Plasmodiophora brassicae Inoculum Density and Spatial Patterns at the Field Level and Relation to Soil Characteristics
Abstract
:1. Introduction
2. Results
2.1. Inoculum Density
2.2. Soil Chemical Properties
2.3. Spatial Patterns
3. Discussion
4. Materials and Methods
4.1. Soil Sampling
4.2. Soil Chemical Properties
4.3. Presence and Quantity of P. brassicae in the Soil Samples
4.4. Prevailing Wind Direction
4.5. Spatial Analysis
4.5.1. Spatial Autocorrelation
4.5.2. Models
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- LMC International. The Economic Impact of Canola on the Canadian Economy; Canola Council of Canada: Winnipeg, MB, Canada, 2016; p. 68. [Google Scholar]
- Statistics Canada. Principal Field Crop Areas. Available online: https://www150.statcan.gc.ca/n1/daily-quotidien/190424/dq190424b-eng.htm (accessed on 19 May 2020).
- Pageau, D.; Lajeunesse, J.; Lafond, J. Impact de l’hernie Des Crucifères [Plasmodiophora Brassicae] Sur La Productivité et La Qualité Du Canola. Can. J. Plant Pathol. 2006, 28, 137–143. [Google Scholar] [CrossRef]
- Tewari, J.P.; Strelkov, S.E.; Orchard, D.; Hartman, M.; Lange, R.M.; Turkington, T.K. Identification of Clubroot of Crucifers on Canola (Brassica napus) in Alberta. Can. J. Plant Pathol. 2005, 27, 143–144. [Google Scholar] [CrossRef]
- Gossen, B.D.; Adhikari, K.K.C.; McDonald, M.R. Effects of Temperature on Infection and Subsequent Development of Clubroot under Controlled Conditions. Plant Pathol. 2012, 61, 593–599. [Google Scholar] [CrossRef]
- Hamilton, H.; Crête, R. Influence of Soil Moisture, Soil pH, and Liming Sources on the Incidence of Clubroot, Germination and Growth of Cabbage Produced in Mineral and Organic Soils under Controlled Conditions. Can. J. Plant Sci. 1978, 58, 45–53. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, K. Influences of Some Environmental Factors on the Viability of Resting Spores of Plasmodiophora brassicae Wor. Incubated in Sterile Soil. Jpn. J. Phytopathol. 1994, 60, 658–666. [Google Scholar] [CrossRef]
- Friberg, H.; Lagerlöf, J.; Rämert, B. Germination of Plasmodiophora brassicae Resting Spores Stimulated by a Non-Host Plant. Eur. J. Plant Pathol. 2005, 113, 275–281. [Google Scholar] [CrossRef]
- Rashid, A.; Ahmed, H.U.; Xiao, Q.; Hwang, S.F.; Strelkov, S.E. Effects of Root Exudates and pH on Plasmodiophora brassicae Resting Spore Germination and Infection of Canola (Brassica napus L.) Root Hairs. Crop Prot. 2013, 48, 16–23. [Google Scholar] [CrossRef]
- Kageyama, K.; Asano, T. Life Cycle of Plasmodiophora brassicae. J. Plant Growth Regul. 2009, 28, 203–211. [Google Scholar] [CrossRef]
- Aigu, Y.; Laperche, A.; Mendes, J.; Lariagon, C.; Guichard, S.; Gravot, A.; Manzanares-Dauleux, M.J. Nitrogen Supply Exerts a Major/Minor Switch between Two QTLs Controlling Plasmodiophora brassicae Spore Content in Rapeseed. Plant Pathol. 2018, 67, 1574–1581. [Google Scholar] [CrossRef]
- Hwang, S.F.; Ahmed, H.U.; Zhou, Q.; Rashid, A.; Strelkov, S.E.; Gossen, B.D.; Peng, G.; Turnbull, G.D. Effect of Susceptible and Resistant Canola Plants on Plasmodiophora brassicae Resting Spore Populations in the Soil. Plant Pathol. 2013, 62, 404–412. [Google Scholar] [CrossRef]
