Review of Methods Used for Diagnosing Tuberculosis in Captive and Free-Ranging Non-Bovid Species (2012–2020)
Abstract
:1. Introduction
2. Results
2.1. Summary of Reported Techniques and Species since 2012
2.2. Statistical Analysis
2.3. Analyzing Diagnostic Performance
2.4. Importance of Gold-Standard Testing and Knowledge of Infection Status
3. Discussion
4. Materials and Methods
4.1. Literature Search and Exclusion Criteria
4.2. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gagneux, S. Host-pathogen coevolution in human tuberculosis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2012, 367, 850–859. [Google Scholar] [CrossRef] [Green Version]
- Brites, D.; Loiseau, C.; Menardo, F.; Borrell, S.; Boniotti, M.B.; Warren, R.; Dippenaar, A.; Parsons, S.D.C.; Beisel, C.; Behr, M.A.; et al. A new phylogenetic framework for the animal-adapted Mycobacterium tuberculosis complex. Front. Microbiol. 2018, 9, 2820. [Google Scholar] [CrossRef] [Green Version]
- Palmer, M.V. Mycobacterium bovis: Characteristics of wildlife reservoir hosts. Transbound. Emerg. Dis. 2013, 60, 1–13. [Google Scholar] [CrossRef]
- Miller, M.; Olea-Popelka, F. One health in the shrinking world: Experiences with tuberculosis at the human-livestock-wildlife interface. Comp. Immunol. Microbiol. Infect. Dis. 2013, 36, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, S.D.; Kaneene, J.B. Wildlife reservoirs of bovine tuberculosis worldwide: Hosts, pathology, surveillance, and control. Vet. Pathol. 2013, 50, 488–499. [Google Scholar] [CrossRef] [PubMed]
- Dalovisio, J.R.; Stetter, M.; Mikota-Wells, S. Rhinoceros’ rhinorrhea: Cause of an outbreak of infection due to airborne Mycobacterium bovis in zookeepers. Clin. Infect. Dis. 1992, 15, 598–600. [Google Scholar] [CrossRef]
- Lécu, A.; Ball, R. Mycobacterial infections in zoo animals: Relevance, diagnosis and management. Int. Zoo Yearb. 2011, 45, 183–202. [Google Scholar] [CrossRef]
- Silva, D.A.V.D.; Siconelli, M.J.L.; Bürger, K.P.; Keid, L.B. Comparison between tests for tuberculosis diagnosis in slaughtered bovines. Arq. Inst. Biológico 2018, 85, 85. [Google Scholar] [CrossRef] [Green Version]
- Salfinger, M.; Pfyffer, G.E. The new diagnostic mycobacteriology laboratory. Eur. J. Clin. Microbiol. Infect. Dis. 1994, 13, 961–979. [Google Scholar] [CrossRef]
- Pfyffer, G.E. Mycobacterium: General characteristics, laboratory detection, and staining procedures. In Manual of Clinical Microbiology, 11th ed.; Jorgensen, J.H., Pfaller, M.A., Carroll, K.C., Funke, G., Landry, M.L., Richter, S.S., Warnock, D.W., Eds.; ASM Press: Washington, DC, USA, 2015; Volume 1, pp. 536–569. [Google Scholar]
- Hines, N.; Payeur, J.B.; Hoffman, L.J. Comparison of the recovery of Mycobacterium bovis isolates using the BACTEC MGIT 960 system, BACTEC 460 system, and Middlebrook 7H10 and 7H11 solid media. J. Vet. Diag. Investig. 2006, 18, 243–250. [Google Scholar] [CrossRef] [Green Version]
- Welsh, M.D.; Cunningham, R.T.; Corbett, D.M.; Girvin, R.M.; McNair, J.; Skuce, R.A.; Bryson, D.G.; Pollock, J.M. Influence of pathological progression on the balance between cellular and humoral immune responses in bovine tuberculosis. Immunology 2005, 114, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Pollock, J.M.; McNair, J.; Welsh, M.D.; Girvin, R.M.; Kennedy, H.E.; Mackie, D.P.; Neill, S.D. Immune responses in bovine tuberculosis. Tuberculosis 2001, 81, 103–107. [Google Scholar] [CrossRef] [PubMed]
- Infantes-Lorenzo, J.A.; Moreno, I.; Risalde, M.L.A.; Roy, A.; Villar, M.; Romero, B.; Ibarrola, N.; de la Fuente, J.; Puentes, E.; de Juan, L.; et al. Proteomic characterisation of bovine and avian purified protein derivatives and identification of specific antigens for serodiagnosis of bovine tuberculosis. Clin. Proteom. 2017, 14, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Lisle, G.W.; Bengis, R.G.; Schmitt, S.M.; O’Brien, D.J. Tuberculosis in free-ranging wildlife: Detection, diagnosis and management. Rev. Sci. Tech. 2002, 21, 317–334. [Google Scholar] [CrossRef]
- Higgins, D.A. The skin inflammatory response of the badger (Meles meles). Br. J. Exp. Pathol. 1985, 66, 643–653. [Google Scholar]
- Glas, A.S.; Lijmer, J.G.; Prins, M.H.; Bonsel, G.J.; Bossuyt, P.M. The diagnostic odds ratio: A single indicator of test performance. J. Clin. Epidemiol. 2003, 56, 1129–1135. [Google Scholar] [CrossRef]
- Chambers, M.A. Review of the diagnosis and study of tuberculosis in non-bovine wildlife species using immunological methods. Transbound. Emerg. Dis. 2009, 56, 215–227. [Google Scholar] [CrossRef]
- Chambers, M.A. Review of the diagnosis of tuberculosis in non-bovid wildlife species using immunological methods—An update of published work since 2009. Transbound. Emerg. Dis. 2013, 60, 14–27. [Google Scholar] [CrossRef] [Green Version]
