Airborne Coronaviruses: Observations from Veterinary Experience
Abstract
:1. Introduction
1.1. Background
1.2. Coronaviruses in Veterinary Medicine
1.3. Spread of CoV
2. May Experiences on Livestock CoV Help to Control SARS-CoV-2/COVID-19?
3. Biosecurity Measures
3.1. Biosecurity in Animal and Human Populations
3.2. Preventing Introduction (External Biosecurity; Bio-Exclusion)
3.3. Managing the Risks of Disease Entering a Population of Elderly Residency/Nursing Homes
3.4. Bio-Surveillance; Bio-Containment
3.5. Personal Protective Equipment (PPE)
Mask Type | Standards | Expected Filtration Efficacy—Particles Size | |
---|---|---|---|
Self-made masks | none | 40–90% aerosols penetrate [38] | |
Face masks | none | ≥95%—0.3 µm | |
Surgical masks | EN 1 14683 | Type I: ≥95%—0.3 µm | |
Type II: ≥98%—0.3 µm | |||
Type IIR: ≥98%—0.3 µm | |||
ASTM 2 F2100 | Type 1: | ≥95%—0.3 µm | |
≥95%—0.1 µm | |||
Type 2: | ≥98%—0.3 µm | ||
≥98%—0.1 µm | |||
Type 3: | ≥98%—0.3 µm | ||
≥98%—0.1 µm | |||
Respiratory masks | EN 3 149: 2001 | FFP1: ≥80%—0.3 µm | |
FFP2: ≥94%—0.3 µm | |||
FFP3: ≥99%—0.3 µm | |||
NIOSH 4 42–CFR 83 | N95-KN95: ≥95%—0.3 µm | ||
N99–KN99: ≥99%—0.3 µm | |||
N100–KN100: ≥99.97%—0.3 µm |
3.6. Controversial Measures: Confinements; Lockdowns; Curfews
3.7. Herd/Population Immunity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Poon, L.; Guan, Y.; Nicholls, J.; Yuen, K.; Peiris, J. The aetiology, origins, and diagnosis of severe acute respiratory syndrome. Lancet Infect. Dis. 2004, 4, 663–671. [Google Scholar] [CrossRef] [Green Version]
- Fisman, D.N.; Tuite, A.R. The epidemiology of MERS-CoV. Lancet Infect. Dis. 2014, 14, 6–7. [Google Scholar] [CrossRef] [Green Version]
- Saif, L.J. Animal coronavirus vaccines: Lessons for SARS. In Control of Infectious Animal Diseases by Vaccination; Schudel, A., Lombard, M., Eds.; Europe PMC: Cambridgeshire, UK, 2004; Volume 119, pp. 129–140. [Google Scholar]
- Contini, C.; Di Nuzzo, M.; Barp, N.; Bonazza, A.; de Giorgio, R.; Tognon, M.; Rubino, S. The novel zoonotic COVID-19 pandemic: An expected global health concern. J. Infect. Dev. Ctries. 2020, 14, 254–264. [Google Scholar] [CrossRef] [Green Version]
- Decaro, N.; Martella, V.; Saif, L.J.; Buonavoglia, C. COVID-19 from veterinary medicine and one health perspectives: What animal coronaviruses have taught us. Res. Vet. Sci. 2020, 131, 21–23. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Zhao, K.; Shi, Z.-L.; Zhou, P. Bat Coronaviruses in China. Viruses 2019, 11, 210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forni, D.; Cagliani, R.; Clerici, M.; Sironi, M. Molecular Evolution of Human Coronavirus Genomes. Trends Microbiol. 2017, 25, 35–48. [Google Scholar] [CrossRef] [Green Version]
- Bar-On, Y.M.; Flamholz, A.; Phillips, R.; Milo, R. SARS-CoV-2 (COVID-19) by the numbers. eLife 2020, 9, 15. [Google Scholar] [CrossRef]
- Saif, L.J. Bovine Respiratory Coronavirus. Vet. Clin. N. Am. Food Anim. Pract. 2010, 26, 349–364. [Google Scholar] [CrossRef] [PubMed]
- Wills, R.W.; Zimmerman, J.J.; Yoon, K.-J.; Swenson, S.L.; Hoffman, L.J.; McGinley, M.J.; Hill, H.T.; Platt, K.B. Porcine reproductive and respiratory syndrome virus: Routes of excretion. Vet. Microbiol. 1997, 57, 69–81. [Google Scholar] [CrossRef]
- Kahn, J.S. The widening scope of coronaviruses. Curr. Opin. Pediatr. 2006, 18, 42–47. [Google Scholar] [PubMed]
- Ng, L.F.P.; Hiscox, J.A. Coronaviruses in animals and humans. BMJ 2020, 368, m634. [Google Scholar] [CrossRef] [Green Version]
