The Transcriptomic Profile of Watermelon Is Affected by Zinc in the Presence of Fusarium oxysporum f. sp. niveum and Meloidogyne incognita
Abstract
:1. Introduction
2. Results
2.1. Overview of the RNA-Seq Results
2.2. Differentially Expressed Genes (DEGs)
2.3. GO Enrichment Analyses
2.4. KEGG Classification of DEGs
2.5. Investigation of DEGs Associated with Plant Phytohormone Signaling Pathway in Plants Treated with High- and Low-Zn
2.6. Investigation of DEGs Associated with MAPK and Zinc Finger Proteins Signaling Pathway in Plants Treated with High- and Low-Zn
2.7. Confirmation of Infection in FON and RKN Inoculation Plants
3. Discussion
4. Materials and Methods
4.1. Experimental Set-Up
4.2. RNA Extraction, Quantification and Integrity Determination
4.3. Library Preparation and Transcriptome Sequencing
4.4. Sequence Read Cleanup and Mapping to Genome
4.5. Quantification of Gene Expression Levels and Differential Expression of Analysis
4.6. GO and KEGG Enrichment Analysis of DEGs
4.7. Confirmation of Infection in FON and RKN Inoculation Plants
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martyn, R.D. Fusarium wilt of watermelon: 120 years of research. Hortic. Rev. 2014, 42, 349–442. [Google Scholar]
- Davis, R.F. Effect of Meloidogyne incognita on watermelon yield. Nematropica 2007, 37, 287–294. [Google Scholar]
- Lynch, L.; Carpenter, J. The economic impacts of banning methyl bromide: Where do we need more research. In Proceedings of the 1999 Annual Research Conference on Methyl Bromide Alternatives and Emissions Reductions, San Diego, CA, USA, 1–4 November 1999; Available online: http://mbao.org/mbrpro99.html (accessed on 15 April 2021).
- Thies, J.A.; Ariss, J.J.; Hassell, R.L.; Olson, S.; Kousik, C.S.; Levi, A. Grafting for management of southern root-knot nematode, Meloidogyne incognita, in watermelon. Plant Dis. 2010, 94, 1195–1199. [Google Scholar] [CrossRef] [Green Version]
- Beattie, J.; Doolittle, S. Watermelons; US Government Printing Office: Washington, DC, USA, 1951. [Google Scholar]
- Zhou, X.; Everts, K.; Bruton, B. Race 3, a new and highly virulent race of Fusarium oxysporum f. sp. niveum causing Fusarium wilt in watermelon. Plant Dis. 2010, 94, 92–98. [Google Scholar] [CrossRef] [Green Version]
- Dale, P. Elimination of root-knot nematodes from roses by chemical bare-root dips. N. Z. J. Exp. Agric. 1973, 1, 121–122. [Google Scholar] [CrossRef]
- Newton, A.C.; Torrance, L.; Holden, N.; Toth, I.K.; Cooke, D.E.; Blok, V.; Gilroy, E.M. Climate change and defense against pathogens in plants. Adv. Appl. Microbiol. 2012, 81, 89–132. [Google Scholar]
- Wechter, W.P.; Kousik, C.; McMillan, M.; Levi, A.S. Identification of resistance to Fusarium oxysporum f. sp. niveum race 2 in Citrullus lanatus var. citroides plant introductions. HortScience 2012, 47, 334–338. [Google Scholar] [CrossRef] [Green Version]
- Miller, N.F.; Standish, J.R.; Quesada-Ocampo, L.M. Sensitivity of Fusarium oxysporum f. sp. niveum to prothioconazole and pydiflumetofen In vitro and efficacy for Fusarium wilt management in watermelon. Plant Health Prog. 2020, 21, 13–18. [Google Scholar] [CrossRef]
- Keinath, A.P.; Hassell, R.L. Suppression of Fusarium wilt caused by Fusarium oxysporum f. sp. niveum race 2 on grafted triploid watermelon. Plant Dis. 2014, 98, 1326–1332. [Google Scholar] [CrossRef]