- Chu, C.S.; Yu, C.Y.; Chen, C.T.; Su, Y.C. Mycobacterium tuberculosis and M. bovis infection in Feedlot Deer (Cervus unicolor swinhoei and C. nippon taiouanus) in Taiwan. J. Microbiol. Immunol. Infect. 2012, 45, 426–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyashchenko, K.P.; Greenwald, R.; Esfandiari, J.; O’Brien, D.J.; Schmitt, S.M.; Palmer, M.V.; Waters, W.R. Rapid detection of serum antibody by dual-path platform VetTB assay in white-tailed deer infected with Mycobacterium bovis. Clin. Vaccine Immunol. 2013, 20, 907–911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morar, D.; Schreuder, J.; Meny, M.; van Kooten, P.J.; Tijhaar, E.; Michel, A.L.; Rutten, V.P. Towards establishing a rhinoceros-specific interferon-gamma (IFN-gamma) assay for diagnosis of tuberculosis. Transbound. Emerg. Dis. 2013, 60, 60–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richomme, C.; Boadella, M.; Courcoul, A.; Durand, B.; Drapeau, A.; Corde, Y.; Hars, J.; Payne, A.; Fediaevsky, A.; Boschiroli, M.L. Exposure of wild boar to Mycobacterium tuberculosis complex in France since 2000 is consistent with the distribution of bovine tuberculosis outbreaks in cattle. PLoS ONE 2013, 8, e77842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wadhwa, A.; Johnson, R.E.; Mackintosh, C.G.; Griffin, J.F.; Waters, W.R.; Bannantine, J.P.; Eda, S. Use of ethanol extract of Mycobacterium bovis for detection of specific antibodies in sera of farmed red deer (Cervus elaphus) with bovine tuberculosis. BMC Vet. Res. 2013, 9, 256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wadhwa, A.; Johonson, R.E.; Eda, K.; Waters, W.R.; Palmer, M.V.; Bannantine, J.P.; Eda, S. Evaluation of ethanol vortex ELISA for detection of bovine tuberculosis in cattle and deer. BMC Vet. Res. 2014, 10, 147. [Google Scholar] [CrossRef] [Green Version]
- Che’ Amat, A.; Gonzalez-Barrio, D.; Ortiz, J.A.; Diez-Delgado, I.; Boadella, M.; Barasona, J.A.; Bezos, J.; Romero, B.; Armenteros, J.A.; Lyashchenko, K.P.; et al. Testing Eurasian wild boar piglets for serum antibodies against Mycobacterium bovis. Prev. Vet. Med. 2015, 121, 93–98. [Google Scholar] [CrossRef] [Green Version]
- King, H.C.; Murphy, A.; James, P.; Travis, E.; Porter, D.; Sawyer, J.; Cork, J.; Delahay, R.J.; Gaze, W.; Courtenay, O.; et al. Performance of a noninvasive test for detecting Mycobacterium bovis shedding in european badger (Meles meles) populations. J. Clin. Microbiol. 2015, 53, 2316–2323. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.A.; Greenwald, R.; Lyashchenko, K.P. Potential for serodiagnosis of tuberculosis in black rhinoceros (Diceros bicornis). J. Zoo Wildl. Med. 2015, 46, 100–104. [Google Scholar] [CrossRef]
- Tomlinson, A.J.; Chambers, M.A.; McDonald, R.A.; Delahay, R.J. Association of quantitative interferon-gamma responses with the progression of naturally acquired Mycobacterium bovis infection in wild European badgers (Meles meles). Immunology 2015, 144, 263–270. [Google Scholar] [CrossRef] [Green Version]
- Vogelnest, L.; Hulst, F.; Thompson, P.; Lyashchenko, K.P.; Herrin, K.A. Diagnosis and management of tuberculosis (Mycobacterium tuberculosis) in an Asian elephant (Elephas maximus) with a newborn calf. J. Zoo Wildl. Med. 2015, 46, 77–85. [Google Scholar] [CrossRef]
- Clarke, C.; Patterson, S.J.; Drewe, J.A.; van Helden, P.D.; Miller, M.A.; Parsons, S.D. Development and evaluation of a diagnostic cytokine-release assay for Mycobacterium suricattae infection in meerkats (Suricata suricatta). BMC Vet. Res. 2017, 13, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, M.; Buss, P.; de Klerk-Lorist, L.M.; Hofmeyr, J.; Hausler, G.; Lyashchenko, K.; Lane, E.P.; Botha, L.; Parsons, S.; van Helden, P. Application of rapid serologic tests for detection of Mycobacterium bovis infection in free-ranging warthogs (Phacochoerus africanus)—Implications for antemortem disease screening. J. Wildl. Dis. 2016, 52, 180–182. [Google Scholar] [CrossRef]
- Roos, E.O.; Buss, P.; de Klerk-Lorist, L.M.; Hewlett, J.; Hausler, G.A.; Rossouw, L.; McCall, A.J.; Cooper, D.; van Helden, P.D.; Parsons, S.D.C.; et al. Test performance of three serological assays for the detection of Mycobacterium bovis infection in common warthogs (Phacochoerus africanus). Vet. Immunol. Immunopathol. 2016, 182, 79–84. [Google Scholar] [CrossRef]