- Tilocca, B.; Soggiu, A.; Musella, V.; Britti, D.; Sanguinetti, M.; Urbani, A.; Roncada, P. Molecular basis of COVID-19 relationships in different species: A one health perspective. Microbes Infect. 2020, 22, 218–220. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Qiao, S.; Zhang, G. Analysis of angiotensin-converting enzyme 2 (ACE2) from different species sheds some light on cross-species receptor usage of a novel coronavirus 2019-nCoV. J. Infect. 2020, 80, 469–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Moore, M.J.; Vasilieva, N.; Sui, J.; Wong, S.K.; Berne, M.A.; Somasundaran, M.; Sullivan, J.L.; Luzuriaga, K.; Greenough, T.C.; et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003, 426, 450–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhama, K.; Khan, S.; Tiwari, R.; Sircar, S.; Bhat, S.; Malik, Y.S.; Singh, K.P.; Chaicumpa, W.; Bonilla-Aldana, D.K.; Rodriguez-Morales, A.J. Coronavirus Disease 2019–COVID-19. Clin. Microbiol. Rev. 2020, 33. [Google Scholar] [CrossRef] [PubMed]
- Bonilauri, P.; Rugna, G. Animal Coronaviruses and SARS-COV-2 in Animals, What Do We Actually Know? Life 2021, 11, 123. [Google Scholar] [CrossRef] [PubMed]
- Pensaert, M.; Cox, E.; Van Deun, K.; Callebaut, P. A sero-epizootiological study of porcine respiratory coronavirus in belgian swine. Vet. Q. 1993, 15, 16–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cubero, M.J.; Leon, L.; Contreras, A.; Lanza, I.; Zamora, E.; Caro, M.R. Sero-Epidemiological Survey of Porcine Respiratory Coronavirus (PRCV) Infection in Breeding Herds in Southeastern Spain. J. Vet. Med. Ser. B 1992, 39, 290–298. [Google Scholar] [CrossRef] [PubMed]
- Alonso, C.; Raynor, P.C.; Davies, P.R.; Torremorell, M. Concentration, Size Distribution, and Infectivity of Airborne Particles Carrying Swine Viruses. PLoS ONE 2015, 10, e0135675. [Google Scholar] [CrossRef] [PubMed]
- Fennelly, K.P. Particle sizes of infectious aerosols: Implications for infection control. Lancet Respir. Med. 2020, 8, 914–924. [Google Scholar] [CrossRef]
- Oma, V.S.; Tråvén, M.; Alenius, S.; Myrmel, M.; Stokstad, M. Bovine coronavirus in naturally and experimentally exposed calves; viral shedding and the potential for transmission. Virol. J. 2016, 13, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Niskanen, R.; Lindberg, A.; Tråvén, M. Failure to Spread Bovine Virus Diarrhoea Virus Infection from Primarily Infected Calves Despite Concurrent Infection with Bovine Coronavirus. Vet. J. 2002, 163, 251–259. [Google Scholar] [CrossRef]
- Wensman, J.J.; Stokstad, M. Could Naturally Occurring Coronaviral Diseases in Animals Serve as Models for COVID-19? A Review Focusing on the Bovine Model. Pathogens 2020, 9, 991. [Google Scholar] [CrossRef] [PubMed]
- Ntafis, V.; Mari, V.; Danika, S.; Fragkiadaki, E.; Buonavoglia, C. An Outbreak of Canine Coronavirus in Puppies in a Greek Kennel. J. Vet. Diagn. Investig. 2010, 22, 320–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sims, L.D. Risks associated with poultry production systems. In International Conference Poultry in the 21st Century: Avian influenza and beyond, Proceedings of the International Poultry Conference, Bangkok, Thailand, 5–7 November 2007; FAO: Rome, Italy, 2008; pp. 335–378. [Google Scholar]
- Yit, J.E.; Chew, B.T.; Yau, Y.H. A review of air filter test standards for particulate matter of general ventilation. Build. Serv. Eng. Res. Technol. 2020, 41, 758–771. [Google Scholar] [CrossRef]
- Spronk, G.; Otake, S.; Dee, S. Prevention of PRRSV infection in large breeding herds using air filtration. Vet. Rec. 2010, 166, 758–759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dee, S.; Batista, L.; Deen, J.; Pijoan, C. Evaluation of an air-filtration system for preventing aerosol transmission of Porcine reproductive and respiratory syndrome virus. Can. J. Vet. Res. 2005, 69, 293–298. [Google Scholar] [PubMed]
- Brandén, M.; Aradhya, S.; Kolk, M.; Härkönen, J.; Drefahl, S.; Malmberg, B.; Rostila, M.; Cederström, A.; Andersson, G.; Mussino, E. Residential context and COVID-19 mortality among adults aged 70 years and older in Stockholm: A population-based, observational study using individual-level data. Lancet Health Longev. 2020, 1, e80–e88. [Google Scholar] [CrossRef]
- ECDC. Heating, Ventilation and Air-Conditioning Systems in the Context of COVID-19; European Centre for Disease Prevention and Control: Stockholm, Sweden, 2020; p. 19.
