Chromatic and Morphological Differentiation of Triatoma dimidiata (Hemiptera: Reduviidae) with Land Use Diversity in El Salvador
Abstract
:1. Introduction
2. Materials and Methods
2.1. Image Analysis
2.2. Land Use Diversity
2.3. Statistical Analysis
3. Results
3.1. Percent Urban and Natural Green Space
3.2. Percent Natural Green Space
3.3. Percent Agricultural Space
3.4. Diversity of Land Use
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Organización Mundial de la Salud (OMS). Enfermedad de Chagas (Triponosomiasis Amaricana). Nota Descriptiva N°340. 2016. Available online: https://www.who.int/es/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis) (accessed on 30 November 2020).
- Araujo-Jorge, T.; Telleria, J.; Dalenz, J.R. History of the discovery of the American Trypanosomiasis (Chagas disease). In American Trypanosomiasis Chagas Disease: One Hundred Years of Research, 2nd ed.; Telleria, J., Tibayrenc, M., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 1–22. [Google Scholar]
- Lent, H.; Wygodzinsky, P. Revision of the Triatominae (Hemiptera, Reduviidae), and their significance as vectors of Chagas disease. Bull. Am. Museum Nat. Hist. 1979, 163, 123–520. [Google Scholar]
- Rassi, A.; Marin-Neto, J.A. Chagas disease. Lancet 2010, 375, 1388–1402. [Google Scholar] [CrossRef]
- Tyler, K.M.; Engman, D.M. The life cycle of Trypanosoma cruzi revisited. Int. J. Parasitol. 2001, 31, 472–481. [Google Scholar] [CrossRef]
- Beard, C.B.; Cordon-Rosales, C.; Durvasula, R.V. Bacterial Symbionts of the Triatominae and Their Potential Use in Control of Chagas Disease Transmission. Ann. Rev. Entomol. 2002, 47, 123–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nolan, M.S.; Murray, K.O.; Mejia, R.; Hotez, P.J.; Villar Mondragon, M.J.; Rodriguez, S.; Palacios, J.R.; Murcia Contreras, W.E.; Lynn, M.K.; Torres, M.E.; et al. Elevated Pediatric Chagas Disease Burden Complicated by Concomitant Intestinal Parasites and Malnutrition in El Salvador. Trop. Med. Infect. 2021, 6, 72. [Google Scholar]
- Stanaway, J.D.; Roth, G. The Burden of Chagas Disease: Estimates and Challenges. Glob. Heart 2015, 10, 139–144. [Google Scholar] [CrossRef]
- Bustamante Zamora, D.M.; Hernández, M.M.; Torres, N.; Zúniga, C.; Sosa, W.; de Abrego, V.; Monroy Escobar, M.C. Information to act: Household characteristics are predictors of domestic infestation with the Chagas vector Triatoma dimidiata in Central America. Am. J. Trop. Med. 2015, 93, 97–107. [Google Scholar] [CrossRef]
- Gürtler, R.E.; Cecere, M.C.; Fernández, M.; Vazquez-Prokopec, G.M.; Ceballos, L.A.; Gurevitz, J.M.; Cohen, J.E. Key source habitats and potential dispersal of Triatoma infestans populations in Northwestern Argentina: Implications for vector control. PLoS Negl. Trop. Dis. 2014, 8, e3238. [Google Scholar] [CrossRef]
- Klotz, S.A.; Dorn, P.L.; Mosbacher, M.; Schmidt, J.O. Kissing bugs in the United States: Risk for vector-borne disease in humans. Environ. Health Insights 2014, 8, 49–59. [Google Scholar] [CrossRef] [Green Version]
- Castillo-Ayala, A.; Carmona-Galindo, V.; Romero, A.; Amaya, J.; Posada, E.; Gámez, S.; Recinos, G.; Marín, M. Evaluación de las fuentes alimenticias del vector de Chagas Triatoma dimidiata (Hemiptera: Reduviidae) en ambientes domiciliares de la región oriental de El Salvador. Rev. Minerva 2018, 3, 10–19. [Google Scholar]
