Unique Attributes of the Laurel Wilt Fungal Pathogen, Raffaelea lauricola, as Revealed by Metabolic Profiling
Abstract
:1. Introduction
2. Results
2.1. Phenotype Microarrays
2.2. R. Lauricola Fatty Acid Utilization
2.3. Assessment of Fluorescent Lipid Dyes for Lipid Droplet (LD) Visualization
2.4. Lipid Droplet Physiology: Effect of Different Fatty Acids
3. Discussion
4. Methods
4.1. Fungal Strains and Chemical Reagents
4.2. Phenotype Microarrays
4.3. Preparation of Lipid Droplet Dye Stocks and Working Solutions
4.4. Fatty Acid Utilization and Lipid Droplet Staining
4.5. Confocal Microscopy
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Ethical Approval
References
- Kendra, P.; Montgomery, W.; Niogret, J.; Epsky, N. An uncertain future for american lauraceae: A lethal threat from redbay ambrosia beetle and laurel wilt disease (a review). Am. J. Plant Sci. 2013, 4, 29498. [Google Scholar] [CrossRef] [Green Version]
- Saucedo-Carabez, J.; Ploetz, R.; Konkol, J.; Carrillo, D.; Gazis, R. Partnerships between ambrosia beetles and fungi: Lineage-specific promiscuity among vectors of the laurel wilt pathogen, Raffaelea lauricola. Microb. Ecol. 2018, 76, 925–940. [Google Scholar] [CrossRef]
- Ploetz, R.; Konkol, J.; Narvaez, T.; Duncan, R.; Saucedo, R.; Campbell, A.; Mantilla, J.; Carrillo, D.; Kendra, P. Presence and prevalence of Raffaelea lauricola, cause of laurel wilt, in different species of ambrosia beetle in Florida, USA. J. Econ. Entomol. 2017, 110, 347–354. [Google Scholar] [PubMed]
- Ploetz, R.; Hulcr, J.; Wingfield, M.; de Beer, Z. Destructive tree diseases associated with ambrosia and bark beetles: Black swan events in tree pathology? Plant Dis. 2013, 97, 856–872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joseph, R.; Keyhani, N.O. Fungal mutualisms and pathosystems: Life and death in the ambrosia beetle mycangia. Appl. Microbiol. Biotechnol. 2021. [CrossRef]
- Campbell, A.; Ploetz, R.; Rollins, J. Comparing avocado, swamp bay, and camphortree as hosts of Raffaelea lauricola using a green fluorescent protein (gfp)-labeled strain of the pathogen. Phytopathology 2017, 107, 70–74. [Google Scholar] [CrossRef] [Green Version]
- Ploetz, R.; Perez-Martinez, J.; Smith, J.; Hughes, M.; Dreaden, T.; Inch, S.; Fu, Y. Responses of avocado to laurel wilt, caused by Raffaelea lauricola. Plant. Pathol. 2011, 61, 801–808. [Google Scholar] [CrossRef]
- Inch, S.; Ploetz, R.; Held, B.; Blanchette, R. Histological and anatomical responses in avocado, persea americana, induced by the vascular wilt pathogen, Raffaelea lauricola. Botany 2012, 90, 627–635. [Google Scholar] [CrossRef] [Green Version]
- Evans, E.; Crane, J.; Hodges, A.; Osborne, J. Potential economic impact of laurel wilt disease on the Florida avocado industry. Am. Soc. Hortic. Sci. 2010, 20, 234–238. [Google Scholar] [CrossRef] [Green Version]
- Ploetz, R.; Peña, J.; Smith, J.; Dreaden, T.; Crane, J.; Schubert, T.; Dixon, W. Laurel wilt, caused by Raffaelea lauricola, is confirmed in Miami-Dade county, center of Florida’s commercial avocado production. Plant Dis. 2011, 95, 1589. [Google Scholar] [CrossRef]