- Gollakner, R.; Capua, I. Is COVID-19 the first pandemic that evolves into a panzootic? Vet. Ital. 2020, 56, 11–12. [Google Scholar]
- Zejda, J.E.; Hurst, T.S.; Barber, E.M.; Rhodes, C.; Dosman, J.A. Respiratory health status in swine producers using respiratory protective devices. Am. J. Ind. Med. 1993, 23, 743–750. [Google Scholar] [CrossRef]
- Zhang, X.; Ji, Z.; Zheng, Y.; Ye, X.; Li, D. Evaluating the effect of city lock-down on controlling COVID-19 propagation through deep learning and network science models. Cities 2020, 107, 102869. [Google Scholar] [CrossRef] [PubMed]
- Tarrataca, L.; Dias, C.M.; Haddad, D.B.; De Arruda, E.F. Flattening the curves: On-off lock-down strategies for COVID-19 with an application to Brazil. J. Math. Ind. 2021, 11, 1–18. [Google Scholar] [CrossRef]
- Østergaard, L.; Butt, J.H.; Kragholm, K.; Schou, M.; Phelps, M.; Sørensen, R.; Lamberts, M.; Gislason, G.; Torp-Pedersen, C.; Køber, L.; et al. Incidence of acute coronary syndrome during national lock-down: Insights from nationwide data during the Coronavirus disease 2019 (COVID-19) pandemic. Am. Heart J. 2021, 232, 146–153. [Google Scholar] [CrossRef] [PubMed]
- APHIS. National Veterinary Accreditation Program Module 10: Personal Protective Equipment for Veterinarians. Available online: https://nvap.aphis.usda.gov/PPE/ppe0070.htm (accessed on 1 March 2021).
- Matuschek, C.; Moll, F.; Fangerau, H.; Fischer, J.C.; Zänker, K.; Van Griensven, M.; Schneider, M.; Kindgen-Milles, D.; Knoefel, W.T.; Lichtenberg, A.; et al. Face masks: Benefits and risks during the COVID-19 crisis. Eur. J. Med. Res. 2020, 25, 1–8. [Google Scholar] [CrossRef]
- Health and Safety Executive. RR619 Evaluating the Protection Afforded by Surgical Masks against Influenza Bioaerosols; Health and Safety Executive: Bootle, UK, 2008.
- Derrick, J.; Gomersall, C. Protecting healthcare staff from severe acute respiratory syndrome: Filtration capacity of multiple surgical masks. J. Hosp. Infect. 2005, 59, 365–368. [Google Scholar] [CrossRef] [Green Version]
- Pfeifer, M.; Ewig, S.; Voshaar, T.; Randerath, W.; Bauer, T.; Geiseler, J.; Dellweg, D.; Westhoff, M.; Windisch, W.; Schönhofer, B.; et al. Positionspapier zur praktischen Umsetzung der apparativen Differenzialtherapie der akuten respiratorischen Insuffizienz bei COVID-19. Pneumologie 2020, 74, 337–357. [Google Scholar] [CrossRef] [Green Version]
- Jung, K.; Saif, L.J. Porcine epidemic diarrhea virus infection: Etiology, epidemiology, pathogenesis and immunoprophylaxis. Vet. J. 2015, 204, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Bulfone, T.C.; Malekinejad, M.; Rutherford, G.W.; Razani, N. Outdoor Transmission of SARS-CoV-2 and Other Respiratory Viruses: A Systematic Review. J. Infect. Dis. 2021, 223, 550–561. [Google Scholar] [CrossRef] [PubMed]
- Guzmán, M.; Hidalgo, H. Live Attenuated Infectious Bronchitis Virus Vaccines in Poultry: Modifying Local Viral Populations Dynamics. Animals 2020, 10, 2058. [Google Scholar] [CrossRef]
- Jordan, B. Vaccination against infectious bronchitis virus: A continuous challenge. Vet. Microbiol. 2017, 206, 137–143. [Google Scholar] [CrossRef]
- Filetto, G. Cluster al “San Martino” di Genova, si Indaga su tre Morti Sospette; Repubblica: Rome, Italy, 2021. [Google Scholar]