- Picollo, M.I.; Vassena, C.; Orihuela, P.S.; Barrios, S.; Zaidemberg, E.Z. High Resistance to Pyrethroid Insecticides Associated with Ineffective Field Treatments Triatoma infestans (Hemiptera: Reduviidae) from Northern Argentina. J. Med. Entomol. 2005, 42, 637–642. [Google Scholar] [CrossRef] [Green Version]
- Araújo-Jorge, T.C.; Waghabi, M.C.; Bailly, S.; Feige, J.J. The TGF-β Pathway as an Emerging Target for Chagas Disease Therapy. Clin. Pharmacol. Ther. 2012, 92, 613–621. [Google Scholar] [CrossRef]
- Gonzalez-Vega, C.; Rodriguez-Meza, J.; Southgate, D.; Maldonado, J.H. Poverty, Structural Transformation, and Land Use in El Salvador: Learning from Household Panel Data. Am. J. Agric. Econ. 2004, 86, 1367–1374. [Google Scholar] [CrossRef]
- Choi, J.; Carmona-Galindo, V.; Recinos Paredes, G.; Marín Recinos, M.; de Abrego, V. An Exploration of Land Use and Poverty as an Integrative Model for Mitigating Chagas Disease in El Salvador. Bios 2020, 91, 125–132. [Google Scholar] [CrossRef]
- Eberhard, F.E.; Cunze, S.; Kochmann, J.; Klimpel, S. Modelling the climatic suitability of Chagas disease vectors on a global scale. eLife 2020, 9, e52072. [Google Scholar] [CrossRef]
- Klotz, J.H.; Dorn, P.L.; Logan, J.L.; Stevens, L.; Pinnas, J.L.; Schmidt, J.O.; Klotz, S.A. “Kissing Bugs”: Potential Disease Vectors and Cause of Anaphylaxis. Clin. Infect. Dis. 2010, 50, 1629–1634. [Google Scholar] [CrossRef] [Green Version]
- De Noya, B.A.; González, O.N. An ecological overview on the factors that drives to Trypanosoma cruzi oral transmission. Acta Trop. 2015, 151, 94–102. [Google Scholar] [CrossRef]
- Penados, D.; Pineda, J.; Catalan, M.; Avila, M.; Stevens, L.; Agreda, E.; Monroy, C. Infestation dynamics of Triatoma dimidiata in highly deforested tropical dry forest regions of Guatemala. Mem. Inst. Oswaldo Cruz 2020, 115, e200203. [Google Scholar] [CrossRef]
- Hecht, S.B.; Saatchi, S.S. Globalization and Forest Resurgence: Changes in Forest Cover in El Salvador. BioScience 2007, 57, 663–672. [Google Scholar] [CrossRef] [Green Version]
- Boucher, D.; Elias, P.; Faires, J.; Smith, S. Emigrant Support and the Reforestation of El Salvador. In Deforestation Success Stories: Tropical Nations Where Forest Protection and Reforestation Policies Have Worked; Union of Concerned Scientists: Cambridge, MA, USA, 2014; pp. 39–41. [Google Scholar]
- FAO. Global Forest Resources Assessment 2020: Main report. Rome. 2020. Available online: http://www.fao.org/documents/card/en/c/ca9825en (accessed on 15 May 2020).
- USAID. USAID Country Profile, Property Rights and Resource Governance: El Salvador. 2016. Available online: https://www.land-links.org/wp-content/uploads/2016/09/USAID_Land_Tenure_El_Salvador_Profile_0.pdf (accessed on 15 May 2020).
- MINSAL. Norma técnica para la prevención y el control de la enfermedad de Chagas. Ministerio de Salud, Dirección de Regulación y Legislación en Salud, Unidad de Salud Ambiental, San Salvador, El Salvador. 2011. Available online: https://silo.tips/download/norma-tecnica-para-prevencion-y-control-de-la-enfermedad-de-chagas (accessed on 30 November 2020).
