol. 1984, 34, 107–117. [Google Scholar]
- Harmon, P. Mosaic Disease of St. Augustinegrass Caused by Sugarcane Mosaic Virus. Plant Pathol. Dep. UF/IFAS Ext. 2014, 313. Available online: https://edis.ifas.ufl.edu/pp313 (accessed on 29 November 2019).
- Cao, Y.; Trivellone, V.; Dietrich, C.H. A timetree for phytoplasmas (Mollicutes) with new insights on patterns of evolution and diversification. Mol. Phylogenet. Evol. 2020, 149, 106826. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Hiruki, C. Amplification of 16S rRNA genes from culturable and nonculturable Mollicutes. J. Microbiol. Methods 1991, 14, 53–61. [Google Scholar] [CrossRef]
- Lee, M.; Martini, M.; Marcone, C.; Zhu, S.F. Classification of phytoplasma strains in the elm yellows group (16SrV) and proposal of ‘Candidatus Phytoplasma ulmi’for the phytoplasma associated with elm yellows. Int. J. Syst. Evol. Microbiol. 2004, 54, 337–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Phytoplasma Strain * | Leafhopper Species | GenBank Accession Number (This Study) | Phytoplasma 16Sr Group /Subgroup Classification | Country | GenBank Accession Number (Trivellone et al. [24]) | Coordinate X/ Coordinate Y |
---|---|---|---|---|---|---|
PLH078-1 | Leofa dispar | MW281484 | 16SrXIV-F | South Africa | MW473669 | 28°53′59.1″ S/ 29°26′05.0″ E |
PLH078-12 | Leofa dispar | MW281485 | 16SrXIV-F | South Africa | not analyzed | 28°53′59.1″ S/ 29°26′05.0″ E |
PLH082-1 | Pravistylus exquadratus | MW281486 | 16SrXIV-F | South Africa | MW473673 | 33°51′01.7″ S/ 19°03′16.3″ E |
PLH082-2 | Pravistylus exquadratus | MW281487 | 16SrXIV-F | South Africa | not analyzed | 33°51’01.7″ S/ 19°03′16.3″ E |
PLH098-1 | Neoaliturus opacipennis | MW281488 | 16SrIII-J | Kyrgyzstan | not sequenced | 41°59′11.0″ N/ 75°43′08.0″ E |
PLH102-1 | Macrosteles sordidipennis | MW281489 | 16SrI-AO | Kyrgyzstan | MW473674 | 41°47′52.0″ N/ 78°39′44.0″ E |
PLH133-1 | Mayawa capitata | MW281490 | 16SrXV-C | Australia | MW473671 | 32°57′20.8″S/ 115°54′40.5″ E |
PLH139-1 | Mayawa affinifacialis | MW281491 | 16SrXIV-D | Australia | MW473672 | 27°56′03.4″ S/ 153°04′42.6″ E |
PLH143-1 | Acharis ussuriensis | MW281492 | 16SrXIV-E | China | MW473670 | 33°58′52.8″ N/ 108°09′49.8″ E |
PLH143-5 | Acharis ussuriensis | MW281493 | 16SrXIV-E | China | not analyzed | 33°58′52.8″ N/ 108°09′49.8″ E |
Strain | GenBank Accession (16SrI Subgroup) | Similarity Coefficient between PHL102-1 and Known 16SrI Subgroup | References |
---|---|---|---|
PLH102-1, Kyrgyzstan | MW281489 (16SrI-AO) | 1.00 | this study |
AYWB, aster yellows witches’-broom, USA | CP000061 (16SrI-A) | 0.95 | [10,25] |
OYM, onion yellows mild, Japan | AP006628 (16SrI-B) | 0.97 | [10,26] |
CPh, clover phyllody, Canada | AF222065 (rrnA, 16SrI-C) (a) | 0.96 | [10] |
CPh, clover phyllody, Canada | AF222066 (rrnB, 16SrI-C) (a) | 0.95 | [10] |
PaWB, paulownia witches’-broom, Taiwan | AY265206 (16SrI-D) | 0.94 | [27] |
BBS3, blueberry stunt, USA | AY265213 (16SrI-E) | 0.96 | [27] |
ACLR-AY, apricot chlorotic leaf roll, Spain | AY265211 (16SrI-F) | 0.91 | [27] |
STRAWB2, strawberry multiplier, USA | U96616 (16SrI-K) | 0.89 | [28] |
OnP2, onion proliferation, Lithuania | GU223209 (16SrI-L) | 0.94 | [29] |
98UW166B, aster yellows, USA | AF268405 (16SrI-O) | 0.83 | [30] |
AYIP, aster yellows, Croatia | AF503568 (16SrI-P) | 0.97 | [31] |
CherLL, cherry little leaf, Lithuania | AY034089 (16SrI-Q) | 0.89 | [32] |
ChBL, cherry bunchy leaf, Lithuania | HM067754 (16SrI-R) | 0.96 | [33] |
LcLL, lilac little leaf, Lithuania | HM067755 (16SrI-S) | 0.95 | [33] |
AzLL, azalea little leaf, China | HQ285917 (16SrI-T) | 0.89 | [34] |
PPT-JAL6, potato purple top, Mexico | FJ914650 (16SrI-U) | 0.90 | [35] |
PPT-SON18, potato purple top, Mexico | FJ914642 (16SrI-V) | 0.90 | [35] |
SoySTp-1, Soybean stunt, Cuba | KJ413093 (16SrI-W) | 0.94 | [36] |
BTS, Papaya bunchy top, Cuba | JF781308 (16SrI-X) | 0.92 | [37] |
SoySTp-2, Soybean stunt, Cuba | KJ413094 (16SrI-Y) | 0.91 | [36] |
PBBB, Potato Brotes big bud, Bolivia | AY725209 (16SrI-Z) | 0.89 | [38,39] |