- Yakubu, Y.; Ong, B.L.; Zakaria, Z.; Hassan, L.; Mutalib, A.R.; Ngeow, Y.F.; Verasahib, K.; Razak, M.F. Evidence and potential risk factors of tuberculosis among captive Asian elephants and wildlife staff in Peninsular Malaysia. Prev. Vet. Med. 2016, 125, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Busch, F.; Bannerman, F.; Liggett, S.; Griffin, F.; Clarke, J.; Lyashchenko, K.P.; Rhodes, S. Control of bovine tuberculosis in a farmed red deer herd in England. Vet. Rec. 2017, 180, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buzdugan, S.N.; Chambers, M.A.; Delahay, R.J.; Drewe, J.A. Quantitative interferon-gamma responses predict future disease progression in badgers naturally infected with Mycobacterium bovis. Epidemiol. Infect. 2017, 145, 3204–3213. [Google Scholar] [CrossRef] [Green Version]
- Cardoso-Toset, F.; Luque, I.; Carrasco, L.; Jurado-Martos, F.; Risalde, M.A.; Venteo, A.; Infantes-Lorenzo, J.A.; Bezos, J.; Rueda, P.; Tapia, I.; et al. Evaluation of five serologic assays for bovine tuberculosis surveillance in domestic free-range pigs from southern Spain. Prev. Vet. Med. 2017, 137, 101–104. [Google Scholar] [CrossRef]
- Perez de Val, B.; Napp, S.; Velarde, R.; Lavin, S.; Cervera, Z.; Singh, M.; Allepuz, A.; Mentaberre, G. Serological Follow-up of Tuberculosis in a Wild Boar Population in Contact with Infected Cattle. Transbound. Emerg. Dis. 2017, 64, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Olivier, T.T.; Viljoen, I.M.; Hofmeyr, J.; Hausler, G.A.; Goosen, W.J.; Tordiffe, A.S.W.; Buss, P.; Loxton, A.G.; Warren, R.M.; Miller, M.A.; et al. Development of a gene expression assay for the diagnosis of Mycobacterium bovis infection in african lions (Panthera leo). Transbound. Emerg. Dis. 2017, 64, 774–781. [Google Scholar] [CrossRef] [PubMed]
- Parsons, S.D.C.; Morar-Leather, D.; Buss, P.; Hofmeyr, J.; McFadyen, R.; Rutten, V.; van Helden, P.D.; Miller, M.A.; Michel, A.L. The kinetics of the humoral and interferon-gamma immune responses to experimental Mycobacterium bovis infection in the white rhinoceros (Ceratotherium simum). Front. Immunol. 2017, 8, 1831. [Google Scholar] [CrossRef] [Green Version]
- Rosen, L.E.; Hanyire, T.G.; Dawson, J.; Foggin, C.M.; Michel, A.L.; Huyvaert, K.P.; Miller, M.A.; Olea-Popelka, F.J. Tuberculosis serosurveillance and management practices of captive African elephants (Loxodonta africana) in the Kavango-Zambezi Transfrontier Conservation Area. Transbound. Emerg. Dis. 2018, 65, 344–354. [Google Scholar] [CrossRef] [Green Version]
- Stewart, L.D.; Tort, N.; Meakin, P.; Argudo, J.M.; Nzuma, R.; Reid, N.; Delahay, R.J.; Ashford, R.; Montgomery, W.I.; Grant, I.R. Development of a novel immunochromatographic lateral flow assay specific for Mycobacterium bovis cells and its application in combination with immunomagnetic separation to test badger faeces. BMC Vet. Res. 2017, 13, 131. [Google Scholar] [CrossRef] [Green Version]
- Roos, E.O.; Olea-Popelka, F.; Buss, P.; de Klerk-Lorist, L.M.; Cooper, D.; Warren, R.M.; van Helden, P.D.; Parsons, S.D.C.; Miller, M.A. IP-10: A potential biomarker for detection of Mycobacterium bovis infection in warthogs (Phacochoerus africanus). Vet. Immunol. Immunopathol. 2018, 201, 43–48. [Google Scholar] [CrossRef]
- Roos, E.O.; Olea-Popelka, F.; Buss, P.; de Klerk-Lorist, L.M.; Cooper, D.; van Helden, P.D.; Parsons, S.D.C.; Miller, M.A. Seroprevalence of Mycobacterium bovis infection in warthogs (Phacochoerus africanus) in bovine tuberculosis-endemic regions of South Africa. Transbound. Emerg. Dis. 2018, 65, 1182–1189. [Google Scholar] [CrossRef]
- Roos, E.O.; Olea-Popelka, F.; Buss, P.; Hausler, G.A.; Warren, R.; van Helden, P.D.; Parsons, S.D.C.; de Klerk-Lorist, L.M.; Miller, M.A. Measuring antigen-specific responses in Mycobacterium bovis-infected warthogs (Phacochoerus africanus) using the intradermal tuberculin test. BMC Vet. Res. 2018, 14, 360. [Google Scholar] [CrossRef] [PubMed]
- Santos, N.; Nunes, T.; Fonseca, C.; Vieira-Pinto, M.; Almeida, V.; Gortazar, C.; Correia-Neves, M. Spatial analysis of wildlife tuberculosis based on a serologic survey using dried blood spots, portugal. Emerg. Infect. Dis. 2018, 24, 2169–2175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chileshe, J.; Roos, E.O.; Goosen, W.J.; Buss, P.; Hausler, G.; Rossouw, L.; Manemela, T.; van Helden, P.; Warren, R.; Parsons, S.D.; et al. An interferon-gamma release assay for the diagnosis of the Mycobacterium bovis infection in white rhinoceros (Ceratotherium simum). Vet. Immunol. Immunopathol. 2019, 217, 109931. [Google Scholar] [CrossRef] [PubMed]
- Dalley, D.; Lesellier, S.; Salguero, F.J.; Chambers, M.A. Purification and characterisation of badger IgA and its detection in the context of tuberculosis. Vet. Sci. 2019, 6, 89. [Google Scholar] [CrossRef] [Green Version]
- Fresco-Taboada, A.; Risalde, M.A.; Gortazar, C.; Tapia, I.; Gonzalez, I.; Venteo, A.; Sanz, A.; Rueda, P. A lateral flow assay for the rapid diagnosis of Mycobacterium bovis infection in wild boar. Transbound. Emerg. Dis. 2019, 66, 2175–2179. [Google Scholar] [CrossRef]