- Carmona-Galindo, V.; Marín Recinos, M.; Gámez Hidalgo, S.; Recinos Paredes, G.; Posada Vaquerano, E.; Romero-Magaña, A.; Castillo Ayala, K. Morphological variability and ecological characterization of the Chagas Disease vector Triatoma dimidiata (Hemiptera: Reduviidae) in El Salvador. Acta Trop. 2020, 205, 105392. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global Consequences of Land Use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [Green Version]
- Chevin, L.M.; Lande, R.; Mace, G.M. Adaptation, Plasticity, and Extinction in a Changing Environment: Towards a Predictive Theory. PLoS Biol. 2010, 8, e1000357. [Google Scholar] [CrossRef] [Green Version]
- Blair, R.B.; Launer, A.E. Butterfly diversity and human land use: Species assemblages along an urban gradient. Biol. Conserv. 1997, 80, 113–125. [Google Scholar] [CrossRef]
- Nattero, J.; de la Fuente, A.L.C.; Piccinali, R.V.; Cardozo, M.; Rodríguez, C.S.; Crocco, L.B. Characterization of melanic and non-melanic forms in domestic and peridomestic populations of Triatoma infestans (Hemiptera: Reduviidae). Parasit. Vectors 2020, 13, 47. [Google Scholar] [CrossRef] [Green Version]
- Nattero, J.; Pita, S.; Calleros, L.; Crocco, L.; Panzera, Y.; Rodríguez, C.S.; Panzera, F. Morphological and genetic differentiation within the southernmost vector of Chagas disease: Triatoma patagonica (Hemiptera—Reduviidae). PLoS ONE 2016, 11, e0168853. [Google Scholar] [CrossRef]
- Bargues, M.; Schofield, C.; Dujardin, J.P. Classification and Systematics of the Triatominae. In American Trypanosomiasis Chagas Disease: One Hundred Years of Research, 2nd ed.; Telleria, J., Tibayrenc, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 113–143. [Google Scholar]
- Dujardin, J.P.; Panzera, P.; Schofield, C.J. Triatominae as a Model of Morphological Plasticity under Ecological Pressure. Mem. Inst. Oswaldo Cruz 1999, 94, 223–228. [Google Scholar] [CrossRef]
- Crate, S.A.; Nuttall, M. Anthropology and Climate; Routledge: New York, NY, USA, 2016. [Google Scholar]
- Robinet, C.; Roques, A. Direct impacts of recent climate warming on insects. Integr. Zool. 2010, 5, 132–142. [Google Scholar] [CrossRef] [PubMed]
- Logan, J.A.; Regnière, J.; Powell, J.A. Assessing the impacts of global warming on forest pest dynamics. Front. Ecol. Environ. 2003, 1, 130–137. [Google Scholar] [CrossRef]
- Balan, K.; Santora, M.; Faied, M.; Carmona-Galindo, V. Study of Evolution by Automating Hardy Weinberg Equilibrium with Machine Learning Techniques in TensorFlow and Keras. In Proceedings of the Advanced Computing and Communication Technologies for High Performance Applications (ACCTHPA), Cochin, India, 2–4 July 2020; pp. 14–19. [Google Scholar]
- Rabinovich, J.E. Morphology, Life Cycle, Environmental Factors and Fitness—A Machine Learning Analysis in Kissing Bugs (Hemiptera, Reduviidae, Triatominae). Front. Ecol. Evol. 2021, 9, 651683. [Google Scholar] [CrossRef]
- Radchuk, V.; Reed, T.; Teplitsky, C.; van de Pol, M.; Charmantier, A.; Hassall, C.; Adamík, P.; Adriaensen, F.; Ahola, M.P.; Arcese, P.; et al. Adaptive responses of animals to climate change are most likely insufficient. Nat Commun. 2019, 10, 3109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harmon, J.P.; Moran, N.A.; Ives, A.R. Species Response to Environmental Change: Impacts of Food Web Interactions and Evolution. Science 2009, 323, 1347–1350. [Google Scholar] [CrossRef] [Green Version]