Fraxinus uhdei witches’-broom, Colombia | JQ730859 (16SrI-AC) | 0.92 | [39,40] |
BLL, basil little leaf, Cuba | DQ286577 (16SrI-AD) | 0.91 | [39,41] |
Broad bean phytoplasma, Cuba | DQ286953 (16SrI-AE) | 0.94 | [39,42] |
MgPh, Marigold phyllody, Mexico | AY249247 (16SrI-AF) | 0.91 | [39,43] |
NS1P1cB, BS, blueberry stunt, Canada | MH279522 (16SrI-AG) (b) | 0.88 | [44] |
PWWB, Purple woodnettle witches’-broom, Taiwan | KF923395 (16SrI-AH) | 0.94 | [45] |
SFDP, sunflower fasciation, China | JX035903 (16SrI-AI) | 0.87 | [46] |
Bidens-Cba, ’Bidens subalternans’ phytoplasma, Argentina | MH497011 (16SrI-AJ) | 0.91 | [47] |
CgWB1, Campsis grandiflora witches’-broom, China | MT106667 (16SrI-AK) | 0.90 | [48] |
CgWB2, Campsis grandiflora witches’-broom, China | MT106668 (16SrI-AL) | 0.90 | [48] |
LoofWB-1U4, loofah witches’-broom, Mexico | MN807428 (16SrI-AM) (c) | 0.88 | [49] |
LoofWB-21J9, loofah witches’-broom, Mexico | MN807432 (16SrI-AN) (d) | 0.90 | [49] |
Phytoplasma | Country | GenBank Accession | Subgroup | Reference | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | ‘Candidatus Phytoplasma cynodontis’ | Italy | AJ550984 | 16SrXIV-A | [50] | 1.00 | ||||||||||
2 | PLH139-1 | Australia | MW281491 | 16SrXIV-D | this study | 0.90 | 1.00 | |||||||||
3 | PLH143-1 | China | MW281492 | 16SrXIV-E | this study | 0.84 | 0.94 | 1.00 | ||||||||
4 | PLH082-1 | South Africa | MW281486 | 16SrXIV-F | this study | 0.81 | 0.91 | 0.97 | 1.00 | |||||||
5 | Bermuda grass white leaf phytoplasma Juyom | Iran | EF444486 | 16SrXIV-B * (abolished) | [51] | 1.00 | 0.91 | 0.86 | 0.82 | 1.00 | ||||||
6 | Bermuda grass white leaf phytoplasma Firoozabad | Iran | EF444485 | 16SrXIV-B * (abolished) | [51] | 1.00 | 0.90 | 0.84 | 0.81 | 1.00 | 1.00 | |||||
7 | ‘Candidatus Phytoplasma cynodontis’ strain 306/13 | Serbia | KJ000021 | 16SrXIV-C * (abolished) | [52] | 1.00 | 0.90 | 0.84 | 0.81 | 1.00 | 1.00 | 1.00 | ||||
8 | ‘Candidatus Phytoplasma cynodontis’ strain 123/13 | Serbia | KJ000024 | 16SrXIV-C * (abolished) | [52] | 1.00 | 0.90 | 0.84 | 0.81 | 1.00 | 1.00 | 1.00 | 1.00 | |||
9 | ‘Candidatus Phytoplasma cynodontis’ strain 304/13 | Serbia | KP019339 | 16SrXIV-C * (abolished) | [52] | 1.00 | 0.90 | 0.84 | 0.81 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | ||
10 | ‘Candidatus Phytoplasma cynodontis’ strain 305/13 | Serbia | KP019340 | 16SrXIV-C * (abolished) | [52] | 1.00 | 0.90 | 0.84 | 0.81 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | |
11 | ‘Candidatus Phytoplasma cynodontis’ strain 59/11 | Serbia | KF383981 | 16SrXIV-C * (abolished) | [52] | 1.00 | 0.90 | 0.84 | 0.81 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, W.; Trivellone, V.; Dietrich, C.H.; Zhao, Y.; Bottner-Parker, K.D.; Ivanauskas, A. Identification of Phytoplasmas Representing Multiple New Genetic Lineages from Phloem-Feeding Leafhoppers Highlights the Diversity of Phytoplasmas and Their Potential Vectors. Pathogens 2021, 10, 352. https://doi.org/10.3390/pathogens10030352
Wei W, Trivellone V, Dietrich CH, Zhao Y, Bottner-Parker KD, Ivanauskas A. Identification of Phytoplasmas Representing Multiple New Genetic Lineages from Phloem-Feeding Leafhoppers Highlights the Diversity of Phytoplasmas and Their Potential Vectors. Pathogens. 2021; 10(3):352. https://doi.org/10.3390/pathogens10030352
Chicago/Turabian StyleWei, Wei, Valeria Trivellone, Christopher H. Dietrich, Yan Zhao, Kristi D. Bottner-Parker, and Algirdas Ivanauskas. 2021. "Identification of Phytoplasmas Representing Multiple New Genetic Lineages from Phloem-Feeding Leafhoppers Highlights the Diversity of Phytoplasmas and Their Potential Vectors" Pathogens 10, no. 3: 352. https://doi.org/10.3390/pathogens10030352
APA StyleWei, W., Trivellone, V., Dietrich, C. H., Zhao, Y., Bottner-Parker, K. D., & Ivanauskas, A. (2021). Identification of Phytoplasmas Representing Multiple New Genetic Lineages from Phloem-Feeding Leafhoppers Highlights the Diversity of Phytoplasmas and Their Potential Vectors. Pathogens, 10(3), 352. https://doi.org/10.3390/pathogens10030352