- Agrios, G.N. Plant Pathology, 5th ed.; Elsevier Academic Press: San Diego, CA, USA, 2005. [Google Scholar]
- Krauss, A. Balanced nutrition and biotic stress. In Proceedings of the IFA Agricultural Conference on Managing Plant Nutrition, Barcelona, Spain, 29 June–2 July 1999. [Google Scholar]
- Marschner, H. Mineral Nutrition of Higher Plants; Academic Press: London, UK, 1995. [Google Scholar]
- Dordas, C. Role of nutrients in controlling plant diseases in sustainable agriculture. A review. Agron. Sustain. Dev. 2008, 28, 33–46. [Google Scholar] [CrossRef] [Green Version]
- Van Loon, L.; Bakker, P.; Pieterse, C. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 1998, 36, 453–483. [Google Scholar] [CrossRef] [Green Version]
- Walters, D.; Walsh, D.; Newton, A.; Lyon, G. Induced resistance for plant disease control: Maximizing the efficacy of resistance elicitors. Phytopathology 2005, 95, 1368–1373. [Google Scholar] [CrossRef] [Green Version]
- Reuveni, R.; Dor, G.; Raviv, M.; Reuveni, M.; Tuzun, S. Systemic resistance against Sphaerotheca fuliginea in cucumber plants exposed to phosphate in hydroponics system, and its control by foliar spray of mono-potassium phosphate. Crop Prot. 2000, 19, 355–361. [Google Scholar] [CrossRef]
- Reuveni, M.; Oppenheim, D.; Reuveni, R. Integrated control of powdery mildew on apple trees by foliar sprays of mono-potassium phosphate fertilizer and sterol inhibiting fungicides. Crop Prot. 1998, 17, 563–568. [Google Scholar] [CrossRef]
- Ehret, D.; Utkhede, R.; Frey, B.; Menzies, J.; Bogdanoff, C. Foliar applications of fertilizer salts inhibit powdery mildew on tomato. Can. J. Plant Pathol. 2002, 24, 437–444. [Google Scholar] [CrossRef]
- Mosa, A. Management of sugar beet powdery mildew by foliar spraying of potassium phosphate salts. Arab Univ. J. Agric. Sci. 2002, 10, 1043–1057. [Google Scholar]
- Bains, S.; Jhooty, J. Effect of mineral nutrition of muskmelon on downy mildew caused by Pseudoperonospora cubensis. Plant Soil 1976, 29, 105. [Google Scholar]
- Bier, P.V.; Persche, M.; Koch, P.; Soldat, D.J. A long term evaluation of differential potassium fertilization of a creeping bentgrass putting green. Plant Soil 2018, 431, 303–316. [Google Scholar] [CrossRef]
- Huber, D. The role of mineral nutrition in defense. In Plant Disease: An Advanced Treatise: How Plants Defend Themselves; Horsfall, J.G., Cowling, E.B., Eds.; Academic Press: New York, NY, USA, 1980; pp. 381–406. [Google Scholar]
- Rolke, Y.; Liu, S.; Quidde, T.; Williamson, B.; Schouten, A.; Weltring, K.M.; Siewers, V.; Tenberge, K.B.; Tudzynski, B.; Tudzynski, P. Functional analysis of H2O2-generating systems in Botrytis cinerea: The major Cu-Zn-superoxide dismutase (BCSOD1) contributes to virulence on French bean, whereas a glucose oxidase (BCGOD1) is dispensable. Mol. Plant Pathol. 2004, 5, 17–27. [Google Scholar] [CrossRef]
- Babitha, M.; Bhat, S.; Prakash, H.; Shetty, H. Differential induction of superoxide dismutase in downy mildew-resistant and-susceptible genotypes of pearl millet. Plant Pathol. 2002, 51, 480–486. [Google Scholar] [CrossRef] [Green Version]
- Stolpe, C.; Giehren, F.; Krämer, U.; Müller, C. Both heavy metal-amendment of soil and aphid-infestation increase Cd and Zn concentrations in phloem exudates of a metal-hyperaccumulating plant. Phytochemistry 2017, 139, 109–117. [Google Scholar] [CrossRef]