- Ibarra Caballero, J.; Jeon, J.; Lee, Y.; Fraedrich, S.; Klopfenstein, N.; Kim, M.; Stewart, J. Genomic comparisons of the laurel wilt pathogen, Raffaelea lauricola, and related tree pathogens highlight an arsenal of pathogenicity related genes. Fungal Genet. Biol. 2019, 125, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Durairaj, P.; Hur, J.; Yun, H. Versatile biocatalysis of fungal cytochrome p450 monooxygenases. Microb. Cell Factories 2016, 15, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Syed, K.; Yadav, J. P450 monooxygenases (p450ome) of the model white rot fungus Phanerochaete chrysosporium. Crit. Rev. Microbiol. 2012, 38, 339–363. [Google Scholar] [CrossRef] [Green Version]
- Batra, L.R. Ecology of ambrosia fungi and their dissemination by beetles. Trans. Kans. Acad.Sci. 1963, 66, 213–236. [Google Scholar] [CrossRef]
- Beaver, R.A. Insect-fungus relationships in the bark and ambrosia beetles. In Insect-Fungus Interactions; Wilding, N., Collins, N., Hammond, P., Webber, J., Eds.; Academic Press: London, UK, 1989; pp. 121–143. [Google Scholar]
- Skelton, J.; Johnson, A.; Jusino, M.; Bateman, C.; Li, Y.; Hulcr, J. A selective fungal transport organ (mycangium) maintains coarse phylogenetic congruence between fungus-farming ambrosia beetles and their symbionts. Proc. Biol. Sci. 2019, 286, 20182127. [Google Scholar] [CrossRef]
- Hulcr, J.; Stelinski, L. The ambrosia symbiosis: From evolutionary ecology to practical management. Annu. Rev. Entomol. 2017, 62, 285–303. [Google Scholar] [CrossRef] [Green Version]
- Bochner, B.R.; Gadzinski, P.; Panomitros, E. Phenotype microarrays for high-throughput phenotypic testing and assay of gene function. Genome Res. 2001, 11, 1246–1255. [Google Scholar] [CrossRef] [Green Version]
- Bochner, B.R.; Giovannetti, L.; Viti, C. Important discoveries from analysing bacterial phenotypes. Mol. Microbiol. 2008, 70, 274–280. [Google Scholar] [CrossRef] [Green Version]
- Luginbuehl, L.; Menard, G.; Kurup, S.; Van Erp, H.; Radhakrishnan, G.; Breakspear, A.; Oldroyd, G.; Eastmond, P. Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science 2017, 356, 1175–1178. [Google Scholar] [CrossRef] [Green Version]
- Bahn, Y.; Xue, C.; Idnurm, A.; Rutherford, J.; Heitman, J.; Cardenas, M. Sensing the environment: Lessons from fungi. Nat. Rev. Microbiol. 2007, 5, 57–69. [Google Scholar] [CrossRef]
- Klose, J.; de Sá, M.; Kronstad, J. Lipid-induced filamentous growth in Ustilago maydis. Mol. Microbiol. 2004, 52, 823–835. [Google Scholar] [CrossRef] [PubMed]
- Noverr, M.; Huffnagle, G. Regulation of Candida albicans morphogenesis by fatty acid metabolites. Infect. Immun. 2004, 72, 6206–6210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nigam, S.; Ciccoli, R.; Ivanov, I.; Sczepanski, M.; Deva, R. On mechanism of quorum sensing in Candida albicans by 3(r)-hydroxy-tetradecaenoic acid. Curr. Microbiol. 2011, 62, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Chapman, K.; Aziz, M.; Dyer, J.; Mullen, R. Mechanisms of lipid droplet biogenesis. Biochem. J. 2019, 476, 1929–1942. [Google Scholar] [CrossRef]
- Cohen, S. Lipid droplets as organelles. Int. Rev. Cell Mol. Biol. 2018, 337, 83–110. [Google Scholar]