- Wong, B.B.M.; Candolin, I. Behavioral responses to changing environments. Behav. Ecol. 2015, 26, 665–673. [Google Scholar] [CrossRef] [Green Version]
- Cruz, D.D.; Denis, D.; Arellano, E.; Ibarra-Cerdeña, C.N. Quantitative imagery analysis of spot patterns for the three-haplogroup classification of Triatoma dimidiata (Latreille, 1811) (Hemiptera: Reduviidae), an important vector of Chagas disease. Parasites Vectors 2021, 14, 90. [Google Scholar] [CrossRef]
- Khalighifar, A.; Komp, E.; Ramsey, J.M.; Gurgel-Gonçalves, R.; Peterson, A.T. Deep Learning Algorithms Improve Automated Identification of Chagas Disease Vectors. J. Med. Entomol. 2019, 56, 1404–1410. [Google Scholar] [CrossRef]
- Parsons, Z.; Banitaan, S. Automatic identification of Chagas disease vectors using data mining and deep learning techniques. Ecol. Inform. 2021, 62, 101270. [Google Scholar] [CrossRef]
- Vianna, E.N.; Souza, E.; Guimarães, R.; Souza, C.R.; Gorla, D.; Diotaiuti, L. Chagas disease ecoepidemiology and environmental changes in northern Minas Gerais state, Brazil. Mem. Inst. Oswaldo Cruz 2017, 112, 760–768. [Google Scholar] [CrossRef] [Green Version]
- Tanowitz, H.B.; Kirchhoff, L.V.; Simon, D.; Morris, S.A.; Weiss, L.M.; Wittner, M. Chagas’ disease. Clin. Microbiol. Rev. 1992, 5, 400–419. [Google Scholar] [CrossRef]
- Cedillos, R.A.; Romero, J.E.; Sasagawa, E. Elimination of Rhodnius prolixus in El Salvador, Central America. Mem. Inst. Oswaldo Cruz. 2012, 107, 1068–1069. [Google Scholar] [CrossRef] [Green Version]
- Dorn, P.L.; McClure, A.G.; Gallaspy, M.D.; Waleckx, E.; Woods, A.S.; Monroy, M.C.; Stevens, L. The diversity of the Chagas parasite, Trypanosoma cruzi, infecting the main Central American vector, Triatoma dimidiata, from Mexico to Colombia. PLoS Negl. Trop. Dis. 2017, 11, e0005878. [Google Scholar] [CrossRef] [Green Version]
- Botto-Mahan, C. Trypanosoma cruzi Induces Life-History Trait Changes in the Wild Kissing Bug Mepraia spinolai: Implications for Parasite Transmission. Vector Borne Zoonotic Dis. 2009, 9, 505–510. [Google Scholar] [CrossRef]
Urban & Natural Green Space | Natural Landscapes | Agricultural Landscapes |
---|---|---|
Fruiting Trees Deciduous Forest Riparian Forest Mangrove Forest Evergreen Forest Coniferous Forest Mixed Forest Semi-deciduous Forest Sugar Cane Coffee Pineapple Crop Annually Associated Crop Permanent Herbaceous Crop Spaces with Sparse Greenery Estuaries Staple Grains Vegetables Lakes and Lagoons Coastal Lagoons and Estuaries “Morrales” in Pastures Mosaic of Crops and Pastures Other Irrigated Crops American Oil Palm Trees Cultivated Pastures Natural Pastures Monospecific Forest Plantations Plantains and Bananas Beaches, Dunes, and Sandbanks Marshy Meadows Lava Rock Salt Flats Agroforestry Systems Mainly Agricultural Land Aquatic Greenery Around Bodies of Water Beach Shrub Vegetation Sclerophyll or Thorny Vegetation Natural Herbaceous Vegetation Short Shrub Vegetation Ornamental Plant Nurseries and Others Ecotonal Zones Construction Zones Port Zones Urban Green Zones | Deciduous Forest Riparian Forest Mangrove Forest Evergreen Forest Coniferous Forest Mixed Forest Semi-deciduous Forest Spaces with Sparse Greenery Estuaries Lakes and Lagoons Coastal Lagoons and Estuaries Beaches, Dunes, and Sandbanks Marshy Meadows Rivers Lava Rock Salt Flats Aquatic Greenery Around Bodies of Water Beach Shrub Vegetation Sclerophyll or Thorny Vegetation Natural Herbaceous Vegetation Short Shrub Vegetation Urban Green Zones | Fruiting Trees Sugar Cane Coffee Pineapple Crop Annually Associated Crop Permanent Herbaceous Crop Staple Grains Vegetables Mosaic of Crops and Pastures Other Irrigated Crops American Oil Palm Trees Cultivated Pastures Natural Pastures Monospecific Forest Plantations Plantains and Bananas Agroforestry Systems Mainly Agricultural Land |