- Choudhary, S.; Sreenivasulu, K.; Mitra, P.; Misra, S.; Sharma, A.P. Role of Genetic Variants and Gene Expression in the Susceptibility and Severity of COVID-19. Ann. Lab. Med. 2021, 41, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Mahase, E. Covid-19: Where are we on vaccines and variants? BMJ 2021, 372, n597. [Google Scholar] [CrossRef]
- Moore, J.P. Approaches for Optimal Use of Different COVID-19 Vaccines Issues of Viral Variants and Vaccine Efficacy. JAMA 2021, 325, 1251–1252. [Google Scholar] [CrossRef] [PubMed]
- Rubin, R. COVID-19 Vaccines vs. Variants—Determining How Much Immunity is Enough. JAMA 2021, 325, 1241. [Google Scholar] [CrossRef] [PubMed]
Order: Nidovirales, Family: Coronaviridea (RNA Viruses; Enveloped; Single Stranded; Positive Sense), Sub-Families: Ortho Coronavirinea | |||||
---|---|---|---|---|---|
Animal Population | Animal Species | Genera | |||
Alphacoronavirus | Betacoronavirus | Gammacoronavirus | Deltacoronavirus | ||
Livestock | pig | Transmissible Gastro Enteritis; Porcine Respiratory CoV; Porcine Epidemic Diarrhea; Severe Acute Diarrhea Syndrome; | Porcine Hemagglutinating Encephalomyelitis; | Porcine delta enteric coronavirus (PDCoV); | |
cattle | Neonatal calf diarrhea; Bovine Respiratory CoV; | ||||
Companion | dog | Canine Enteric CoV; | Canine Respiratory CoV; | ||
cat | Feline Infective Peritonitis; Feline Enteric CoV; | ||||
horse | Equine CoV; | ||||
Avian | chicken | Infectious Bronchitis CoV; | wild; farmed game; enteric/respiratory Delta-CoVs | ||
turkey | Turkey Enteric CoV; |
Classification | MERV 1 Classification | EN779 Classification and Efficacy in Trapping Particles 0.3–1.0 µm | ISO:16890 Classification and Efficacy in Trapping ≥ 50% of Particles of Indicated Diameter | Example of Contaminants and Sizes |
---|---|---|---|---|
E3 | 1–4 | G1–G4 < 20% | Coarse: at <10 µm; efficacy < 50%) PM10: at <10 µm; efficacy > 50% | dirt, debris, industrial, fiberglass; pollen, dust mites, carpets’ fibers; |
5–8 | G1–G4 < 20% | PM2.5: at <2.5 µm | 3.0–10 µm mold spores, cooking dusts; | |
E2 | 9–12 | M5–M6 < 20% | 1.0–3.0 µm lead dust, welding dusts; | |
E1 | 13 | F7 < 75% | PM1: at <1 µm | 0.3–1.0 µm (prefilters to HEPA) bacteria, sneezes, smoke; |
E1 | 14 | F7 to F8 75–84% | ||
E1 | 15 | F8 to F9 85–94% | PM2.5: at <2.5 µm | |
E1 | 16 | F9 > 95% | ||
HEPA 2 | 17 | F9 99.97% 3 | particulate matter < 0.3 µm; viruses, carbon dusts; | |
HEPA | 18 | 99.997% | ||
HEPA | 19 | 99.9997% | PM1: at <1 µm | |
HEPA | 20 | 99.99997% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pozzi, P.; Soggiu, A.; Bonizzi, L.; Elkin, N.; Zecconi, A. Airborne Coronaviruses: Observations from Veterinary Experience. Pathogens 2021, 10, 628. https://doi.org/10.3390/pathogens10050628
Pozzi P, Soggiu A, Bonizzi L, Elkin N, Zecconi A. Airborne Coronaviruses: Observations from Veterinary Experience. Pathogens. 2021; 10(5):628. https://doi.org/10.3390/pathogens10050628
Chicago/Turabian StylePozzi, Paolo, Alessio Soggiu, Luigi Bonizzi, Nati Elkin, and Alfonso Zecconi. 2021. "Airborne Coronaviruses: Observations from Veterinary Experience" Pathogens 10, no. 5: 628. https://doi.org/10.3390/pathogens10050628
APA StylePozzi, P., Soggiu, A., Bonizzi, L., Elkin, N., & Zecconi, A. (2021). Airborne Coronaviruses: Observations from Veterinary Experience. Pathogens, 10(5), 628. https://doi.org/10.3390/pathogens10050628