- Thiam, A.; Farese, R.; Walther, T. The biophysics and cell biology of lipid droplets. Nat. Rev. Mol. Cell Biol. 2013, 14, 775–786. [Google Scholar] [CrossRef] [Green Version]
- Bickel, P.; Tansey, J.; Welte, M. Pat proteins, an ancient family of lipid droplet proteins that regulate cellular lipid stores. Biochim. Biophys. Acta 2009, 1791, 419–440. [Google Scholar] [CrossRef] [Green Version]
- Welte, M.; Gould, A. Lipid droplet functions beyond energy storage. Biochim. Biophys. Acta. Mol. Cell Biol. Lipids 2017, 1862, 1260–1272. [Google Scholar] [CrossRef]
- Duan, Z.; Chen, Y.; Huang, W.; Shang, Y.; Chen, P.; Wang, C. Linkage of autophagy to fungal development, lipid storage and virulence in Metarhizium robertsii. Autophagy 2013, 9, 538–549. [Google Scholar] [CrossRef] [Green Version]
- Josefsen, L.; Droce, A.; Sondergaard, T.; Sørensen, J.; Bormann, J.; Schäfer, W.; Giese, H.; Olsson, S. Autophagy provides nutrients for nonassimilating fungal structures and is necessary for plant colonization but not for infection in the necrotrophic plant pathogen Fusarium graminearum. Autophagy 2012, 8, 326–337. [Google Scholar] [CrossRef] [Green Version]
- Welte, M. Fat on the move: Intracellular motion of lipid droplets. Biochem. Soc. Trans. 2009, 37, 991–996. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, L.; Pardo, J.; Lomelí, M.; Bocardo, O.; Juárez Oropeza, M.; Guerra Sánchez, G. Lipid droplets accumulation and other biochemical changes induced in the fungal pathogen Ustilago maydis under nitrogen-starvation. Arch. Microbiol. 2017, 199, 1195–1209. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Yun, Y.; Yin, Y.; Hahn, M.; Ma, Z.; Chen, Y. Lipid droplet biogenesis regulated by the fgnem1/spo7-fgpah1 phosphatase cascade plays critical roles in fungal development and virulence in Fusarium graminearum. New Phytol. 2019, 223, 412–429. [Google Scholar] [CrossRef]
- Walpole, G.; Grinstein, S.; Westman, J. The role of lipids in host-pathogen interactions. IUBMB Life 2018, 70, 384–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weber, R.; Wakley, G.; Thines, E.; Talbot, N. The vacuole as central element of the lytic system and sink for lipid droplets in maturing appressoria of Magnaporthe grisea. Protoplasma 2001, 216, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Guo, X.; Li, L.; Qiu, H.; Zhang, Z.; Wang, Y.; Sun, G. Application of the fluorescent dye bodipy in the study of lipid dynamics of the rice blast fungus Magnaporthe oryzae. Molecules 2018, 23, 1594. [Google Scholar] [CrossRef] [Green Version]
- Chang, W.; Zhang, M.; Zheng, S.; Li, Y.; Li, X.; Li, W.; Li, G.; Lin, Z.; Xie, Z.; Zhao, Z.; et al. Trapping toxins within lipid droplets is a resistance mechanism in fungi. Sci. Rep. 2015, 5, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Avery, P.; Carrillo, D.; Duncan, R.; Lukowsky, A.; Cave, R.; Keyhani, N. Identification of the achilles heels of the laurel wilt pathogen and its beetle vector. Appl. Microbiol. Biotechnol. 2018, 102, 5673–5684. [Google Scholar] [CrossRef]
