Comparative Analysis of Full Genome Sequences of African Swine Fever Virus Isolates Taken from Wild Boars in Russia in 2019
Abstract
:1. Introduction
2. Materials and Methods
2.1. Viral Isolates
2.2. Statistical Analysis
2.3. Genome Extraction and Next Generation Sequencing (NGS)
2.4. Phylogenetic and Single Nucleotide Polymorphism (SNP) Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ortin, J.; Enjuanes, L.; Vinuela, E. Cross-links in African swine fever virus DNA. J. Virol. 1979, 31, 579–583. [Google Scholar] [CrossRef] [Green Version]
- Blasco, R.; Agüero, M.; Almendral, J.M.; Viñuela, E. Variable and constant regions in African swine fever virus DNA. Virology 1989, 168, 330–338. [Google Scholar] [CrossRef]
- Blasco, R.; de la Vega, I.; Almazán, F.; Agüero, M.; Viñuela, E. Genetic variation of African swine fever virus: Variable regions near the ends of the viral DNA. Virology 1989, 173, 251–257. [Google Scholar] [CrossRef]
- Gallardo, C.; Fernández-Pinero, J.; Pelayo, V.; Gazaev, I.; Markowska-Daniel, I.; Pridotkas, G.; Nieto, R.; Fernández-Pacheco, P.; Bokhan, S.; Nevolko, O.; et al. Genetic variation among African swine fever genotype II viruses, eastern and central Europe. Emerg. Infect. Dis. 2014, 20, 1544–1547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Achenbach, J.E.; Gallardo, C.; Nieto-Pelegrín, E.; Rivera-Arroyo, B.; Degefa-Negi, T.; Arias, M.; Jenberie, S.; Mulisa, D.D.; Gizaw, D.; Gelaye, E.; et al. Identification of a new genotype of african swine fever virus in domestic pigs from Ethiopia. Transbound. Emerg. Dis. 2017, 64, 1393–1404. [Google Scholar] [CrossRef]
- Bastos, A.D.; Penrith, M.L.; Crucière, C.; Edrich, J.L.; Hutchings, G.; Roger, F.; Couacy-Hymann, E.; Thomson, G.R. Genotyping field strains of African swine fever virus by partial p72 gene characterisation. Arch. Virol. 2003, 148, 693–706. [Google Scholar] [CrossRef] [PubMed]
- Quembo, C.J.; Jori, F.; Vosloo, W.; Heath, L. Genetic characterization of African swine fever virus isolates from soft ticks at the wildlife/domestic interface in Mozambique and identification of a novel genotype. Transbound. Emerg. Dis. 2018, 65, 420–431. [Google Scholar] [CrossRef] [Green Version]
- Ge, S.; Li, J.; Fan, X.; Liu, F.; Li, L.; Wang, Q.; Ren, W.; Bao, J.; Liu, C.; Wang, H.; et al. Molecular characterization of African swine fever virus, China, 2018. Emerg. Infect. Dis. 2018, 24, 2131–2133. [Google Scholar] [CrossRef] [Green Version]
- Mazur-Panasiuk, N.; Walczak, M.; Juszkiewick, M.; Wozniakowski, G. The spillover of African swine fever in western Poland revealed its estimated origin on the basis of O174L, K145R, MGF-505-5R and IGR I73R/I329L genomic sequences. Viruses 2020, 12, 1094. [Google Scholar] [CrossRef]
- Varentsova, A.A.; Yelsukova, A.A.; Zinyakov, N.G.; Igolkin, A.S.; Vlasova, N.N. Genomic aberrations in dna of African Swine Fever Virus circulating in the territory of the Russian Federation. Vet. Sci. Today 2015, 4, 57–60. (In Russian) [Google Scholar]
- Dixon, L.K.; Sun, H.; Roberts, H. African swine fever. Antivir. Res. 2019, 165, 34–41. [Google Scholar] [CrossRef]
- Rowland, R.J.; Michaud, V.; Heath, L.; Hutchings, G.; Oura, C.; Vosloo, W.; Dwarka, R.; Onashvili, T.; Albina, E.; Dixon, L.K. African swine fever virus isolate, Georgia, 2007. Emerg. Infect. Dis. 2008, 14, 1870–1874. [Google Scholar] [CrossRef]
- Tran, H.T.T.; Truong, A.D.; Dang, A.K.; Ly, D.V.; Nguyen, C.T.; Chu, N.T.; Hoang, T.V.; Nguyen, H.T.; Dang, H.V. Circulation of two different variants of intergenic region (IGR) located between the I73R and I329L genes of African swine fever virus strains in Vietnam. Transbound. Emerg. Dis. 2021. [Google Scholar] [CrossRef]
- Gavier-Widén, D.; Gortázar, C.; Ståhl, K.; Neimanis, A.S.; Rossi, S.; Hård av Segerstad, C.; Kuiken, T. African swine fever in wild boar in Europe: A notable challenge. Vet. Rec. 2015, 176, 199–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Animal Disease Notification System (ADNS). Available online: https://ec.europa.eu/food/animals/animal-diseases/not-system_en#:~:text=The%20system%20allows%20the%20coordination,of%20the%20diseases%20in%20question (accessed on 12 April 2021).