- Murakami, H.; Tsushima, S.; Akimoto, T.; Kuroyanagi, Y.; Shishido, Y. Quantitative Studies on the Relationship between Plowing into Soil of Clubbed Roots of Preceding Crops Caused by Plasmodiophora brassicae and Disease Severity in Succeeding Crops. Soil Sci. Plant Nutr. 2004, 50, 1307–1311. [Google Scholar] [CrossRef] [Green Version]
- Wallenhammar, A.-C. Prevalence of Plasmodiophora brassicae in a Spring Oilseed Rape Growing Area in Central Sweden and Factors Influencing Soil Infestation Levels. Plant Pathol. 1996, 45, 710–719. [Google Scholar] [CrossRef]
- Ernst, T.W.; Kher, S.; Stanton, D.; Rennie, D.C.; Hwang, S.F.; Strelkov, S.E. Plasmodiophora brassicae Resting Spore Dynamics in Clubroot Resistant Canola (Brassica napus) Cropping Systems. Plant Pathol. 2019, 68, 399–408. [Google Scholar] [CrossRef]
- Peng, G.; Pageau, D.; Strelkov, S.E.; Gossen, B.D.; Hwang, S.-F.; Lahlali, R. A >2-Year Crop Rotation Reduces Resting Spores of Plasmodiophora brassicae in Soil and the Impact of Clubroot on Canola. Eur. J. Agron. 2015, 70, 78–84. [Google Scholar] [CrossRef]
- Rauschert, E. Survivorship Curves. Nature Education Knowledge. 2010. Available online: https://www.nature.com/scitable/knowledge/library/survivorship-curves-16349555/ (accessed on 8 February 2021).
- Dixon, G.R. Plasmodiophora brassicae in Its Environment. J. Plant Growth Regul. 2009, 28, 212–228. [Google Scholar] [CrossRef]
- Donald, E.C.; Lawrence, J.M.; Porter, I.J. Influence of Particle Size and Application Method on the Efficacy of Calcium Cyanamide for Control of Clubroot of Vegetable Brassicas. Crop Prot. 2004, 23, 297–303. [Google Scholar] [CrossRef]
- Niwa, R.; Kumei, T.; Nomura, Y.; Yoshida, S.; Osaki, M.; Ezawa, T. Increase in Soil pH Due to Ca-Rich Organic Matter Application Causes Suppression of the Clubroot Disease of Crucifers. Soil Biol. Biochem. 2007, 39, 778–785. [Google Scholar] [CrossRef] [Green Version]
- Tremblay, N.; Bélec, C.; Coulombe, J.; Godin, C. Evaluation of Calcium Cyanamide and Liming for Control of Clubroot Disease in Cauliflower. Crop Prot. 2005, 24, 798–803. [Google Scholar] [CrossRef]
- Webster, M.A.; Dixon, G.R. Calcium, pH and Inoculum Concentration Influencing Colonization by Plasmodiophora brassicae. Mycol. Res. 1991, 95, 64–73. [Google Scholar] [CrossRef]
- Macfarlane, I. A Solution-Culture Technique for Obtaining Root-Hair, or Primary, Infection by Plasmodiophora brassicae. Microbiology 1958, 18, 720–732. [Google Scholar] [CrossRef] [Green Version]
- Niwa, R.; Nomura, Y.; Osaki, M.; Ezawa, T. Suppression of Clubroot Disease under Neutral pH Caused by Inhibition of Spore Germination of Plasmodiophora brassicae in the Rhizosphere. Plant Pathol. 2008, 57, 445–452. [Google Scholar] [CrossRef]
- Shinoda, H.; Murakami, K.; Goto, I. Effect of the Amelioration of Soil Acidity and Continuous Cropping of Cruciferous Vegetables on the Incidence of Clubroot Disease and Resting Spore Density in Soil. Soil Sci. Plant Nutr. 2006, 52, 136–137. [Google Scholar] [CrossRef]
- Gossen, B.D.; Mcdonald, M.R.; Hwang, S.-F.; Strelkov, S.E.; Peng, G. A Comparison of Clubroot Development and Management on Canola and Brassica Vegetables. Can. J. Plant Pathol. 2013, 35, 175–191. [Google Scholar] [CrossRef]
- Macfarlane, I. Factors Affecting the Survival of Plasmodiophora brassicae Wor. in the Soil and Its Assessment by a Host Test. Ann. Appl. Biol. 1952, 39, 239–256. [Google Scholar] [CrossRef]