- Higgitt, R.L.; Louis van Schalkwyk, O.; de Klerk-Lorist, L.M.; Buss, P.E.; Caldwell, P.; Rossouw, L.; Manamela, T.; Hausler, G.A.; Hewlett, J.; Mitchell, E.P.; et al. Mycobacterium bovis infection in african wild dogs, kruger national park, south africa. Emerg. Infect. Dis. 2019, 25, 1425–1427. [Google Scholar] [CrossRef] [Green Version]
- Infantes-Lorenzo, J.A.; Dave, D.; Moreno, I.; Anderson, P.; Lesellier, S.; Gormley, E.; Dominguez, L.; Balseiro, A.; Gortazar, C.; Dominguez, M.; et al. New serological platform for detecting antibodies against Mycobacterium tuberculosis complex in European badgers. Vet. Med. Sci. 2019, 5, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Kerr, T.J.; de Waal, C.R.; Buss, P.E.; Hofmeyr, J.; Lyashchenko, K.P.; Miller, M.A. Seroprevalence of Mycobacterium tuberculosis complex in free-ranging african elephants (Loxodonta africana) in kruger national park, south africa. J. Wildl. Dis. 2019, 55, 923–927. [Google Scholar] [CrossRef]
- Miller, M.A.; Buss, P.; Sylvester, T.T.; Lyashchenko, K.P.; deKlerk-Lorist, L.M.; Bengis, R.; Hofmeyr, M.; Hofmeyr, J.; Mathebula, N.; Hausler, G.; et al. Mycobacterium Bovis in free-ranging lions (Panthera Leo)—Evaluation of serological and tuberculin skin tests for detection of infection and disease. J. Zoo Wildl. Med. 2019, 50, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.A.; Gortazar, C.; Roos, E.O.; Risalde, M.A.; Johnathan-Lee, A.; Sridhara, A.A.; Lyashchenko, K.P. Serological reactivity to MPB83 and CFP10/ESAT-6 antigens in three suid hosts of Mycobacterium bovis infection. Vet. Microbiol. 2019, 235, 285–288. [Google Scholar] [CrossRef]
- Richomme, C.; Courcoul, A.; Moyen, J.L.; Reveillaud, E.; Maestrini, O.; de Cruz, K.; Drapeau, A.; Boschiroli, M.L. Tuberculosis in the wild boar: Frequentist and Bayesian estimations of diagnostic test parameters when Mycobacterium bovis is present in wild boars but at low prevalence. PLoS ONE 2019, 14, e0222661. [Google Scholar] [CrossRef] [PubMed]
- Roos, E.O.; Scott, L.A.; Ndou, S.; Olea-Popelka, F.; Buss, P.E.; de Klerk-Lorist, L.M.; Warren, R.M.; van Helden, P.D.; Sylvester, T.T.; Miller, M.A.; et al. Cytokine gene expression assay as a diagnostic tool for detection of Mycobacterium bovis infection in warthogs (Phacochoerus africanus). Sci. Rep. 2019, 9, 16525. [Google Scholar] [CrossRef]
- Thomas, J.; Infantes-Lorenzo, J.A.; Moreno, I.; Cano-Terriza, D.; de Juan, L.; Garcia-Bocanegra, I.; Dominguez, L.; Dominguez, M.; Gortazar, C.; Risalde, M.A. Validation of a new serological assay for the identification of Mycobacterium tuberculosis complex-specific antibodies in pigs and wild boar. Prev. Vet. Med. 2019, 162, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.; Infantes-Lorenzo, J.A.; Moreno, I.; Romero, B.; Garrido, J.M.; Juste, R.; Dominguez, M.; Dominguez, L.; Gortazar, C.; Risalde, M.A. A new test to detect antibodies against Mycobacterium tuberculosis complex in red deer serum. Vet. J. 2019, 244, 98–103. [Google Scholar] [CrossRef]
- Vicente, J.; Martinez-Guijosa, J.; Tvarijonaviciute, A.; Fernandez-de Mera, I.G.; Gortazar, C.; Ceron, J.J.; Martinez-Subiela, S. Serum haptoglobin response in red deer naturally infected with tuberculosis. Comp. Immunol. Microbiol. Infect. Dis. 2019, 64, 25–30. [Google Scholar] [CrossRef]
- Viljoen, I.M.; Sylvester, T.T.; Parsons, S.D.C.; Millar, R.P.; Helden, P.D.V.; Miller, M.A. Performance of the tuberculin skin test in Mycobacterium Bovis-exposed and -unexposed african lions (Panthera Leo). J. Wildl. Dis. 2019, 55, 537–543. [Google Scholar] [CrossRef]
- Goosen, W.J.; Cooper, D.; Warren, R.M.; Miller, M.A.; van Helden, P.D.; Parsons, S.D. The evaluation of candidate biomarkers of cell-mediated immunity for the diagnosis of Mycobacterium bovis infection in African buffaloes (Syncerus caffer). Vet. Immunol. Immunopathol. 2014, 162, 198–202. [Google Scholar] [CrossRef]
- Altman, D.G.; Bland, J.M. Diagnostic tests 2: Predictive values. BMJ 1994, 309, 102. [Google Scholar] [CrossRef] [Green Version]
- Greco, S.; Girardi, E.; Navarra, A.; Saltini, C. Current evidence on diagnostic accuracy of commercially based nucleic acid amplification tests for the diagnosis of pulmonary tuberculosis. Thorax 2006, 61, 783–790. [Google Scholar] [CrossRef] [Green Version]
- Massei, G.; Kindberg, J.; Licoppe, A.; Gacic, D.; Sprem, N.; Kamler, J.; Baubet, E.; Hohmann, U.; Monaco, A.; Ozolins, J.; et al. Wild boar populations up, numbers of hunters down? A review of trends and implications for Europe. Pest. Manag. Sci. 2015, 71, 492–500. [Google Scholar] [CrossRef] [PubMed]