- Grewal, H.S.; Graham, R.D.; Rengel, Z. Genotypic variation in zinc efficiency and resistance to crown rot disease (Fusarium graminearum Schw. Group 1) in wheat. Plant Soil. 1996, 186, 219–226. [Google Scholar] [CrossRef]
- Li, Z.; Fan, Y.; Gao, L.; Cao, X.; Ye, J.; Li, G. The dual roles of zinc sulfate in mitigating peach gummosis. Plant Dis. 2016, 100, 345–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Machado, P.P.; Steiner, F.; Zuffo, A.M.; Machado, R.A. Could the supply of boron and zinc improve resistance of potato to early blight? Potato Res. 2018, 61, 169–182. [Google Scholar] [CrossRef]
- Helfenstein, J.; Pawlowski, M.L.; Hill, C.B.; Stewart, J.; Lagos-Kutz, D.; Bowen, C.R.; Frossard, E.; Hartman, G.L. Zinc deficiency alters soybean susceptibility to pathogens and pests. J. Plant Nutr. Soil Sci. 2015, 178, 896–903. [Google Scholar] [CrossRef]
- Flors, V.; Ton, J.; Van Doorn, R.; Jakab, G.; García-Agustín, P.; Mauch-Mani, B. Interplay between JA, SA and ABA signalling during basal and induced resistance against Pseudomonas syringae and Alternaria brassicicola. Plant J. 2008, 54, 81–92. [Google Scholar] [CrossRef]
- Kumar, D. Salicylic acid signaling in disease resistance. Plant Sci. 2014, 228, 127–134. [Google Scholar] [CrossRef]
- Maruri-López, I.; Aviles-Baltazar, N.Y.; Buchala, A.; Serrano, M. Intra and Extracellular Journey of the Phytohormone Salicylic Acid. Front. Plant Sci. 2019, 10, 423. [Google Scholar] [CrossRef]
- Blanco-Ulate, B.; Vincenti, E.; Powell, A.L.; Cantu, D. Tomato transcriptome and mutant analyses suggest a role for plant stress hormones in the interaction between fruit and Botrytis cinerea. Front. Plant Sci. 2013, 4, 142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colcombet, J.; Hirt, H. Arabidopsis MAPKs: A complex signalling network involved in multiple biological processes. Biochem. J. 2008, 413, 217–226. [Google Scholar] [CrossRef]
- Rodriguez, M.C.; Petersen, M.; Mundy, J. Mitogen-activated protein kinase signaling in plants. Annu. Rev. Plant Biol. 2010, 61, 621–649. [Google Scholar] [PubMed]
- Cui, B.; Xu, S.; Li, Y.; Umbreen, S.; Frederickson, D.; Yuan, B.; Jiang, J.; Liu, F.; Pan, Q.; Loake, G.J. The Arabidopsis zinc finger proteins SRG2 and SRG3 are positive regulators of plant immunity and are differentially regulated by nitric oxide. New Phytol. 2021, 230, 259–274. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.K.; Rai, A.K.; Kanwar, S.S.; Sharma, T.R. Comparative analysis of zinc finger proteins involved in plant disease resistance. PLoS ONE 2012, 7, e42578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.H.; Chen, K.S.; Chang, J.Y.; Wan, Y.L.; Hsu, C.C.; Huang, J.W.; Chang, P.F.L. Development of the molecular methods for rapid detection and differentiation of Fusarium oxysporum and F. oxysporum f. sp. niveum in Taiwan. New Biotechnol. 2010, 27, 409–418. [Google Scholar] [CrossRef]
- Xie, S.; Jiang, H.; Ding, T.; Xu, Q.; Chai, W.; Cheng, B. Bacillus amyloliquefaciens FZB42 represses plant miR846 to induce systemic resistance via a jasmonic acid-dependent signalling pathway. Mol. Plant Pathol. 2018, 19, 1612–1623. [Google Scholar] [CrossRef] [Green Version]