- Chenais, E.; Ståhl, K.; Guberti, V.; Depner, K. Identification of wild boar-habitat epidemiologic cycle in african swine fever epizootic. Emerg. Infect. Dis. 2018, 24, 810–812. [Google Scholar] [CrossRef] [Green Version]
- Chenais, E.; Depner, K.; Guberti, V. Epidemiological considerations on African swine fever in Europe 2014–2018. Porc. Health Manag. 2019, 5, 6. [Google Scholar] [CrossRef] [PubMed]
- The World Organisation for Animal Health (OIE). African Swine Fever. (n.d.). Available online: https://www.oie.int/en/animal-health-in-the-world/animal-diseases/african-swine-fever (accessed on 12 April 2021).
- InterLabService. African Swine Fever Genome Detection Kit, by Real-Time Polymerase Chain Reaction. 2019. Available online: https://interlabservice.ru/upload/iblock/f5d/%D0%90%D0%A7%D0%A1_%D0%90%D0%95_180619.pdf (accessed on 7 April 2021).
- Beltran-Alcrudo, D.; Gallardo, M.A.A.C.; Kramer, S.A.; Penrith, M.L.; Kamata, A.; Wiersma, L. African Swine Fever: Detection and Diagnosis (No. 19); Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2017; p. 50. [Google Scholar]
- Greig, A.S.; Boulanger, P.; Bannister, G.L. African swine fever. V. Cultivation of the virus in primary pig kidney cells. Can. J. Comp. Med. Vet. Sci. 1967, 31, 24–31. [Google Scholar] [PubMed]
- Sharipova, D.V. Improvement of the Antigen Obtaining Methods of the African Swine Fever Virus for Serological Research. Ph.D. Thesis, FGBI ARRIAH, Vladimir, Russia, 2019. [Google Scholar]
- De León, P.; Bustos, M.J.; Carrascosa, A.L. Laboratory methods to study African swine fever virus. Virus Res. 2013, 173, 168–179. [Google Scholar] [CrossRef]
- Szpara, M.L.; Tafuri, Y.R.; Enquist, L.W. Preparation of viral DNA from nucleocapsids. J. Vis. Exp. 2011, 3151. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Thomas, R.H. Molecular evolution and phylogenetics. Heredity 2001, 86, 385. [Google Scholar] [CrossRef]
- Welling, G.W.; Weijer, W.J.; van der Zee, R.; Welling-Wester, S. Prediction of sequential antigenic regions in proteins. FEBS Lett. 1985, 188, 215–218. [Google Scholar] [CrossRef] [Green Version]
- Alejo, A.; Matamoros, T.; Guerra, M.; Andrés, G. A proteomic atlas of the African swine fever virus particle. J. Virol. 2018, 92, e01293-18. [Google Scholar] [CrossRef] [Green Version]
- Goller, K.V.; Malogolovkin, A.S.; Katorkin, S.; Kolbasov, D.; Titov, I.; Höper, D.; Beer, M.; Keil, G.M.; Portugal, R.; Blome, S. Tandem repeat insertion in African swine fever virus, Russia, 2012. Emerg. Infect. Dis. 2015, 21, 731–732. [Google Scholar] [CrossRef] [Green Version]
- Walczak, M.; Frant, M.; Juszkiewicz, M.; Mazur-Panasiuk, N.; Szymankiewicz, K.; Bruczyńska, M.; Woźniakowski, G. Vertical transmission of anti-ASFV antibodies as one of potential causes of seropositive results among young wild boar population in Poland. Polish J. Vet. Sci. 2020, 23, 21–25. [Google Scholar] [CrossRef]