- Fletcher, J.T.; Hims, M.J.; Archer, F.C.; Brown, A. Effects of Adding Calcium and Sodium Salts to Field Soils on the Incidence of Clubroot. Ann. Appl. Biol. 1982, 100, 245–251. [Google Scholar] [CrossRef]
- Donald, E.C.; Porter, I.J. A Sand—Solution Culture Technique Used to Observe the Effect of Calcium and pH on Root Hair and Cortical Stages of Infection by Plasmodiophora brassicae. Australas. Plant Pathol. 2004, 33, 585–589. [Google Scholar] [CrossRef]
- Myers, D.F.; Campbell, R.N. Lime and the Control of Clubroot of Crucifers: Effects of pH, Calcium, Magnesium, and Their Interactions. Phytopathology 1985, 75, 670. [Google Scholar] [CrossRef]
- Ruaro, L.; Neto, L.; da Costa, V.; Motta, A.C.V. Efeito Do pH Do Solo Em Diferentes Níveis de Concentração de Inóculo No Controle de Plasmodiophora brassicae. Summa Phytopathol. 2010, 36, 16–20. [Google Scholar] [CrossRef] [Green Version]
- Webster, M.A.; Dixon, G.R. Boron, pH and Inoculum Concentration Influencing Colonization by Plasmodiophora brassicae. Mycol. Res. 1991, 95, 74–79. [Google Scholar] [CrossRef]
- Takahashi, H.; Takita, K.; Kishimoto, T.; Mitsui, T.; Hori, H. Ca2+ Is Required by Clubroot Resistant Turnip Cells for Transient Increases in PAL Activity That Follow Inoculation with Plasmodiophora brassicae. J. Phytopathol. 2002, 150, 529–535. [Google Scholar] [CrossRef]
- Takahashi, H.; Ishikawa, T.; Kaido, M.; Takita, K.; Hayakawa, T.; Okazaki, K.; Itoh, K.; Mitsui, T.; Hori, H. Plasmodiophora brassicae-Induced Cell Death and Medium Alkalization in Clubroot-Resistant Cultured Roots of Brassica rapa. J. Phytopathol. 2006, 154, 156–162. [Google Scholar] [CrossRef]
- Deora, A.; Gossen, B.D.; Walley, F.; McDonald, M.R. Boron Reduces Development of Clubroot in Canola. Can. J. Plant Pathol. 2011, 33, 475–484. [Google Scholar] [CrossRef]
- Deora, A.; Gossen, B.D.; Hwang, S.-F.; Pageau, D.; Howard, R.J.; Walley, F.; McDonald, M.R. Effect of Boron on Clubroot of Canola in Organic and Mineral Soils and on Residual Toxicity to Rotational Crops. Can. J. Plant Sci. 2014, 94, 109–118. [Google Scholar] [CrossRef]
- Kranz, J. Epidemics of Plant Diseases: Mathematical Analysis and Modeling, 2nd ed.; Springer Science & Business Media: New Delhi, India, 2012; ISBN 978-3-642-75398-5. [Google Scholar]
- Savary, S.; Cooke, M. Plant Disease Epidemiology: Facing Challenges of the 21st Century. Eur. J. Plant Pathol. 2006, 115, 1–2. [Google Scholar] [CrossRef]
- Campbell, C.L.; Noe, J.P. The Spatial Analysis of Soilborne Pathogens and Root Diseases. Annu. Rev. Phytopathol. 1985, 23, 129–148. [Google Scholar] [CrossRef]
- Chellemi, D.O.; Rohrbach, K.G.; Yost, R.S.; Sonoda, R.M. Analysis of the Spatial Pattern of Plant Pathogens and Diseased Plants Using Geostatistics. Phytopathology 1988, 78, 221. [Google Scholar] [CrossRef]
- Nicot, P.C.; Rouse, D.I.; Yandell, B.S. Comparison of Statistical Methods for Studying Spatial Patterns of Soilborne Pathogens in the Field. Phytopathology 1984, 74, 1399–1402. [Google Scholar] [CrossRef]
- Rekah, Y.; Shtienberg, D.; Katan, J. Spatial Distribution and Temporal Development of Fusarium Crown and Root Rot of Tomato and Pathogen Dissemination in Field Soil. Phytopathology 1999, 89, 831–839. [Google Scholar] [CrossRef]