- Vrabka, J.; Niehaus, E.-M.; Münsterkötter, M.; Proctor, R.H.; Brown, D.W.; Novák, O.; Pěnčik, A.; Tarkowská, D.; Hromadová, K.; Hradilová, M. Production and role of hormones during interaction of Fusarium species with maize (Zea mays L.) seedlings. Front. Plant Sci. 2019, 9, 1936. [Google Scholar] [CrossRef]
- Chini, A.; Gimenez-Ibanez, S.; Goossens, A.; Solano, R. Redundancy and specificity in jasmonate signalling. Curr. Opin. Plant Biol. 2016, 33, 147–156. [Google Scholar] [CrossRef]
- Havko, N.E.; Major, I.T.; Jewell, J.B.; Attaran, E.; Howe, G.A. Control of carbon assimilation and partitioning by jasmonate: An accounting of growth–defense tradeoffs. Plants 2016, 5, 7. [Google Scholar] [CrossRef] [Green Version]
- Gallego, B.; Martos, S.; Cabot, C.; Barceló, J.; Poschenrieder, C. Zinc hyperaccumulation substitutes for defense failures beyond salicylate and jasmonate signaling pathways of Alternaria brassicicola attack in Noccaea caerulescens. Physiol. Plant. 2017, 159, 401–415. [Google Scholar] [CrossRef]
- Després, C.; DeLong, C.; Glaze, S.; Liu, E.; Fobert, P.R. The Arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors. Plant Cell 2000, 12, 279–290. [Google Scholar] [CrossRef] [Green Version]
- Roetschi, A.; Si-Ammour, A.; Belbahri, L.; Mauch, F.; Mauch-Mani, B. Characterization of an Arabidopsis–Phytophthora pathosystem: Resistance requires a functional PAD2 gene and is independent of salicylic acid, ethylene and jasmonic acid signalling. Plant J. 2001, 28, 293–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pré, M.; Atallah, M.; Champion, A.; De Vos, M.; Pieterse, C.M.; Memelink, J. The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense. Plant Physiol. 2008, 147, 1347–1357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.S.; Tang, K.X. MAP kinase cascades responding to environmental stress in plants. Acta Bot. Sin. 2004, 46, 127–136. [Google Scholar]
- Bi, G.; Zhou, J.-M. MAP kinase signaling pathways: A hub of plant-microbe interactions. Cell Host Microbe 2017, 21, 270–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres, M.A.; Dangl, J.L.; Jones, J.D. Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc. Natl. Acad. Sci. USA 2002, 99, 517–522. [Google Scholar] [CrossRef] [Green Version]
- Mittler, R.; Vanderauwera, S.; Gollery, M.; Van Breusegem, F. Reactive oxygen gene network of plants. Trends Plant Sci. 2004, 9, 490–498. [Google Scholar] [CrossRef]
- Wang, K.L.-C.; Li, H.; Ecker, J.R. Ethylene biosynthesis and signaling networks. Plant Cell 2002, 14, S131–S151. [Google Scholar] [CrossRef] [Green Version]
- Guan, R.; Su, J.; Meng, X.; Li, S.; Liu, Y.; Xu, J.; Zhang, S. Multilayered regulation of ethylene induction plays a positive role in Arabidopsis resistance against Pseudomonas syringae. Plant Physiol. 2015, 169, 299–312. [Google Scholar] [CrossRef] [Green Version]
- Cabot, C.; Martos, S.; Llugany, M.; Gallego, B.; Tolrà, R.; Poschenrieder, C. A role for zinc in plant defense against pathogens and herbivores. Front. Plant Sci. 2019, 10, 1171. [Google Scholar] [CrossRef]
- Wu, S.; Wang, X.; Reddy, U.; Sun, H.; Bao, K.; Gao, L.; Mao, L.; Patel, T.; Ortiz, C.; Abburi, V.L. Genome of ‘Charleston Gray’, the principal American watermelon cultivar, and genetic characterization of 1365 accessions in the US National Plant Germplasm System watermelon collection. Plant Biotechnol. J. 2019, 17, 2246–2258. [Google Scholar] [CrossRef] [Green Version]