- Gortázar, C.; Delahay, R.J.; McDonald, R.A.; Boadella, M.; Wilson, G.J.; Gavier-Widen, D.; Acevedo, P. The status of tuberculosis in European wild mammals. Mammal. Rev. 2012, 42, 193–206. [Google Scholar] [CrossRef]
- Barasona, J.A.; Gortazar, C.; de la Fuente, J.; Vicente, J. Host richness increases tuberculosis disease risk in game-managed areas. Microorganisms 2019, 7, 182. [Google Scholar] [CrossRef] [Green Version]
- Drewe, J.A.; Foote, A.K.; Sutcliffe, R.L.; Pearce, G.P. Pathology of Mycobacterium bovis infection in wild meerkats (Suricata suricatta). J. Comp. Pathol. 2009, 140, 12–24. [Google Scholar] [CrossRef] [PubMed]
- Drewe, J.A. Who infects whom? Social networks and tuberculosis transmission in wild meerkats. Proc. Biol. Sci. 2010, 277, 633–642. [Google Scholar] [CrossRef]
- Hemmati, M.; Seghatoleslam, A.; Rasti, M.; Ebadat, S.; Mosavari, N.; Habibagahi, M.; Taheri, M.; Sardarian, A.R.; Mostafavi-Pour, Z. Expression and purification of recombinant Mycobacterium tuberculosis (TB) antigens, ESAT-6, CFP-10 and ESAT- 6/CFP-10 and their diagnosis potential for detection of TB patients. Iran. Red Crescent Med. J. 2011, 13, 556–563. [Google Scholar]
- Ashford, R.T.; Anderson, P.; Waring, L.; Dave, D.; Smith, F.; Delahay, R.J.; Gormley, E.; Chambers, M.A.; Sawyer, J.; Lesellier, S. Evaluation of the dual path platform (DPP) VetTB assay for the detection of Mycobacterium bovis infection in badgers. Prev. Vet. Med. 2020, 180, 105005. [Google Scholar] [CrossRef]
- Lyashchenko, K.P.; Greenwald, R.; Esfandiari, J.; Greenwald, D.; Nacy, C.A.; Gibson, S.; Didier, P.J.; Washington, M.; Szczerba, P.; Motzel, S.; et al. PrimaTB STAT-PAK assay, a novel, rapid lateral-flow test for tuberculosis in nonhuman primates. Clin. Vaccine Immunol. 2007, 14, 1158–1164. [Google Scholar] [CrossRef] [Green Version]
- Waters, W.R.; Palmer, M.V.; Bannantine, J.P.; Whipple, D.L.; Greenwald, R.; Esfandiari, J.; Andersen, P.; McNair, J.; Pollock, J.M.; Lyashchenko, K.P. Antigen recognition by serum antibodies in white-tailed deer (Odocoileus virginianus) experimentally infected with Mycobacterium bovis. Clin. Diagn. Lab. Immunol. 2004, 11, 849–855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waters, W.R.; Palmer, M.V.; Thacker, T.C.; Bannantine, J.P.; Vordermeier, H.M.; Hewinson, R.G.; Greenwald, R.; Esfandiari, J.; McNair, J.; Pollock, J.M.; et al. Early antibody responses to experimental Mycobacterium bovis infection of cattle. Clin. Vaccine Immunol. 2006, 13, 648–654. [Google Scholar] [CrossRef] [Green Version]
- Infantes-Lorenzo, J.A.; Moreno, I.; Roy, A.; Risalde, M.A.; Balseiro, A.; de Juan, L.; Romero, B.; Bezos, J.; Puentes, E.; Akerstedt, J.; et al. Specificity of serological test for detection of tuberculosis in cattle, goats, sheep and pigs under different epidemiological situations. BMC Vet. Res. 2019, 15, 70. [Google Scholar] [CrossRef] [Green Version]
- Infantes-Lorenzo, J.A.; Whitehead, C.E.; Moreno, I.; Bezos, J.; Roy, A.; Dominguez, L.; Dominguez, M.; Salguero, F.J. Development and evaluation of a serological assay for the diagnosis of tuberculosis in alpacas and llamas. Front. Vet. Sci. 2018, 5, 189. [Google Scholar] [CrossRef] [Green Version]
- Arrieta-Villegas, C.; Infantes-Lorenzo, J.A.; Bezos, J.; Grasa, M.; Vidal, E.; Mercader, I.; Singh, M.; Domingo, M.; de Juan, L.; Perez de Val, B. Evaluation of P22 antigenic complex for the immuno-diagnosis of tuberculosis in BCG vaccinated and unvaccinated goats. Front. Vet. Sci. 2020, 7, 374. [Google Scholar] [CrossRef] [PubMed]
- Barasona, J.A.; Barroso-Arevalo, S.; Rivera, B.; Gortazar, C.; Sanchez-Vizcaino, J.M. Detection of Antibodies against Mycobacterium bovis in Oral Fluid from Eurasian Wild Boar. Pathogens 2020, 9, 242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berger, A. Th1 and Th2 responses: What are they? BMJ 2000, 321, 424. [Google Scholar] [CrossRef] [Green Version]
- Boadella, M.; Lyashchenko, K.; Greenwald, R.; Esfandiari, J.; Jaroso, R.; Carta, T.; Garrido, J.M.; Vicente, J.; de la Fuente, J.; Gortazar, C. Serologic tests for detecting antibodies against Mycobacterium bovis and Mycobacterium avium subspecies paratuberculosis in Eurasian wild boar (Sus scrofa scrofa). J. Vet. Diagn. Investig. 2011, 23, 77–83. [Google Scholar] [CrossRef] [Green Version]
- De Bruin, M.G.; De Visser, Y.E.; Kimman, T.G.; Bianchi, A.T. Time course of the porcine cellular and humoral immune responses in vivo against pseudorabies virus after inoculation and challenge: Significance of in vitro antigenic restimulation. Vet. Immunol. Immunopathol. 1998, 65, 75–87. [Google Scholar] [CrossRef]
