Synthetic Hexanucleotides as a Tool to Overcome Excessive Neutrophil Activation Caused by CpG-Containing Oligonucleotides
Abstract
:1. Introduction
2. Results
2.1. Hexanucleotides Inhibit an Increase in the Production of Reactive Oxygen Species Induced by CpG-ODNs
2.2. Hexanucleotides Reduce the Efficiency of CpG-ODN Binding to Neutrophils
2.3. Hexanucleotides Do Not Affect Neutrophil Adhesion Stimulated by CpG-ODNs
2.4. Short ODNs Do Not Affect the Ability of CpG-ODNs to Overcome the Antiapoptotic Effect of S. typhimurium Bacteria
3. Discussion
4. Materials and Methods
4.1. Neutrophil Isolation
4.2. Intracellular ROS Detection Using 2′,7′-Dichlorofluorescein-Diacetate (DCFH-DA)
4.3. Extracellular and Intracellular Detection of Superoxide Anion Formation Using Dihydroethidium (DHE)
4.3.1. Assessment of Intracellular Superoxide Anion Production by Ethidium Fluorescence
4.3.2. Assessment of Extracellular Superoxide Anion Production by Hydroxyethidium (EOH) Fluorescence
4.4. CpG-ODNs Binding Assay
4.5. Adhesion Assessment
4.5.1. Differential Interference Contrast Microscopy of Adhered PMNLs
4.5.2. Adhesion Quantification
4.6. Apoptosis Assessment
4.7. S. typhimurium Bacteria Preparation
4.8. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Krieg, A.M.; Yi, A.K.; Matson, S.; Waldschmidt, T.J.; Bishop, G.A.; Teasdale, R.; Koretzky, G.A.; Klinman, D.M. CpG Motifs in Bacterial DNA Trigger Direct B-cell Activation. Nature 1995, 374, 546–549. [Google Scholar] [CrossRef]
- Yamamoto, S.; Yamamoto, T.; Shimada, S.; Kuramoto, E.; Yano, O.; Kataoka, T.; Tokunaga, T. DNA from Bacteria, but not from Vertebrates, Induces Interferons, Activates Natural Killer Cells and Inhibits Tumor Growth. Microbiol. Immunol. 1992, 36, 983–997. [Google Scholar] [CrossRef] [Green Version]
- Jahrsdorfer, B.; Weiner, G.J. CpG Oligodeoxynucleotides as Immunotherapy in Cancer. Update Cancer Ther. 2008, 3, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Klinman, D.M. Use of CpG Oligodeoxynucleotides as Immunoprotective Agents. Expert Opin. Biol. Ther. 2004, 4, 937–946. [Google Scholar] [CrossRef]
- Ohto, U.; Shibata, T.; Tanji, H.; Ishida, H.; Krayukhina, E.; Uchiyama, S.; Miyake, K.; Shimizu, T. Structural Basis of CpG and Inhibitory DNA Recognition by Toll-like Receptor 9. Nature 2015, 520, 702–705. [Google Scholar] [CrossRef]
- Yang, D.; de la Rosa, G.; Tewary, P.; Oppenheim, J.J. Alarmins Link Neutrophils and Dendritic Cells. Trends Immunol. 2009, 30, 531–537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mittal, M.; Siddiqui, M.R.; Tran, K.; Reddy, S.P.; Malik, A.B. Reactive Oxygen Species in Inflammation and Tissue Injury. Antioxid. Redox Signal 2014, 20, 1126–1167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanzaki, H.; Wada, S.; Narimiya, T.; Yamaguchi, Y.; Katsumata, Y.; Itohiya, K.; Fukaya, S.; Miyamoto, Y.; Nakamura, Y. Pathways that Regulate ROS Scavenging Enzymes, and Their Role in Defense Against Tissue Destruction in Periodontitis. Front. Physiol. 2017, 8, 351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pohar, J.; Lainscek, D.; Ivicak-Kocjan, K.; Cajnko, M.M.; Jerala, R.; Bencina, M. Short Single-stranded DNA Degradation Products Augment the Activation of Toll-like Receptor 9. Nat. Commun. 2017, 8, 15363. [Google Scholar] [CrossRef] [PubMed]
- Vollmer, J.; Weeratna, R.; Payette, P.; Jurk, M.; Schetter, C.; Laucht, M.; Wader, T.; Tluk, S.; Liu, M.; Davis, H.L.; et al. Characterization of Three CpG Oligodeoxynucleotide Classes with Distinct Immunostimulatory Activities. Eur. J. Immunol. 2004, 34, 251–262. [Google Scholar] [CrossRef]
- Ohto, U.; Ishida, H.; Shibata, T.; Sato, R.; Miyake, K.; Shimizu, T. Toll-like Receptor 9 Contains Two DNA Binding Sites that Function Cooperatively to Promote Receptor Dimerization and Activation. Immunity 2018, 48, 649–658.e4. [Google Scholar] [CrossRef] [Green Version]