- Ploetz, R.C.; Konkol, J.L.; Pérez-Martínez, J.M.; Fernandez, R. Management of laurel wilt of avocado, caused by Raffaelea lauricola. Eur. J. Plant Pathol. 2017, 149, 133–143. [Google Scholar] [CrossRef]
- Zhou, Y.; Lu, D.; Joseph, R.; Li, T.; Keyhani, N. High efficiency transformation and mutant screening of the laurel wilt pathogen, Raffaelea lauricola. Appl. Microbiol. Biotechnol. 2020, 104, 7331–7343. [Google Scholar] [CrossRef]
- Ene, I.V.; Bruncke, S.; Brown, A.J.P.; Hube, B. Metabolism in fungal pathogenesis. Cold Spring Harb. Perspect. Med. 2014, 4, a019695. [Google Scholar] [CrossRef] [Green Version]
- Kujoth, G.; Sullivan, T.; Merkhofer, R.; Lee, T.; Wang, H.; Brandhorst, T.; Wüthrich, M.; Klein, B. Crispr/cas9-mediated gene disruption reveals the importance of zinc metabolism for fitness of the dimorphic fungal pathogen Blastomyces dermatitidis. Mbio 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Patel, T.; Williamson, J. Mannitol in plants, fungi, and plant-fungal interactions. Trends Plant Sci. 2016, 21, 486–497. [Google Scholar] [CrossRef]
- Ibarra-Juarez, L.; Burton, M.; Biedermann, P.; Cruz, L.; Desgarennes, D.; Ibarra-Laclette, E.; Latorre, A.; Alonso-Sánchez, A.; Villafan, E.; Hanako-Rosas, G.; et al. Evidence for succession and putative metabolic roles of fungi and bacteria in the farming mutualism of the ambrosia beetle Xyleborus affinis. Msystems 2020, 5. [Google Scholar] [CrossRef]
- Huang, Y.-T.; Skelton, J.; Hulcr, J. Multiple evolutionary origins lead to diversity in the metabolic profiles of ambrosia fungi. Fungal Ecol. 2019, 38, 80–88. [Google Scholar] [CrossRef]
- Wilson, H.; Amirkhani, M.; Taylor, A. Evaluation of gelatin as a biostimulant seed treatment to improve plant performance. Front. Plant Sci. 2018, 9, 1006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schutter, M.; Dick, R. Shifts in substrate utilization potential and structure of soil microbial communities in response to carbon substrates. Soil Biol. Biochem. 2001, 33, 1481–1491. [Google Scholar] [CrossRef]
- French, J.R.J.; Roeper, R.A. Patterns of nitrogen utilization between the ambrosia beetle Xyleborus dispar and its symbiotic fungus. J. Insect Physiol. 1973, 19, 593–605. [Google Scholar] [CrossRef]
- Garbe, E.; Vylkova, S. Role of amino acid metabolism in the virulence of human pathogenic fungi. Curr. Clin. Microbiol. Rep. 2019, 6, 108–119. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhang, J.; Vanderpool, D.; Smith, J.; Rollins, J. Genomic and transcriptomic insights into Raffaelea lauricola pathogenesis. BMC Genom. 2020, 21, 1–23. [Google Scholar] [CrossRef]
- De Fine Licht, H.H.; Biedermann, P.H.W. Patterns of functional enzyme activity in fungus farming ambrosia beetles. Front. Zool. 2012, 9, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malcheska, F.; Ahmad, A.; Batool, S.; Müller, H.M.; Ludwig-Müller, J.; Kreuzwieser, J.; Randewig, D.; Hänsch, R.; Mendel, R.R.; Hell, R.; et al. Drought-enhanced xylem sap sulfate closes stomata by affecting almt12 and guard cell aba synthesis. Plant Physiol. 2017, 174, 798–814. [Google Scholar] [CrossRef] [Green Version]