- Vilem, A.; Nurmoja, I.; Niine, T.; Riit, T.; Nieto, R.; Viltrop, A.; Gallardo, C. Molecular Characterization of African Swine Fever Virus Isolates in Estonia in 2014–2019. Pathogens 2020, 9, 582. [Google Scholar] [CrossRef]
- Pérez-Núñez, D.; Castillo-Rosa, E.; Vigara-Astillero, G.; García-Belmonte, R.; Gallardo, C.; Revilla, Y. Identification and isolation of two different subpopulations within african swine fever virus Arm/07 stock. Vaccines 2020, 8, 625. [Google Scholar] [CrossRef]
- Showalter, A.K.; Byeon, I.J.; Su, M.I.; Tsai, M.D. Solution structure of a viral DNA polymerase X and evidence for a mutagenic function. Nat. Struct. Biol. 2001, 8, 942–946. [Google Scholar] [CrossRef]
- Loi, F.; Cappai, S.; Laddomada, A.; Feliziani, F.; Oggiano, A.; Franzoni, G.; Rolesu, S.; Guberti, V. Mathematical Approach to Estimating the Main Epidemiological Parameters of African Swine Fever in Wild Boar. Vaccines 2020, 8, 521. [Google Scholar] [CrossRef]
- Jose, A.B.; Gallardo, C.; Cadenas-Fernández, E.; Jurado, C.; Rivera, B.; Rodríguez-Bertos, A.; Arias, M.; Sánchez-Vizcaíno, J.M. First Oral Vaccination of Eurasian Wild Boar Against African Swine Fever Virus Genotype II. Front. Vet. Sci. 2019. [Google Scholar] [CrossRef]
- Gallardo, C.; Soler, A.; Rodze, I.; Nieto, R.; Cano-Gómez, C.; Fernandez-Pinero, J.; Arias, M. Attenuated and non-haemadsorbing (non-HAD) genotype II African swine fever virus (ASFV) isolated in Europe, Latvia 2017. Transbound. Emerg. Dis. 2019, 66, 1399–1404. [Google Scholar] [CrossRef]
- Schulz, K.; Staubach, C.; Blome, S.; Viltrop, A.; Nurmoja, I.; Conraths, F.J.; Sauter-Louis, C. Analysis of Estonian surveillance in wild boar suggests a decline in the incidence of African swine fever. Sci. Rep. 2019, 9, 8490. [Google Scholar] [CrossRef]
- Wen, X.; He, X.; Zhang, X.; Zhang, X.; Liu, L.; Guan, Y.; Zhang, Y.; Bu, Z. Genome sequences derived from pig and dried blood pig feed samples provide important insights into the transmission of African swine fever virus in China in 2018. Emerg. Microbes Infect. 2019, 8, 303–306. [Google Scholar] [CrossRef]
- Grossegesse, M.; Doellinger, J.; Tyshaieva, A.; Schaade, L.; Nitsche, A. Combined proteomic/genomic approach reveals proteomic changes of mature virions as a novel poxvirus adaptation mechanism. Viruses 2017, 9, 337. [Google Scholar] [CrossRef] [Green Version]
- Sampoli Benítez, B.A.; Arora, K.; Balistreri, L.; Schlick, T. Mismatched base-pair simulations for ASFV Pol X/DNA complexes help interpret frequent G*G misincorporation. J. Mol. Biol. 2008, 384, 1086–1097. [Google Scholar] [CrossRef] [Green Version]
Virus Isolate | Virus Titer in Each Passage, lg HADU 50/cm3 ± SD | ||
---|---|---|---|
1 | 2 | 3 | |
ASFV/Primorsky 19/WB-6723 | 5.21 ± 0.36 | 6.66 ± 0.14 | 7.02 ± 0.12 |
ASFV/Amur 19/WB-6905 | 4.22 ± 0.21 | 5.10 ± 0.30 | 6.80 ± 0.45 |
ASFV/Ulyanovsk 19/WB-5699 | 5.10 ± 0.22 | 6.40 ± 0.14 | 7.21 ± 0.41 |
ASFV/Kabardino-Balkaria 19/WB-964 | 5.50 ± 0.36 | 6.20 ± 0.12 | 7.40 ± 0.14 |