- Golenkina, E.A.; Viryasova, G.M.; Galkina, S.I.; Arifulin, E.A.; Gaponova, T.V.; Romanova, Y.M.; Sud’ina, G.F. Synthetic CpG Oligonucleotides as Potential Modulators of Neutrophil Survival in PAMP-associated Inhibition of Apoptosis. J. Leukoc. Biol. 2019, 106, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Wardman, P. Fluorescent and Luminescent Probes for Measurement of Oxidative and Nitrosative Species in Cells and Tissues: Progress, Pitfalls, and Prospects. Free Radic. Biol. Med. 2007, 43, 995–1022. [Google Scholar] [CrossRef] [PubMed]
- Bucana, C.; Saiki, I.; Nayar, R. Uptake and Accumulation of the Vital Dye Hydroethidine in Neoplastic Cells. J. Histochem. Cytochem. 1986, 34, 1109–1115. [Google Scholar] [CrossRef] [PubMed]
- Peshavariya, H.M.; Dusting, G.J.; Selemidis, S. Analysis of Dihydroethidium Fluorescence for the Detection of Intracellular and Extracellular Superoxide Produced by NADPH Oxidase. Free Radic. Res. 2007, 41, 699–712. [Google Scholar] [CrossRef]
- Sladek, Z.; Rysanek, D.; Ryznarova, H.; Faldyna, M. Neutrophil Apoptosis during Experimentally Induced Staphylococcus aureus mastitis. Vet. Res. 2005, 36, 629–643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindau, D.; Mussard, J.; Wagner, B.J.; Ribon, M.; Ronnefarth, V.M.; Quettier, M.; Jelcic, I.; Boissier, M.C.; Rammensee, H.G.; Decker, P. Primary Blood Neutrophils Express a Functional Cell Surface Toll-like Receptor 9. Eur. J. Immunol. 2013, 43, 2101–2113. [Google Scholar] [CrossRef] [PubMed]
- Guiducci, C.; Ott, G.; Chan, J.H.; Damon, E.; Calacsan, C.; Matray, T.; Lee, K.D.; Coffman, R.L.; Barrat, F.J. Properties Regulating the Nature of the Plasmacytoid Dendritic Cell Response to Toll-like Receptor 9 Activation. J. Exp. Med. 2006, 203, 1999–2008. [Google Scholar] [CrossRef] [PubMed]
- Geering, B.; Simon, H.U. Peculiarities of Cell Death Mechanisms in Neutrophils. Cell Death Differ. 2011, 18, 1457–1469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aleksandrov, D.A.; Zagryagskaya, A.N.; Pushkareva, M.A.; Bachschmid, M.; Peters-Golden, M.; Werz, O.; Steinhilber, D.; Sud’ina, G.F. Cholesterol and Its Anionic Derivatives Inhibit 5-lipoxygenase Activation in Polymorphonuclear Leukocytes and MonoMac6 Cells. FEBS J. 2006, 273, 548–557. [Google Scholar] [CrossRef] [PubMed]
- Ngo, T.T.; Lenhoff, H.M. A Sensitive and Versatile Chromogenic Assay for Peroxidase and Peroxidase-coupled Reactions. Anal. Biochem. 1980, 105, 389–397. [Google Scholar] [CrossRef]
- Riccardi, C.; Nicoletti, I. Analysis of Apoptosis by Propidium Iodide Staining and Flow Cytometry. Nat. Protoc. 2006, 1, 1458–1461. [Google Scholar] [CrossRef] [PubMed]
Sequence (5′ to 3′) | Designation |
---|---|
Tcgtcgttttgtcgttttgtcgtt * | ODN 2006 [10] |
ggGGACGACGTCGTGgggggg ** | ODN 2336 [10] |
tcgccc | [11] |
acgccc | [11] |
ccgccc | [11] |
gcgccc | [11] |
tcaccc | [11] |
tccccc | [11] |
tctccc | [11] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golenkina, E.A.; Galkina, S.I.; Dolinnaya, N.G.; Arifulin, E.A.; Romanova, Y.M.; Sud’ina, G.F. Synthetic Hexanucleotides as a Tool to Overcome Excessive Neutrophil Activation Caused by CpG-Containing Oligonucleotides. Pathogens 2021, 10, 530. https://doi.org/10.3390/pathogens10050530
Golenkina EA, Galkina SI, Dolinnaya NG, Arifulin EA, Romanova YM, Sud’ina GF. Synthetic Hexanucleotides as a Tool to Overcome Excessive Neutrophil Activation Caused by CpG-Containing Oligonucleotides. Pathogens. 2021; 10(5):530. https://doi.org/10.3390/pathogens10050530
Chicago/Turabian StyleGolenkina, Ekaterina A., Svetlana I. Galkina, Nina G. Dolinnaya, Evgenii A. Arifulin, Yulia M. Romanova, and Galina F. Sud’ina. 2021. "Synthetic Hexanucleotides as a Tool to Overcome Excessive Neutrophil Activation Caused by CpG-Containing Oligonucleotides" Pathogens 10, no. 5: 530. https://doi.org/10.3390/pathogens10050530
APA StyleGolenkina, E. A., Galkina, S. I., Dolinnaya, N. G., Arifulin, E. A., Romanova, Y. M., & Sud’ina, G. F. (2021). Synthetic Hexanucleotides as a Tool to Overcome Excessive Neutrophil Activation Caused by CpG-Containing Oligonucleotides. Pathogens, 10(5), 530. https://doi.org/10.3390/pathogens10050530