- Gilligan, C.A. Modelling Soil-Borne Plant Pathogens: Reaction-Diffusion Models. Can. J. Plant Pathol. 1995, 17, 96–108. [Google Scholar] [CrossRef]
- Madden, L.V.; Hughes, G.; Van Den Bosch, F. The Study of Plant Disease Epidemics; American Phytopatologycal Society: St. Paul, MN, USA, 2007; ISBN 978-0-89054-505-8. [Google Scholar]
- Cao, T.; Manolii, V.P.; Strelkov, S.E.; Hwang, S.-F.; Howard, R.J. Virulence and Spread of Plasmodiophora brassicae [Clubroot] in Alberta, Canada. Can. J. Plant Pathol. 2009, 31, 321–329. [Google Scholar] [CrossRef]
- Řičařová, V.; Kazda, J.; Baranyk, P.; Ryšánek, P. Greenhouse and Field Experiments with Winter Oilseed Rape Cultivars Resistant to Plasmodiophora brassicae Wor. Crop Prot. 2017, 92, 60–69. [Google Scholar] [CrossRef]
- Hlavjenka, V.; Seidenglanz, M.; Dufek, A.; Šefrová, H. Spatial Distribution of Cabbage Root Maggot (Delia radicum) and Clubroot (Plasmodiophora brassicae) in Winter Oilseed Rape Crops in the Czech Republic. Plant Prot. Sci. 2017, 53, 159–168. [Google Scholar] [CrossRef] [Green Version]
- Wallenhammar, A.-C.; Almquist, C.; Söderström, M.; Jonsson, A. In-Field Distribution of Plasmodiophora brassicae Measured Using Quantitative Real-Time PCR. Plant Pathol. 2012, 61, 16–28. [Google Scholar] [CrossRef]
- Elliott, P.; Wartenberg, D. Spatial Epidemiology: Current Approaches and Future Challenges. Environ. Health Perspect. 2004, 112, 998–1006. [Google Scholar] [CrossRef]
- Real, L.A.; McElhany, P. Spatial Pattern and Process in Plant-Pathogen Interactions. Ecology 1996, 77, 1011–1025. [Google Scholar] [CrossRef]
- El-Shaarawi, A.H.; Piegorsch, W.W. (Eds.) Encyclopedia of Environmetrics; Wiley: Chichester, UK; New York, NY, USA, 2002; ISBN 978-0-471-89997-6. [Google Scholar]
- Musoli, C.P.; Pinard, F.; Charrier, A.; Kangire, A.; ten Hoopen, G.M.; Kabole, C.; Ogwang, J.; Bieysse, D.; Cilas, C. Spatial and Temporal Analysis of Coffee Wilt Disease Caused by Fusarium xylarioides in Coffea Canephora. Eur. J. Plant Pathol. 2008, 122, 451–460. [Google Scholar] [CrossRef]
- Arab, A. Spatial and Spatio-Temporal Models for Modeling Epidemiological Data with Excess Zeros. Int. J. Environ. Res. Public Health Basel. 2015, 12, 10536–10548. [Google Scholar] [CrossRef] [Green Version]
- Blangiardo, M.; Cameletti, M. Spatial and Spatio-Temporal Bayesian Models with R-INLA; John Wiley & Sons, Incorporated: West Sussex, UK, 2015; ISBN 978-1-118-95021-0. [Google Scholar]
- Souris, M. Spatial Analysis of Health Phenomena: General Principles. In Epidemiology and Geography; John Wiley & Sons Ltd.: London, UK, 2019; pp. 21–62. ISBN 978-1-119-52820-3. [Google Scholar]
- Zuur, A.; Ieeno, E.; Saveliev, A. Begginer’s Guide to Spatial, Temporal and Spatial-Temporal Ecological Data Analysis with R-INLA Volume I: Using GLM Ang GLMM; Highland statistics Ltd.: Newburgh, UK, 2017. [Google Scholar]
- Faggian, R.; Strelkov, S.E. Detection and Measurement of Plasmodiophora brassicae. J. Plant Growth Regul. 2009, 28, 282–288. [Google Scholar] [CrossRef]
- Campbell, C.; Van der Gaag, D. Temporal and Spatial Dynamics of Microsclerotia of Macrophomina phaseolina in Three Fields in North Carolina Over Four to Five Years. Phytopathology 1993, 83, 1434. [Google Scholar] [CrossRef]