- Köhler, B.; Wegner, L.H.; Osipov, V.; Raschke, K. Loading of nitrate into the xylem: Apoplastic nitrate controls the voltage dependence of x-quac, the main anion conductance in xylem-parenchyma cells of barley roots. Plant J. Cell Mol. Biol. 2002, 30, 133–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Secchi, F.; Zwieniecki, M.A. Accumulation of sugars in the xylem apoplast observed under water stress conditions is controlled by xylem pH. Plant Cell Environ. 2016, 39, 2350–2360. [Google Scholar] [CrossRef]
- Pagliarani, C.; Casolo, V.; Ashofteh Beiragi, M.; Cavalletto, S.; Siciliano, I.; Schubert, A.; Gullino, M.L.; Zwieniecki, M.A.; Secchi, F. Priming xylem for stress recovery depends on coordinated activity of sugar metabolic pathways and changes in xylem sap pH. Plant Cell Environ. 2019, 42, 1775–1787. [Google Scholar] [CrossRef] [Green Version]
- Bollard, E.G. Nitrogenous compounds in plant xylem sap. Nature 1956, 178, 1189–1190. [Google Scholar] [CrossRef]
- Bennett, L.; Schabel, F.; Skipper, H. Studies on the mode of action of azaserine. Arch. Biochem. Biophys. 1956, 64, 423–436. [Google Scholar] [CrossRef]
- Yarbro, J. Mechanism of action of hydroxyurea. Semin. Oncol. 1992, 19, 1–10. [Google Scholar]
- Bergstrom, J.; Dufresne, C.; Bills, G.; Nallin-Omstead, M.; Byrne, K. Discovery, biosynthesis, and mechanism of action of the zaragozic acids: Potent inhibitors of squalene synthase. Annu. Rev. Microbiol. 1995, 49, 607–639. [Google Scholar] [CrossRef]
- Anderson, W.; Patheja, H.; Delinck, D.; Baldwin, W.; Smiley, S.; Chen, L. Inhibition of bovine heart mitochondrial and paracoccus denitrificans nadh----ubiquinone reductase by dequalinium chloride and three structurally related quinolinium compounds. Biochem. Int. 1989, 19, 673–685. [Google Scholar] [PubMed]
- Jiang, Y.; Wang, W.; Xie, Q.; Liu, N.; Liu, L.; Wang, D.; Zhang, X.; Yang, C.; Chen, X.; Tang, D.; et al. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science 2017, 356, 1172–1175. [Google Scholar] [CrossRef] [Green Version]
- Keyhani, N. Lipid biology in fungal stress and virulence: Entomopathogenic fungi. Fungal Biol. 2018, 122, 420–429. [Google Scholar] [CrossRef]
- Pohl, C.; Kock, J.; Thibane, V. Antifungal free fatty acids: A review. In Science against Microbial Pathogens: Communicating Current Research and Technological Advances; Formatex Research Center: Norristown, PA, USA, 2011; pp. 61–71. [Google Scholar]
- Kitaura, Y.; Inoue, K.; Kato, N.; Matsushita, N.; Shimomura, Y. Enhanced oleate uptake and lipotoxicity associated with laurate. FEBS Open Bio 2015, 5, 485–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammad, K.; Dakik, P.; Medkour, Y.; McAuley, M.; Mitrofanova, D.; Titorenko, V. Yeast cells exposed to exogenous palmitoleic acid either adapt to stress and survive or commit to regulated liponecrosis and die. Oxid. Med. Cell. Longev. 2018, 2018, 3074769. [Google Scholar] [CrossRef] [Green Version]
- Souza, J.; da Silva, A.; Carvalho, P.; Pacheco, B.; Pereira, C.; Lund, R. Aliphatic fatty acids and esters: Inhibition of growth and exoenzyme production of Candida, and their cytotoxicity in vitro: Anti-Candida effect and cytotoxicity of fatty acids and esters. Arch. Oral. Biol. 2014, 59, 880–886. [Google Scholar] [CrossRef] [PubMed]