- Kimman, T.G.; De Bruin, T.M.; Voermans, J.J.; Peeters, B.P.; Bianchi, A.T. Development and antigen specificity of the lymphoproliferation responses of pigs to pseudorabies virus: Dichotomy between secondary B- and T-cell responses. Immunology 1995, 86, 372–378. [Google Scholar]
Mycobacterium Species | Natural (N) or Experimental (E) Infection 1 | Species | Technique Employed | Target | Reference |
---|---|---|---|---|---|
M. tuberculosis and M. bovis | N (333) | Deer (Cervus unicolor swinhoei and C. nippon taiouanus) | Culture, mnPCR, SITT, Acid fast stain | NA | [20] |
M. bovis | N (483) + E (31) | White-Tailed Deer (Odocoileus virginianus) | DPP VetTB Assay | MPB83, CFP10, ESAT-6 | [21] |
M. bovis | N (75) | White Rhinoceros (Ceratotherium simum) | IGRA | bPPD, aPPD | [22] |
MTBC | N (2080) | Wild boar (Sus scrofa) | bPPD ELISA | NA | [23] |
M. bovis | N (5) + E (15) | Red Deer (Cervus elaphus) | EVELISA | NA | [24] |
M. bovis | N (7) + E (9) | White-Tailed Deer (Odocoileus virginianus) | EVELISA | MPB83 | [25] |
M. bovis | N (126) | Wild Boar (Sus scrofa) | DPP VetTB, ELISA IgG, ELISA DR, ELISA IgM, Culture | MPB70, MPB83, CFP10, ESAT-6, bPPD, IgG, IgM | [26] |
M. bovis | N (ND) | European Badger (Meles meles) | STAT-PAK, IGRA, qPCR, Culture | MPB83, ESAT-6, CFP10, bPPD, aPPD | [27] |
M. tuberculosis | N (1) | Black Rhinoceros (Diceros bicornis) | STAT-PAK, DPP VetTB, MAPIA | MPB83, ESAT-6, CFP10 | [28] |
M. bovis | N (751) | European Badger (Meles meles) | IGRA, STAT-PAK Assays | bPPD, aPPD, MPB83, ESAT-6, CFP10, MPB70 | [29] |
M. tuberculosis | N (5) | Asian elephant (Elephas maximus) | DPP VetTB Assay, STAT-PAK | MPB83, ESAT-6, CFP10 | [30] |
M. suricattae | N (111) | Meerkat (Suricata suricatta) | Cytokine Release Assay | PC-HP peptide pool | [31] |
M. bovis | N (3) | Warthog (Phacochoerus africanus) | DPP VetTB Assay | MPB83, CFP10, ESAT-6 | [32] |
M. bovis | N (35) | Warthog (Phacochoerus africanus) | Indirect PPD ELISA, TB ELISA-VK, DPP VetTB Assay | bPPD, MPB83, ESAT-6, CFP10 | [33] |
M. tuberculosis | N (ND) | Asian Elephant (Loxodonta africana) | STAT-PAK, DPP VetTB Assay | MPB83, ESAT-6, CFP10 | [34] |
M. bovis | N (474) | Red Deer (Cervus elaphus) | STAT-PAK, DPP VetTB, MAPIA | MPB83, ESAT-6, CFP10, bPPD, MPB70 | [35] |
M. bovis | N (550) | European Badger (Meles meles) | IGRA, STAT-PAK, Culture | bPPD, aPPD, MPB83, ESAT-6, CFP10 | [36] |
MTBC | N (217) | Domestic Pig 2 (Sus scrofa domesticus) | bPPD ELISA, INgezim TB Porcine, INgezim TB-CROM | MPB70, MPB83, bPPD | [37] |
MTBC | N (173) | European Badger (Meles meles) | IgG ELISA | MPB83, Rv2873 | [38] |
M. bovis | N (14) | African Lion (Panthera leo) | qPCR | MIG/CXCL9, ESAT-6, CFP-10 | [39] |
M. bovis | E (3) | White Rhinoceros (Ceratotherium simum) | PPD ELISA, TB STAT-PAK, DPP VetTB Assay | bPPD, aPPD, MPB83, ESAT-6, CFP10, MPB70 | [40] |
MTBC | N (35) | African elephant (Loxodonta africana) | Elephant TB STAT-PAK, DPP VetTB Assay | MPB83, ESAT-6, CFP10 | [41] |
M. bovis | N (541) | European Badger (Meles meles) | IMS LFA, qPCR, Culture | M. bovis whole cells | [42] |
M. bovis | N (88) | Warthog (Phacochoerus africanus) | Cytokine Release Assay | ESAT-6, CFP-10, TB7.7 peptides | [43] |
M. bovis | N (170) | Warthog (Phacochoerus africanus) | Indirect PPD ELISA, TB ELISA-VK | bPPD | [44] |
M. bovis | N (34) | Warthog (Phacochoerus africanus) | SITT, CITT | bPPD, aPPD | [45] |
M. bovis | N (678) | Wild Boar (Sus scrofa) | bPPD ELISA | bPPD | [46] |
M. bovis | N (131) + E (2) | White Rhinoceros (Ceratotherium simum) | IGRA | ESAT-6, CFP10 | [47] |
M. bovis | E (ND) | European Badger (Meles meles) | MPB83-IgA ELISA | MPB83 specific-IgA | [48] |
M. bovis | N (55) + E (51) | Wild Boar (Sus scrofa) | INgezim TB CROM (LFA), INgezim TB Porcine and INgezim Tuberculosis DR, Indirect ELISA | MPB83, MPB70, P22 complex | [49] |
M. bovis | N (40) | African wild dog (Lycaon pictus) | IGRA | ESAT-6, CFP10 | [50] |
MTBC | N (85) + E (36) | European Badger (Meles meles) | P22 ELISA | P22 complex | [51] |
MTBC | N (222) | African Elephant (Loxodonta africana) | STAT-PAK Assay, DPP Vet TB Assay | MPB83, ESAT-6, CFP10 | [52] |
M. bovis | N (326) | Lion (Panthera leo) | STAT-PAK, DPP Vet TB, SITT | MPB83, ESAT-6, CFP10, bPPD | [53] |
M. bovis | N (79) | Wild Boar (Sus scrofa), Warthog (Phacochoerus africanus) | DPP VetTB Assay | IgG, MPB83, CFP10, ESAT-6 | [54] |
M. bovis | N (495) | Wild Boar (Sus scrofa) | PCR, IDEXX Ab test, INgezim TB porcine, TB ELISA-VK | bPPD, MPB83, MPB70 | [55] |
M. bovis | N (15) | Warthog (Phacochoerus africanus) | GEA | ESAT-6, CFP10 | [56] |
MTBC | N (277) | Wild Boar (Sus scrofa) | P22 ELISA, bPPD ELISA | P22 complex, bPPD | [57] |
MTBC | N (221) | Red Deer (Cervus elaphus) | P22 ELISA, bPPD ELISA | P22 complex, bPPD | [58] |