Isolate | Origin | Genotype | MGF | IGR | Whole Genome |
---|---|---|---|---|---|
ASFV/Primorsky 19/WB-6723 | Eastern | II | I | II | China 2018 |
ASFV/Amur 19/WB-6905 | Eastern | II | I | I | China 2018 |
ASFV/Ulyanovsk 19/WB-5699 | Western | II | I | II | Georgia/2007 |
ASFV/Kabardino-Balkaria 19/WB-964 | Western | II | I | I | Georgia/2007 |
Protein | Position: Amino Acid | ASFV/Primorsky 19/WB-6723 | ASFV/Ulyanovsk 19/WB-5699 | ASFV/Amur 19/WB-6905 | ASFV/Kabardino-Balkaria 19/WB-964 | Georgia/2007-1 (FR682468.2) | ASFV/AnhuiXCGQ/China/2018 (MK128995.1) |
---|---|---|---|---|---|---|---|
MGF 110-9L | 137: Y < C | C | C | C | Y | C | C |
MGF 360-10L | 329: S < N | S | N | S | N | N | S |
MGF 505-4R | 316: P < S | S | S | P | S | S | S |
MGF 505-9R | 323: K < E | E | K | E | K | K | E |
MGF 505-9R | 456: Y < H | H | Y | H | H | H | H |
F317L | 43: N < S | S | S | S | N | S | S |
EP1242L | 898: N < K | K | N | K | K | K | K |
EP364R | 129: Y < H | H | H | Y | H | H | H |
B602L | 201: K < E | E | K | E | E | E | E |
B407L | 276: N < D | D | D | D | N | D | D |
CP2475L | 1404: P < L | L | P | L | L | L | L |
CP204L | 141: V < A | V | A | A | A | A | A |
O174L | 168: H < R | R | H | R | R | R | R |
NP419L | 414: N < S | S | N | S | N | N | S |
D1133L | 457: S < P | P | S | P | P | P | P |
H240R | 186: H < R | R | H | R | R | R | R |
Q706L | 607: V < A | A | V | A | A | A | A |
E423R | 274: T < A | A | A | A | T | A | A |
E199L | 104: H = H < Q | H | Q | Q | H | Q | Q |
I267L | 195: I < F | F | I | F | I | I | F |
I243L | 44: F < Y | Y | Y | Y | F | Y | Y |
I9R | 90: E < K | K | E | K | K | K | K |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazloum, A.; van Schalkwyk, A.; Shotin, A.; Igolkin, A.; Shevchenko, I.; Gruzdev, K.N.; Vlasova, N. Comparative Analysis of Full Genome Sequences of African Swine Fever Virus Isolates Taken from Wild Boars in Russia in 2019. Pathogens 2021, 10, 521. https://doi.org/10.3390/pathogens10050521
Mazloum A, van Schalkwyk A, Shotin A, Igolkin A, Shevchenko I, Gruzdev KN, Vlasova N. Comparative Analysis of Full Genome Sequences of African Swine Fever Virus Isolates Taken from Wild Boars in Russia in 2019. Pathogens. 2021; 10(5):521. https://doi.org/10.3390/pathogens10050521
Chicago/Turabian StyleMazloum, Ali, Antoinette van Schalkwyk, Andrey Shotin, Alexey Igolkin, Ivan Shevchenko, Konstantin N. Gruzdev, and Natalia Vlasova. 2021. "Comparative Analysis of Full Genome Sequences of African Swine Fever Virus Isolates Taken from Wild Boars in Russia in 2019" Pathogens 10, no. 5: 521. https://doi.org/10.3390/pathogens10050521
APA StyleMazloum, A., van Schalkwyk, A., Shotin, A., Igolkin, A., Shevchenko, I., Gruzdev, K. N., & Vlasova, N. (2021). Comparative Analysis of Full Genome Sequences of African Swine Fever Virus Isolates Taken from Wild Boars in Russia in 2019. Pathogens, 10(5), 521. https://doi.org/10.3390/pathogens10050521