- Rumin, J.; Bonnefond, H.; Saint-Jean, B.; Rouxel, C.; Sciandra, A.; Bernard, O.; Cadoret, J.P.; Bougaran, G. The use of fluorescent nile red and bodipy for lipid measurement in microalgae. Biotechnol. Biofuels 2015, 8, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Govender, T.; Ramanna, L.; Rawat, I.; Bux, F. Bodipy staining, an alternative to the nile red fluorescence method for the evaluation of intracellular lipids in microalgae. Bioresour. Technol. 2012, 114, 507–511. [Google Scholar] [CrossRef] [PubMed]
- Vanderpool, D.; Bracewell, R.; McCutcheon, J. Know your farmer: Ancient origins and multiple independent domestications of ambrosia beetle fungal cultivars. Mol. Ecol. 2018, 27, 2077–2094. [Google Scholar] [CrossRef] [PubMed]
Substrate/Compound Tested | Number Tested | Poor Growth (0.15–0.3) 1 | Moderate Growth (0.3–0.6) 1 | Robust Growth (>0.6) 1 | Top Conditions and Sensitivities |
---|---|---|---|---|---|
carbon | 190 | 51 | 16 | 1 | Robust: gelatin, gentobiose, ƴ-cyclodextrin, d-glucosamine |
simple nitrogen | 95 | 26 | 12 | 0 | Condition: gly-asn, ƴ-amino-N butyric acid, ala-asp |
peptide nitrogen | 282 | 129 | 39 | 0 | Robust: arg-arg, arg-ser, val-gln, thr-arg |
phosphorus and sulfur | 94 | 29 | 66 | 0 | Robust: O-phospho-l-serine, cytidine-2-monophosphate, thymidine 3′,5′-cyclic monophosphate, inositol hexaphosphate |
nutrient supplements (e.g., cofactors, vitamins, nucleotides, etc.) | 94 | 9 | 4 | 0 | Robust: orotic acid, cytosine, nicotinamide, d-biotin |
osmolytes | 96 | 12 | 32 | 4 | Robust: sodium sulfate 2%, sodium phosphate pH 7 20 mM, sodium sulfate 3%, sodium nitrate 100 mM Sensitive to: sodium benzoate 20–200 mM, urea 3–7% |
pH conditions | 96 | 15 | 36 | 6 | Robust: pH 6–6.5, pH 4.5 + l-homoserine, pH 4.5 + l-glutamic acid Sensitive to: pH 8–10 |
X-linked compounds 2 | 12 | 1 | 10 | 1 | Robust: X-α-d-glucoside Sensitive to: x-caprylate |
chemical sensitivity | 120 | 59 | 30 | 0 | Robust: polymyxin B, EGTA, protamine sulfate Sensitive to: sodium cyanate, sodium azide, zargozic acid A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joseph, R.; Lasa, M.; Zhou, Y.; Keyhani, N.O. Unique Attributes of the Laurel Wilt Fungal Pathogen, Raffaelea lauricola, as Revealed by Metabolic Profiling. Pathogens 2021, 10, 528. https://doi.org/10.3390/pathogens10050528
Joseph R, Lasa M, Zhou Y, Keyhani NO. Unique Attributes of the Laurel Wilt Fungal Pathogen, Raffaelea lauricola, as Revealed by Metabolic Profiling. Pathogens. 2021; 10(5):528. https://doi.org/10.3390/pathogens10050528
Chicago/Turabian StyleJoseph, Ross, Michelle Lasa, Yonghong Zhou, and Nemat O. Keyhani. 2021. "Unique Attributes of the Laurel Wilt Fungal Pathogen, Raffaelea lauricola, as Revealed by Metabolic Profiling" Pathogens 10, no. 5: 528. https://doi.org/10.3390/pathogens10050528
APA StyleJoseph, R., Lasa, M., Zhou, Y., & Keyhani, N. O. (2021). Unique Attributes of the Laurel Wilt Fungal Pathogen, Raffaelea lauricola, as Revealed by Metabolic Profiling. Pathogens, 10(5), 528. https://doi.org/10.3390/pathogens10050528