Morphology | p-Value | Slope (m) | R2 | y-Intercept (b) |
---|---|---|---|---|
B of Spots on Dorsal Connexivial Plate | 0.004 | −0.625 | 0.157 | 117.282 |
G of Spots on Dorsal Connexivial Plate | 0.014 | −0.546 | 0.115 | 116.442 |
R of Spots on Dorsal Connexivial Plate | 0.003 | −0.727 | 0.159 | 135.921 |
Average I of Spots on Dorsal Connexivial Plate | 0.004 | −0.625 | 0.152 | 121.950 |
Total I of Spots on Dorsal Connexivial Plate | 0.033 | 998.608 | 0.088 | −46,830.4 |
B of Light Region on Dorsal Connexivial Plate | 0.016 | −0.558 | 0.111 | 117.854 |
G of Light Region on Dorsal Connexivial Plate R of Light Region on Dorsal Connexivial Plate Area of Light Region on Dorsal Connexivial Plate Shape of Light Region on Dorsal Connexivial Plate G of Ventral Light Region R of Ventral Light Region Average I of Ventral Light Region Total I of Ventral Light Region P of Ventral Light Region Shape of Ventral Light Region B of Ventral Dark Region Average I of Ventral Dark Region Total I of Ventral Dark Region P of Ventral Dark Region Area of Ventral Dark Region | 0.047 0.015 0.001 0.001 0.004 0.004 0.015 0.011 0.001 0.011 0.012 0.036 0.028 0.001 0.001 | 0.715 1.085 −1.254 −0.010 1.283 1.562 1.001 139,131.795 0.014 −0.004 −0.453 −0.440 516,201.796 0.012 2.078 | 0.077 0.112 0.415 0.424 0.151 0.157 0.113 0.123 0.295 0.121 0.104 0.085 0.093 0.329 0.255 | 28.914 12.205 140.889 1.076 −12.355 −23.869 8.418 −10,561,676.07 −0.859 0.558 103.325 104.697 −38,683,702.48 −0.686 −106.807 |
Morphology | p-Value | Slope (m) | R2 | y-Intercept (b) |
---|---|---|---|---|
Total I of Wing | 0.030 | −69,687.3 | 0.090 | 7,219,776 |
B of Spots on Dorsal Connexivial Plate | 0.021 | 0.150 | 0.101 | 55.410 |
G of Spots on Dorsal Connexivial Plate | 0.043 | 0.135 | 0.080 | 62.280 |
R of Spots on Dorsal Connexivial Plate | 0.013 | 0.187 | 0.118 | 63.631 |
Average I of Spots on Dorsal Connexivial Plate | 0.019 | 0.155 | 0.105 | 59.972 |
Total I of Spots on Dorsal Connexivial Plate | 0.038 | −290.627 | 0.083 | 53,489.16 |
P of Spots on Dorsal Connexivial Plate Area of Spots on Dorsal Connexivial Plate Total I of Body Area of Body B of Light Region on Dorsal Connexivial Plate P of Light Region on Dorsal Connexivial Plate Area Area of Light Region on Dorsal Connexivial Plate Total I of Ventral Light Region Area of Ventral Light Region Shape of Ventral Light Region B of Ventral Dark Region G of Ventral Dark Region I of Ventral Dark Region Total I of Ventral Dark Region Shape of Ventral Dark Region | 0.011 0.002 0.041 0.001 0.030 0.002 0.001 0.005 0.010 0.037 0.021 0.037 0.028 0.010 0.005 | 0.001 0.006 −134,604.474 0.689 0.150 0.004 0.266 −45,385.556 0.1889 0.001 0.134 0.037 0.137 −179,370.257 0.001 | 0.122 0.414 0.081 0.261 0.090 0.171 0.210 0.148 0.124 0.084 0.103 0.084 0.093 0.126 0.147 | 0.023 1.492 14,808,561.12 225.418 62.137 0.247 17.857 3,560,541.547 11.690 0.120 57.721 61.753 60.223 14,037,744.61 0.589 |