- Martins, L.; Castro, J.; Macedo, W.; Marques, C.; Abreu, C. Assessment of the Spread of Chestnut Ink Disease Using Remote Sensing and Geostatistical Methods. Eur. J. Plant Pathol. 2007, 119, 159–164. [Google Scholar] [CrossRef]
- Gottwald, T.R.; Garnsey, S.M.; Borbón, J. Increase and Patterns of Spread of Citrus Tristeza Virus Infections in Costa Rica and the Dominican Republic in the Presence of the Brown Citrus Aphid, Toxoptera Citricida. Phytopathology 1998, 88, 621–636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ettema, C.H.; Wardle, D.A. Spatial Soil Ecology. Trends Ecol. Evol. 2002, 17, 177–183. [Google Scholar] [CrossRef]
- Hwang, S.-F.; Strelkov, S.E.; Feng, J.; Gossen, B.D.; Howard, R.J. Plasmodiophora brassicae: A Review of an Emerging Pathogen of the Canadian Canola (Brassica napus) Crop. Mol. Plant Pathol. 2012, 13, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Rennie, D.C.; Holtz, M.D.; Turkington, T.K.; Leboldus, J.M.; Hwang, S.-F.; Howard, R.J.; Strelkov, S.E. Movement of Plasmodiophora brassicae Resting Spores in Windblown Dust. Can. J. Plant Pathol. 2015, 37, 188–196. [Google Scholar] [CrossRef]
- Datnoff, L.E.; Lacy, G.H.; Fox, J.A. Occurrence and Populations of Plasmodiophora brassicae in Sediments of Irrigation Water Sources. Plant Dis. 1984, 68, 200–203. [Google Scholar] [CrossRef]
- Rennie, D.C.; Manolii, V.P.; Cao, T.; Hwang, S.F.; Howard, R.J.; Strelkov, S.E. Direct Evidence of Surface Infestation of Seeds and Tubers by Plasmodiophora brassicae and Quantification of Spore Loads. Plant Pathol. 2011, 60, 811–819. [Google Scholar] [CrossRef]
- Larkin, R.; Gumpertz, M.L.; Ristaino, J.B. Geostatistical Analysis of Phytophthora Epidemic Development in Commercial Bell Pepper Fields. Phytopathology 1995, 85, 191. [Google Scholar] [CrossRef]
- Xiao, C.L.; Hao, J.J.; Subbarao, K.V. Spatial Patterns of Microsclerotia of Verticillium dahliae in Soil and Verticillium Wilt of Cauliflower. Phytopathology 1997, 87, 325–331. [Google Scholar] [CrossRef]
- Olanya, O.M. Effects of Tillage on the Spatial Pattern of Microsclerotia of Macrophomina phaseolina. Phytopathology 1988, 78, 217. [Google Scholar] [CrossRef]
- Ophel-Keller, K.; McKay, A.; Hartley, D.; Herdina; Curran, J. Development of a Routine DNA-Based Testing Service for Soilborne Diseases in Australia. Australas. Plant Pathol. 2008, 37, 243–253. [Google Scholar] [CrossRef]
- Hughes, G.; Madden, L.V. Some Methods for Eliciting Expert Knowledge of Plant Disease Epidemics and Their Application in Cluster Sampling for Disease Incidence. Crop Prot. 2002, 21, 203–215. [Google Scholar] [CrossRef]
- Cao, T.; Tewari, J.; Strelkov, S.E. Molecular Detection of Plasmodiophora brassicae, Causal Agent of Clubroot of Crucifers, in Plant and Soil. Plant Dis. 2007, 91, 80–87. [Google Scholar] [CrossRef] [Green Version]
- Strelkov, S.E.; Manolii, V.P.; Lageyre, J.; Hwang, S.F.; Harding, M.W.; Daniels, G.C. The Occurrence and Spread of Clubroot on Canola in Alberta in 2018. Can. Plant Dis. Surv. 2019, 41, 129–131. [Google Scholar] [CrossRef] [Green Version]
- Canola Council of Canada. Management of Other Macronutrients. Canola Encyclopedia. Available online: https://www.canolacouncil.org/canola-encyclopedia/fertility/management-of-other-macronutrients/ (accessed on 8 March 2021).