MTBC | N (88) | Red Deer (Cervus elaphus) | CITT, Serum Hp | Hp | [59] |
M. bovis | N (62) | African Lion (Panthera leo) | CITT, GEA | bPPD, aPPD | [60] |
Species | Test | NPV | PPV | Sens (%) (95% CI) | Spec (%) (95% CI) | DOR | DOR 95% CI | Reference |
---|---|---|---|---|---|---|---|---|
Deer | mnPCR | 0.5 1 | 0.7 | 83.3 (60.0–104.0%) | 28.6 (−4.8–62.0%) | 1.9 | 0.2–14.6 | [20] |
Acid-fast Stain | 0.6 | 1.0 | 66.7 (49.0–93.3%) | 100.0 (100.0%) | 28.3 | 1.3–618.0 | ||
Deer | DPP VetTB (Experimental) | 0.8 | 0.9 | 58.1 (39.3–74.9%) | 98.4 (90.3–99.9%) | 57.1 | 9.8–333.5 | [21] |
DPP VetTB (Natural) | 0.9 | 0.7 | 71.9 (53.0–85.6%) | 98.22 (96.4–99.2%) | 129.1 | 46.8–355.8 | ||
DPP VetTB (Combined) | 0.9 | 0.7 | 65.1 (51.9–76.4%) | 97.8 (96.5–98.6%) | 79.5 | 40.5–156.1 | ||
Deer | EVELISA | 0.9 | 0.9 | 86.7 (70.0–103.0%) | 93.3 (80.7–105.0%) | 52.2 | 6.0–450.7 | [24] |
Deer | EVELISA | 0.9 | 1.0 | 87.5 (71.0–103.0%) | 100.0 (100%) | 295.8 | 13.3–6593.1 | [25] |
Warthog | Indirect PPD ELISA | 0.9 | 0.9 | 87.5 (62.0–98.0%) | 89.5 (67.0–99.0%) | 40.6 | 6.2–267.7 | [33] |
TB ELISA-VK | 0.9 | 0.8 | 87.5 (62.0–98.0%) | 78.9 (54.0–94.0%) | 20.0 | 3.6–109.8 | ||
DPP VetTB | 0.8 | 0.9 | 75.0 (49.0–93.0%) | 89.5 (67.0–99.0%) | 19.4 | 3.5–107.3 | ||
Pig | INgezim TB Porcine | 0.9 | 1.0 | 78.0 (65.3–87.7%) | 100.0 (95.9-100.0%) | 609.7 | 35.4–10486.8 | [37] |
INgezim TB-CROM | 0.9 | 0.9 | 74.6 (61.6–85.0%) | 98.9 (93.8–100.0%) | 167.5 | 30.2–930.0 | ||
TB ELISA-VK | 0.8 | 1.0 | 72.9 (59.7–83.6%) | 100.0 (93.8–100.0 %) | 466.6 | 27.3–7961.8 | ||
t-bPPD ELISA | 0.8 | 1.0 | 71.2 (57.9–82.2%) | 100.0 (95.9–100.0%) | 429.9 | 25.2–7319.7 | ||
In-house ELISA | 0.8 | 1.0 | 66.1 (52.6–77.9%) | 100.0 (95.9–100%) | 341.0 | 20.1–5781.6 | ||
Wild Boar | MPB83 IgG ELISA | 0.9 | 1.0 | 86.4 (72.0–100.0%) | 100.0 (100.0%) | 484.7 | 23.9–9843.4 | [38] |
Badger | LFD | 0.5 | 0.5 | 8.1 (2.7–17.8%) | 92.6 (83.7–97.6%) | 1.1 | 0.3–3.8 | [42] |
PCR | 0.6 | 0.6 | 58.1 (44.9–70.5%) | 70.6 (58.3–81.1%) | 3.3 | 1.6–6.7 | ||
Warthog | IP-10 Assay | 0.9 | 0.6 | 68.4 (46.0–85.0%) | 83.7 (71.0–91.0%) | 10.1 | 3.1–33.4 | [43] |
Warthog | SITT | 0.8 | 1.0 | 68.8 (41.0–89.0%) | 100.0 (81.0–100.0%) | 77.4 | 3.9–1534.1 | [45] |
CITT | 0.9 | 1.0 | 81.3 (54.0–96.0%) | 100.0 (81.0–100.0%) | 142.7 | 6.8–2998.9 | ||
Rhinoceros | IGRA | 0.9 | 0.8 | 78.4 (52.3–93.5%) | 92.2 (63.9–99.8%) | 38.6 | 13.7–108.8 | [47] |
Wild Boar | INgezim TB CROM Ab (Experimental) | 0.6 | 1.0 | 90.2 (78.6–96.7%) | 100.0 (66.2–100.0%) | 160.6 | 8.2–3156.4 | [49] |
INgezim TB Porcine (Experimental) | 0.7 | 1.0 | 92.2 (81.1–97.8%) | 100.0 (66.2–100.0%) | 200.6 | 9.9–4043.2 | ||
INgezim Tuberculosis DR (Experimental) | 0.6 | 1.0 | 86.3 (73.7–94.3%) | 100.0 (66.2–100.0%) | 112.7 | 5.9–2147.9 | ||
In-house ELISA (Experimental) | 0.5 | 1.0 | 84.3 (71.4–93.0%) | 100.0 (66.2–100.0%) | 97.2 | 5.2–1834.4 | ||
INgezim TB CROM Ab (Field) | 0.9 | 0.9 | 93.3 (77.9–99.0%) | 96.0 (79.6–99.3%) | 186.2 | 22.9–1513.1 | ||
INgezim TB Porcine (Field) | 1.0 | 1.0 | 100.0 (88.3–100.0%) | 100.0 (86.2–100.0%) | 3111.0 | 59.6–162400.9 | ||
INgezim Tuberculosis DR (Field) | 0.9 | 1.0 | 93.3 (77.9–99.0%) | 100.0 (86.2–100.0%) | 581.4 | 26.6–12689.2 | ||
In-house ELISA (Field) | 0.9 | 1.0 | 96.7 (82.7–99.4%) | 100.0 (86.2–100.0%) | 1003 | 39.1–25719.3 | ||
Badger | Indirect ELISA | 0.9 | 0.7 | 81.4 (71.4–91.3) | 75.0 (66.3–83.6%) | 12.5 | 5.7–27.5 | [51] |
Competitive ELISA | 0.9 | 0.8 | 78.0 (67.0–88.0%) | 89.6 (83.0–95.6%) | 28.4 | 11.7–68.5 | ||
Lion | STAT-PAK | 0.8 | 1.0 | 62.5 (35.0–85.0%) | 100.0 (78.0–100.0%) | 69.5 | 3.6–1353.5 | [53] |
SITT | 0.8 | 0.7 | 72.7 (39.0–94.0%) | 80.0 (52.0–96.0%) | 8.7 | 1.6–48.4 | ||
Warthog, Wild Boar | DPP VetTB Assay (Wild Boar) | 0.7 | 0.9 | 80.4 (68.0–88.0%) | 96.7 (81.9–100.0%) | 77.8 | 13.3–453.8 | [54] |
DPP VetTB Assay (Warthog) | 0.9 | 0.9 | 82.6 (62.3–93.6%) | 91.4 (76.9–97.8%) | 40.2 | 8.9–181.3 | ||
Wild Boar | PCR | 0.9 | 0.3 | 62.5 (24.6–91.5%) | 97.1 (94.8–98.5%) | 50.2 | 11.6–216.9 | [55] |
TB ELISA-VK (0.2 Cut-off) | 1.0 | 0.1 | 85.7 (42.1–99.6%) | 87.5 (83.7–90.6%) | 30.0 | 4.9–181.5 | ||
TB ELISA-VK (0.5 Cut-off) | 0.9 | 0.4 | 85.7 (42.1–99.6%) | 97.3 (95.2–98.7%) | 150.8 | 23.1–987.0 | ||
IDEXX | 1.0 | 0.3 | 75 (34.9–96.8%) | 96.7 (94.7–98.1%) | 74.1 | 15.9–345.5 | ||
INgezim TB Porcine | 0.9 | 0.3 | 75 (34.9–96.8%) | 96.9 (94.9–98.3%) | 79.1 | 16.9–370.4 | ||
Warthog | GEA (CXCL9) | 0.7 | 0.9 | 60.0 (32.0–84.0%) | 94.1 (71.0–100.0%) | 16.1 | 2.3–112.6 | [56] |
GEA (CXCL10) | 0.9 | 0.9 | 86.7 (60.0–98.0%) | 94.1 (71.0–100.0%) | 59.4 | 6.9–509.1 | ||
GEA (CXCL11) | 0.7 | 1.0 | 53.3 (27.0–79.0%) | 100.0 (80.0–100.0%) | 39.7 | 2.0–779.2 | ||
GEA (TNF-α) | 0.8 | 0.8 | 73.3 (45.0–92.0%) | 88.2 (64.0–99.0%) | 15.8 | 2.8–88.8 | ||