Morphology | p-Value | Slope (m) | R2 | y-Intercept (b) |
---|---|---|---|---|
Total I of Wing | 0.013 | 138,490.8 | 0.117 | −5,773,723 |
B of Spots on Dorsal Connexivial Plate | 0.005 | −0.315 | 0.147 | 84.676 |
G of Spots on Dorsal Connexivial Plate | 0.013 | −0.285 | 0.116 | 88.780 |
R of Spots on Dorsal Connexivial Plate | 0.002 | −0.394 | 0.173 | 100.243 |
Average I of Spots on Dorsal Connexivial Plate | 0.004 | −0.325 | 0.153 | 90.231 |
Total I of Spots on Dorsal Connexivial Plate | 0.017 | 575.950 | 0.108 | −571.863 |
P of Spots on Dorsal Connexivial Plate Area of Spots on Dorsal Connexivial Plate Total I of Body Area of Body B of Light Region on Dorsal Connexivial Plate P of Light Region on Dorsal Connexivial Plate Area of Light Region on Dorsal Connexivial Plate Shape of Light Region on Dorsal Connexivial Plate G of Ventral Light Region R of Ventral Light Region Total I of Ventral Light Region Area of Ventral Light Region Shape of Ventral Light Region B of Ventral Dark Region G of Ventral Dark Region R of Ventral Dark Region Average I of Ventral Dark Region Total I of Ventral Dark Region P of Ventral Dark Region Shape of Ventral Dark Region | 0.034 0.005 0.017 0.001 0.008 0.004 0.001 0.013 0.011 0.010 0.001 0.020 0.007 0.006 0.013 0.020 0.009 0.003 0.045 0.002 | −0.001 −0.010 271,180.95 −1.130 −0.318 −0.007 −0.583 −0.003 0.599 0.725 91,580.101 −0.300 −0.002 −0.274 −0.271 −0.309 −0.282 354,006.922 0.003 −0.002 | 0.087 0.144 0.108 0.231 0.133 0.155 0.333 0.117 0.122 0.126 0.198 0.103 0.137 0.140 0.117 0.104 0.130 0.162 0.078 0.184 | 0.072 2.426 −10,579,306.2 334.973 91.655 0.881 71.774 0.378 58.139 62.366 −5,011,035.25 40.950 0.345 83.318 87.081 90.617 86.549 −19,212,626.2 0.212 0.735 |
Morphology | p-Value | Slope (m) | R2 | y-Intercept (b) |
---|---|---|---|---|
Total I of Spots on Dorsal Connexivial Plate | 0.001 | 2,315.634 | 0.250 | 2,609.797 |
G of Body | 0.014 | 0.746 | 0.115 | 73.120 |
Average I of Body | 0.035 | 0.591 | 0.085 | 71.890 |
P of Light Region on Dorsal Connexivial Plate | 0.026 | 0.001 | 0.095 | 1.000 |
G of Light Region on Dorsal Connexivial Plate | 0.002 | 11.464 | 0.171 | 67.819 |
R of Light Region on Dorsal Connexivial Plate | 0.003 | 1.820 | 0.167 | 78.658 |
Average I of Light Region on Dorsal Connexivial Plate | 0.004 | 1.096 | 0.157 | 68.299 |
Area of Light Region on Dorsal Connexivial Plate | 0.001 | −1.150 | 0.185 | 46.733 |
Shape of Light Region on Dorsal Connexivial Plate | 0.004 | −0.008 | 0.152 | 0.313 |
G of Ventral Light Region | 0.043 | 1.277 | 0.079 | 82.125 |
R of Ventral Light Region | 0.050 | 1.480 | 0.075 | 92.586 |
Total I of Ventral Light Region | 0.039 | 155,914.24 | 0.082 | −630,879.771 |
P of Ventral Light Region | 0.001 | 0.016 | 0.195 | 0.133 |
Shape of Ventral Light Region | 0.031 | −0.005 | 0.090 | 0.248 |
Total I of Ventral Dark Region | 0.001 | 1,019,245.636 | 0.192 | −9,883,020.224 |
P of Ventral Dark Region | 0.001 | 0.016 | 0.272 | 0.177 |
Area of Ventral Dark Region | 0.006 | 2.131 | 0.142 | 45.103 |
Morphology | p-Value | Slope (m) | R2 | y-Intercept (b) |
---|---|---|---|---|
P of Light Region on Dorsal Connexivial Plate | 0.022 | −0.001 | 0.101 | 1.000 |
G of Light Region on Dorsal Connexivial Plate | 0.005 | −22.780 | 0.147 | 132.510 |
R of Light Region on Dorsal Connexivial Plate | 0.049 | −20.485 | 0.075 | 146.018 |