- McKenzie, R. Micronutrient Requirements of Crops. Available online: https://www1.agric.gov.ab.ca/$department/deptdocs.nsf/all/agdex713/$file/531-1.pdf?OpenElement (accessed on 8 March 2021).
- Westerman, R.L. Soil Testing and Plant Analysis, 3rd ed.; John Wiley & Sons, Ltd.: Madison, WI, USA, 1990; ISBN 9780891188452. [Google Scholar]
- Karamanos, R.E.; Goh, T.B.; Stonehouse, T.A. Canola Response to Boron in Canadian Prairie Soils. Can. J. Plant Sci. 2003, 83, 249–259. [Google Scholar] [CrossRef]
- Colhoun, J. A Study of the Epidemiology of Club-Root Disease of Brassicae. Ann. Appl. Biol. 1953, 40, 262–283. [Google Scholar] [CrossRef]
- Strelkov, S.E.; Manolii, V.P.; Cao, T.; Xue, S.; Hwang, S.F. Pathotype Classification of Plasmodiophora brassicae and Its Occurrence in Brassica napus in Alberta, Canada. J. Phytopathol. 2007, 155, 706–712. [Google Scholar] [CrossRef]
- Campbell, C.L.; Madden, L.V. Introduction to Plant Disease Epidemiology; Wiley: New York, NY, USA, 1990; ISBN 0471832367. [Google Scholar]
- Zadoks, J.C.; van den Bosch, F. On the Spread of Plant Disease: A Theory on Foci. Annu. Rev. Phytopathol. 1994, 32, 503–521. [Google Scholar] [CrossRef] [PubMed]
- Real, L.A.; Biek, R. Spatial Dynamics and Genetics of Infectious Diseases on Heterogeneous Landscapes. J. R. Soc. Interface 2007, 4, 935–948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strelkov, S.E.; Hwang, S.-F. Clubroot in the Canadian Canola Crop: 10 Years into the Outbreak. Can. J. Plant Pathol. 2014, 36, 27–36. [Google Scholar] [CrossRef]
- Alberta Agriculture and Rural Development. Alberta Agriculture and Rural Development Alberta Soil Information Viewer (AGRASID 4.1). Available online: https://soil.agric.gov.ab.ca/agrasidviewer/ (accessed on 21 May 2020).
- Mapit GIS Ltd. Map It Spatial. Map It Spatial (5.5.0) [Computer Software]. 2017. Available online: https://spatial.mapitgis.com/ (accessed on 10 October 2017).
- Pansu, M.; Gautheyrou, J. Handbook of Soil Analysis: Mineralogical, Organic and Inorganic Methods; Springer: Berlin/Heidelberg, Germany, 2006; ISBN 978-3-540-31211-6. [Google Scholar]
- Alberta Agriculture and Rural Development. Alberta Agriculture and Forestry Alberta Climate Information Service-Prevailing Wind Direction. Available online: https://agriculture.alberta.ca/acis/wind-rose.jsp (accessed on 30 May 2020).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: https://www.R-project.org/ (accessed on 10 March 2020).