GEA (IFN-γ) | 0.8 | 0.8 | 80.0 (52.0–96.0%) | 82.4 (57.0–96.0%) | 14.8 | 2.8–78.1 | ||
Wild Boar, Pig | P22 ELISA | 0.9 | 0.9 | 84.1 (79.3–98.4%) | 98.4 (96.5–99.4%) | 291.0 | 125.7–673.6 | [57] |
bPPD ELISA | 0.8 | 0.9 | 77.3 (71.9–82.1%) | 97.3 (95.0–98.3%) | 114.7 | 58.4–225.2 | ||
Deer | P22 ELISA | 0.8 | 1.0 | 70.1 (63.6–76.0%) | 99.0 (96.5–99.8%) | 189.4 | 52.7–681.1 | [58] |
bPPD ELISA | 0.7 | 0.9 | 70.1 (63.6–76.0%) | 91.6 (86.9–95.0%) | 25.1 | 14.2–44.2 | ||
Deer | CITT | 0.8 | 0.5 | 25.0 (−5.0–55.0%) | 92.0 (81.3–102.6%) | 3.6 | 0.5–25.6 | [59] |
Hp | 0.9 | 0.7 | 62.5 (28.9–96.0%) | 92.0 (81.0–102.0%) | 14.8 | 2.3–95.8 |
Ranking | Top 10 Tests—Sensitivity | Top 10 Tests—Specificity | Top 10 Tests—DOR | ||||||
---|---|---|---|---|---|---|---|---|---|
Position | Test | Species | Ag | Test | Species | Ag | Test | Species | Ag |
1 | INgezim TB Porcine (F 1) [49] | Wild Boar | MPB83/ 70 | INgezim TB Porcine (F) [49] | Wild Boar | MPB83/ 70 | INgezim TB Porcine (F) [49] | Wild Boar | MPB83/70 |
2 | In-house ELISA (F) [49] | Wild Boar | P22 complex | In-house ELISA (F) [49] | Wild Boar | P22 complex | DPP VetTB Assay [54] | Pig | MPB83/ESAT-6/CFP10 |
3 | DPP VetTB Assay [54] | Pig | MPB83/ESAT-6/CFP10 | DPP VetTB Assay [54] | Pig | MPB83/ ESAT-6/ CFP10 | In-house ELISA (F) [49] | Wild Boar | P22 complex |
4 | INgezim TB-CROM (F) [49] | Wild Boar | MPB83 | INgezim Tuberculosis DR (F) [49] | Wild Boar | MPB83 | INgezim TB Porcine [37] | Pig | MPB83/70 |
5 | INgezim Tuberculosis DR (F) [49] | Wild Boar | MPB83 | INgezim TB Porcine (E) [49] | Wild Boar | MPB83/ 70 | INgezim Tuberculosis DR (F) [49] | Wild Boar | MP83 |
6 | INgezim TB Porcine (E 2) [49] | Wild Boar | MPB83/ 70 | INgezim TB-CROM (E) [49] | Wild Boar | MPB83 | MPB83 IgG ELISA [38] | Badger | MPB83 |
7 | INgezim TB-CROM (E) [49] | Wild Boar | MPB83 | EVELISA [25] | Deer | MPB83 | TB ELISA-VK [37] | Pig | bPPD |
8 | EVELISA [25] | Deer | MPB83 | MPB83 IgG ELISA [38] | Badger | MPB83 | t-bPPD In-house ELISA [37] | Pig | Treated bPPD |
9 | Indirect PPD ELISA [33] | Warthog | bPPD | INgezim Tuberculosis DR (E) [49] | Wild Boar | MPB83 | bPPD2 In-house ELISA [37] | Pig | bPPD |
10 | TB ELISA-VK [33] | Warthog | bPPD | In-house ELISA (E) [49] | Wild Boar | P22 complex | EVELISA [25] | Deer | MPB83 |
Ranking | Lowest 10 Tests—Sensitivity | Lowest 10 Tests—Specificity | Lowest 10 Tests—DOR | ||||||
---|---|---|---|---|---|---|---|---|---|
Position | Test | Species | Ag | Test | Species | Ag | Test | Species | Ag |
1 | LFD [42] | Badger | M. bovis whole cells | mnPCR [20] | Deer | NA 1 | LFD [42] | Badger | M. bovis whole cells |
2 | CITT [59] | Deer | a/b PPD | PCR [42] | Badger | M. bovis whole cells | mnPCR [20] | Deer | NA |
3 | GEA CXCL11 [56] | Warthog | ESAT-6/CFP10 | Indirect ELISA [51] | Badger | P22 complex | PCR [42] | Badger | M. bovis whole cells |
4 | DPP VetTB assay [21] | Deer | MPB83/CFP10/ESAT-6 | TB ELISA-VK [33] | Warthog | bPPD | CITT [59] | Deer | a/b PPD |
5 | PCR [42] | Badger | M. bovis whole cells | SITT [53] | Lion | bPPD | SITT [53] | Lion | bPPD |
6 | GEA CXCL9 [56] | Warthog | ESAT-6/CFP10 | GEA IFNγ [56] | Warthog | ESAT-6/ CFP10 | IP-10 assay [43] | Warthog | ESAT-6, CFP-10, TB7.7 peptides |
7 | Phase Range Serum Hp [59] | Deer | Hp | IP-10 assay [43] | Warthog | ESAT-6, CFP-10, TB7.7 peptides | Indirect ELISA [51] | Badger | P22 complex |
8 | PCR [55] | Wild Boar | NA | TB ELISA-VK [55] | Wild Boar | bPPD | Phase Range Serum Hp [59] | Deer | Hp |
9 | STAT-PAK [53] | Lion | NA | GEA TNFα [56] | Warthog | ESAT-6/CFP10 | GEA IFNγ [56] | Warthog | ESAT-6/CFP10 |
10 | DPP VetTB assay [21] | Deer | MPB83/CFP10/ESAT-6 | DPP VetTB assay [33] | Warthog | MPB83/ESAT-6/CFP10 | GEA TNFα [56] | Warthog | ESAT-6/CFP10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thomas, R.; Chambers, M. Review of Methods Used for Diagnosing Tuberculosis in Captive and Free-Ranging Non-Bovid Species (2012–2020). Pathogens 2021, 10, 584. https://doi.org/10.3390/pathogens10050584
Thomas R, Chambers M. Review of Methods Used for Diagnosing Tuberculosis in Captive and Free-Ranging Non-Bovid Species (2012–2020). Pathogens. 2021; 10(5):584. https://doi.org/10.3390/pathogens10050584
Chicago/Turabian StyleThomas, Rebecca, and Mark Chambers. 2021. "Review of Methods Used for Diagnosing Tuberculosis in Captive and Free-Ranging Non-Bovid Species (2012–2020)" Pathogens 10, no. 5: 584. https://doi.org/10.3390/pathogens10050584
APA StyleThomas, R., & Chambers, M. (2021). Review of Methods Used for Diagnosing Tuberculosis in Captive and Free-Ranging Non-Bovid Species (2012–2020). Pathogens, 10(5), 584. https://doi.org/10.3390/pathogens10050584