P of Light Region on Dorsal Connexivial Plate | 0.043 | 0.208 | 0.0796 | 0.017 |
Area of Light Region on Dorsal Connexivial Plate | 0.028 | 13.679 | 0.093 | 2.941 |
G of Ventral Light Region | 0.005 | −29.522 | 0.150 | 154.652 |
R of Ventral Light Region | 0.012 | −31.269 | 0.119 | 171.714 |
Average I of Ventral Light Region Total I of Ventral Light Region Area of Ventral Light Region Shape of Ventral Light Region Total I of Ventral Dark Region Shape of Ventral Dark Region | 0.025 0.006 0.004 0.008 0.013 0.016 | −21.263 −3,458,224.213 16.402 0.107 −13,308,888.17 0.053 | 0.096 0.144 0.157 0.134 0.116 0.110 | 135.739 7,979,460.029 −10.050 −0.026 30,904,302.68 0.525 |
Morphology | p-Value | Slope (m) | R2 | y-Intercept (b) |
---|---|---|---|---|
G of Body | 0.034 | −28.729 | 0.087 | 103.812 |
P of Light Region on Dorsal Connexivial Plate | 0.008 | −0.001 | 0.134 | 1.000 |
G of Light Region on Dorsal Connexivial Plate | 0.001 | −77.070 | 0.240 | 140.367 |
R of Light Region on Dorsal Connexivial Plate | 0.002 | −83.204 | 0.177 | 161.349 |
Average I of Light Region on Dorsal Connexivial Plate | 0.008 | −44.655 | 0.132 | 114.855 |
Area of Light Region on Dorsal Connexivial Plate | 0.001 | 59.175 | 0.249 | −9.446 |
Shape of Light Region on Dorsal Connexivial Plate | 0.004 | 0.362 | 0.152 | −0.052 |
Total I of Spots on Dorsal Connexivial Plate | 0.002 | −857 | 0.174 | 95,860.46 |
G of Ventral Light Region | 0.001 | −99.422 | 0.244 | 164.561 |
R of Ventral Light Region | 0.001 | −110.326 | 0.211 | 185.196 |
Average I of Ventral Light Region | 0.002 | −76.475 | 0.178 | 145.771 |
Total I of Ventral Light Region | 0.002 | −10,022,914.6 | 0.172 | 8,174,925.742 |
Shape of Ventral Light Region | 0.001 | 0.377 | 0.238 | −0.071 |
Total I of Ventral Dark Region | 0.001 | −47,041,775.7 | 0.207 | 36,692,751.55 |
P of Ventral Dark Region | 0.001 | −0.628 | 0.224 | 0.835 |
A of Ventral Dark Region | 0.032 | −74.697 | 0.089 | 128.409 |
Shape of Ventral Dark Region | 0.004 | 0.167 | 0.157 | 0.513 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carmona-Galindo, V.D.; Sheppard, C.C.; Bastin, M.L.; Kehrig, M.R.; Marín-Recinos, M.F.; Choi, J.J.; Castañeda de Abrego, V. Chromatic and Morphological Differentiation of Triatoma dimidiata (Hemiptera: Reduviidae) with Land Use Diversity in El Salvador. Pathogens 2021, 10, 753. https://doi.org/10.3390/pathogens10060753
Carmona-Galindo VD, Sheppard CC, Bastin ML, Kehrig MR, Marín-Recinos MF, Choi JJ, Castañeda de Abrego V. Chromatic and Morphological Differentiation of Triatoma dimidiata (Hemiptera: Reduviidae) with Land Use Diversity in El Salvador. Pathogens. 2021; 10(6):753. https://doi.org/10.3390/pathogens10060753
Chicago/Turabian StyleCarmona-Galindo, Víctor D., Claire C. Sheppard, Madelyn L. Bastin, Megan R. Kehrig, Maria F. Marín-Recinos, Joyce J. Choi, and Vianney Castañeda de Abrego. 2021. "Chromatic and Morphological Differentiation of Triatoma dimidiata (Hemiptera: Reduviidae) with Land Use Diversity in El Salvador" Pathogens 10, no. 6: 753. https://doi.org/10.3390/pathogens10060753
APA StyleCarmona-Galindo, V. D., Sheppard, C. C., Bastin, M. L., Kehrig, M. R., Marín-Recinos, M. F., Choi, J. J., & Castañeda de Abrego, V. (2021). Chromatic and Morphological Differentiation of Triatoma dimidiata (Hemiptera: Reduviidae) with Land Use Diversity in El Salvador. Pathogens, 10(6), 753. https://doi.org/10.3390/pathogens10060753