- Bivand, R.S.; Wong, D.W.S. Comparing Implementations of Global and Local Indicators of Spatial Association. TEST 2018, 27, 716–748. [Google Scholar] [CrossRef]
- Souris, M. Epidemiology and Geography: Principles, Methods and Tools of Spatial Analysis; ISTE and Wiley & Sons, Inc.: London, UK, 2019; ISBN 978-1-78630-360-8. [Google Scholar]
- Pebesma, E.J. Multivariable Geostatistics in S: The Gstat Package. Comput. Geosci. 2004, 30, 683–691. [Google Scholar] [CrossRef]
- Cressie, N. Statistics for Spatial Data; John Wiley & Sons, Incorporated: New York, NY, USA, 1993; ISBN 978-1-119-11517-5. [Google Scholar]
- Perry, J.N.; Liebhold, A.M.; Rosenberg, M.S.; Dungan, J.; Miriti, M.; Jakomulska, A.; Citron-Pousty, S. Illustrations and Guidelines for Selecting Statistical Methods for Quantifying Spatial Pattern in Ecological Data. Ecography 2002, 25, 578–600. [Google Scholar] [CrossRef] [Green Version]
- Zuur, A.; Ieeno, E. Begginer’s Guide to Spatial, Temporal and Spatial-Temporal Ecological Data Analysis with R-INLA Volume II: GAM and Zero-Inflated Models; Highland Statistics Ltd.: Newburgh, UK, 2018. [Google Scholar]
- Krainski, E.T.; Gómez-Rubio, V.; Bakka, H.; Lenzi, A.; Castro-Camilo, D.; Simpson, D.; Lindgren, F.; Rue, H.; Gómez-Rubio, V.; Bakka, H.; et al. Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA; Chapman and Hall/CRC: Boca Raton, FL, USA, 2018; ISBN 978-0-429-03189-2. [Google Scholar]
- Rue, H.; Martino, S.; Chopin, N. Approximate Bayesian Inference for Latent Gaussian Models by Using Integrated Nested Laplace Approximations. J. R. Stat. Soc. Ser. B Stat. Methodol. 2009, 71, 319–392. [Google Scholar] [CrossRef]
- Lindgren, F.; Rue, H.; Lindström, J. An Explicit Link between Gaussian Fields and Gaussian Markov Random Fields: The Stochastic Partial Differential Equation Approach. J. R. Stat. Soc. Ser. B Stat. Methodol. 2011, 73, 423–498. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Ryan, Y.Y.; Faraway, J.J.; Ryan, Y.Y.; Faraway, J.J. Bayesian Regression Modeling with INLA; Chapman and Hall/CRC: Boca Raton, FL, USA, 2018; ISBN 978-1-351-16576-1. [Google Scholar]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. [Google Scholar]
- Kahle, D.; Wickham, H. Ggmap: Spatial Visualization with Ggplot2. R J. 2013, 5, 144–161. [Google Scholar] [CrossRef] [Green Version]
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D. R Core Team Nlme: Linear and Nonlinear Mixed Effects Models. Available online: https://CRAN.R-project.org/package=nlme (accessed on 20 May 2020).
Field/Year | 2017 | 2019 | ||||
---|---|---|---|---|---|---|
Number of Samples Collected | Number of Negative Samples | Percentage of Negative Samples | Number of Samples Collected | Number of Negative Samples | Percentage of Negative Samples | |
Field 1 | 99 | 98 | 99% | 86 | 73 | 85% |
Field 2 | 97 | 74 | 76% | 81 | 43 | 53% |
Field 3 | 100 | 99 | 99% | 76 | 68 | 89% |
Field 4 | 100 | 72 | 72% | 100 | 53 | 53% |
Field/Year | 2017 | 2019 | ||
---|---|---|---|---|
Minimum (Resting Spores/g Soil) | Maximum (Resting Spores/g Soil) | Minimum (Resting Spores/g Soil) | Maximum (Resting Spores/g Soil) | |
Field 1 | na * | 1.4 × 105 | 4.3 × 103 | 2.7 × 105 |
Field 2 | 1.1 × 104 | 1.7 × 107 | 6.7 × 103 | 9.9 × 106 |
Field 3 | na | 1.7 × 103 | 4.3 × 103 | 1.7 × 105 |
Field 4 | 5.4 × 103 | 1 × 105 | 5 × 103 | 3.2 × 107 |
pH | Year | Min | Max | Mean |
---|---|---|---|---|
Field 1 | 2017 | 4.7 | 6.72 | 5.34 |
2019 | 4.94 | 7.14 | 5.96 | |
Field 2 | 2017 | 4.49 | 5.97 | 5.03 |
2019 | 4.83 | 6.05 | 5.46 | |
Field 3 | 2017 | 4.64 | 6.67 | 5.49 |
2019 | 4.45 | 7.32 | 5.83 | |
Field 4 | 2017 | 4.93 | 6.95 | 5.83 |
2019 | 5.24 | 7.42 | 6.23 |
Field | Element | Min (mg kg−1) | Max (mg kg−1) | Mean (mg kg−1) |
---|---|---|---|---|
Field 1 | Ca | 2990 | 6470 | 4648 |
Field 2 | 3440 | 5880 | 4129 | |
Field 3 | 2090 | 5140 | 3853 | |
Field 4 | 3780 | 6190 | 4247 | |
Field 1 | B | 0.97 | 3 | 1.969 |
Field 2 | 1.6 | 3 | 2.222 | |
Field 3 | 0.79 | 2.7 | 1.515 | |
Field 4 | 1.2 | 4.2 | 2.336 | |
Field 1 | Mg | 432 | 1200 | 756.8 |
Field 2 | 291 | 681 | 477.6 | |
Field 3 | 214 | 513 | 374.1 | |
Field 4 | 159 | 614 | 319.7 |
Field | Year | Nugget (C0) | Sill (C+C0) | C/(C+C0) | Range (m) |
---|---|---|---|---|---|
Field 1 | 2017 * | NA | NA | NA | 40.0 † |
2019 | 0.01 | 0.20 | 0.96 | 289.2 | |
Field 2 | 2017 | 0.12 | 0.72 | 0.83 | 346.1 |
2019 | 0.00 | 4.00 | 1.00 | 634.9 | |
Field 3 | 2017 * | NA | NA | NA | 40.0 † |
2019 | 0.00 | 0.10 | 1.00 | 77.7 | |
Field 4 | 2017 | 0.00 | 0.912 | 1.00 | 113.6 |
2019 | 0.58 | 2.49 | 0.77 | 422.9 |
Field | County | Date of Sampling | Number of Collected Samples |
---|---|---|---|
Field 1 | Sturgeon County | 12 October 2017 | 99 |
17 October 2019 | 86 | ||
Field 2 | Sturgeon County | 12 October 2017 | 97 |
17 October 2019 | 81 | ||
Field 3 | Westlock County | 13 October 2017 | 100 |
18 October 2019 | 76 | ||
Field 4 | Westlock County | 13 October 2017 | 100 |
18 October 2019 | 100 |
Field | Year | Number of Positive Samples | Number of Samples Quantified for Inoculum Density |
---|---|---|---|
Field 1 | 2017 | 1 | 6 |
2019 | 13 | 40 | |
Field 2 | 2017 | 23 | 45 |
2019 | 38 | 54 | |
Field 3 | 2017 | 1 | 5 |
2019 | 8 | 33 | |
Field 4 | 2017 | 28 | 53 |
2019 | 47 | 65 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Botero-Ramirez, A.; Hwang, S.-F.; Strelkov, S.E. Plasmodiophora brassicae Inoculum Density and Spatial Patterns at the Field Level and Relation to Soil Characteristics. Pathogens 2021, 10, 499. https://doi.org/10.3390/pathogens10050499
Botero-Ramirez A, Hwang S-F, Strelkov SE. Plasmodiophora brassicae Inoculum Density and Spatial Patterns at the Field Level and Relation to Soil Characteristics. Pathogens. 2021; 10(5):499. https://doi.org/10.3390/pathogens10050499
Chicago/Turabian StyleBotero-Ramirez, Andrea, Sheau-Fang Hwang, and Stephen E. Strelkov. 2021. "Plasmodiophora brassicae Inoculum Density and Spatial Patterns at the Field Level and Relation to Soil Characteristics" Pathogens 10, no. 5: 499. https://doi.org/10.3390/pathogens10050499
APA StyleBotero-Ramirez, A., Hwang, S. -F., & Strelkov, S. E. (2021). Plasmodiophora brassicae Inoculum Density and Spatial Patterns at the Field Level and Relation to Soil Characteristics. Pathogens, 10(5), 499. https://doi.org/10.3390/pathogens10050499