- Liao, Y.; Smyth, G.K.; Shi, W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef] [Green Version]
- Leslie, J.F.; Summerell, B.A. The Fusarium Laboratory Manual; Blackwell Publishing: Ames, IA, USA, 2008. [Google Scholar]
Sample Name | Raw Reads | Raw Bases | Clean Reads | Total Mapped Reads | Uniquely Mapped Reads | Q20 (%) | Q30 (%) |
---|---|---|---|---|---|---|---|
HighZn_7 dpt | 5.9 × 107 | 8.93 | 5.8 × 107 (98.39%) | 5.5 × 107 (97.29%) | 5.2 × 107 (92.49%) | 98.31 | 94.70 |
LowZn_7 dpt | 5.0 × 107 | 7.50 | 4.9 × 107 (98.38%) | 4.7 × 107 (97.52%) | 4.5 × 107 (92.44%) | 98.32 | 94.77 |
Stnr_7 dpt | 4.9 × 107 | 7.50 | 4.9 × 107 (98.26%) | 4.9 × 107 (97.24%) | 4.6 × 107 (91.88%) | 98.27 | 94.67 |
HighZn_11 dpt | 5.1 × 107 | 7.76 | 5.0 × 107 (98.18%) | 4.9 × 107 (97.5%) | 4.7 × 107 (93.07%) | 98.15 | 94.34 |
HighZn_F_11 dpt | 5.3 × 107 | 8.10 | 5.3 × 107 (98.52%) | 5.1 × 107 (97.22%) | 4.9 × 107 (92.26%) | 98.22 | 94.54 |
HighZn_F_R_11 dpt | 5.3 × 107 | 8.05 | 5.2 × 107 (98.68%) | 5.1 × 107 (96.99%) | 4.8 × 107 (91.42%) | 98.38 | 94.94 |
HighZn_R_11 dpt | 5.9 × 107 | 9.00 | 5.9 × 107 (98.45%) | 5.6 × 107 (96.75%) | 5.2 × 107 (91.19%) | 98.24 | 94.49 |
LowZn_11 dpt | 5.1 × 107 | 7.70 | 5.0 × 107 (98.57%) | 4.9 × 107 (97.44%) | 4.6 × 107 (92.09%) | 98.36 | 94.87 |
LowZn_F_11 dpt | 4.9 × 107 | 7.33 | 4.8 × 107 (98.53%) | 4.6 × 107 (97.53%) | 4.4 × 107 (92.83%) | 98.23 | 94.51 |
LowZn_F_R_11 dpt | 5.4 × 107 | 8.20 | 5.3 × 107 (98.44%) | 5.0 × 107 (97.12%) | 4.7 × 107 (91.61%) | 98.37 | 94.86 |
LowZn_R_11 dpt | 4.9 × 107 | 7.43 | 4.8 × 107 (98.24%) | 4.9 × 107 (97.64%) | 4.6 × 107 (92.97%) | 98.32 | 94.74 |
Stnr_11 dpt | 5.3 × 107 | 7.96 | 5.2 × 107 (98.53%) | 5.0 × 107 (97.17%) | 4.7 × 107 (91.37%) | 98.00 | 93.96 |
Stnr_F_11 dpt | 4.9 × 107 | 7.47 | 4.8 × 107 (98.25%) | 4.5 × 107 (97.69%) | 4.3 × 107 (92.41%) | 98.24 | 94.58 |
Stnr_F_R_11 dpt | 5.1 × 107 | 7.67 | 5.0 × 107 (98.33%) | 6.8 × 107 (97.49%) | 6.5 × 107 (93.26%) | 98.36 | 94.84 |
Stnr_R_11 dpt | 6.3 × 107 | 9.50 | 6.2 × 107 (98.31%) | 4.4 × 107 (96.95%) | 4.1 × 107 (90.92%) | 98.32 | 94.76 |
KEGGID | Description | p Value | Count |
---|---|---|---|
High-Zn_7 dpt | |||
csv04146 | Peroxisome | 0.002165 | 2 |
csv00531 | Glycosaminoglycan degradation | 0.01651 | 1 |
High-Zn_FON_11 dpt | |||
csv04075 | Plant hormone signal transduction | 1.41 × 10−5 | 14 |
csv04626 | Plant-pathogen interaction | 0.0007 | 9 |
Low-Zn_FON_11 dpt | |||
csv00592 | alpha-Linolenic acid metabolism | 0.00213 | 3 |
csv00290 | Valine, leucine and isoleucine biosynthesis | 0.00363 | 2 |
csv00591 | Linoleic acid metabolism | 0.00417 | 2 |
High-Zn_RKN_11 dpt | |||
csv00710 | Carbon fixation in photosynthetic organisms | 1.73 × 10−7 | 25 |
csv00195 | Photosynthesis | 1.58 × 10−6 | 21 |
csv00030 | Pentose phosphate pathway | 0.00015 | 17 |
csv00500 | Starch and sucrose metabolism | 0.00021 | 31 |
csv00053 | Ascorbate and aldarate metabolism | 0.00052 | 15 |
csv01200 | Carbon metabolism | 0.00138 | 48 |
csv00196 | Photosynthesis—antenna proteins | 0.00246 | 8 |
csv00906 | Carotenoid biosynthesis | 0.00327 | 11 |
Treatment | Gene ID | Description | Log2Fold Change | Hormone | Name |
---|---|---|---|---|---|
HighZn_11 dpt | ClCG00G003890 | Kinase family protein | −1.7089 | Abscissic acid | SnRK2/OST1 |
ClCG01G001770 | Unknown protein | 0.86607 | |||
ClCG05G004670 | Auxin-responsive protein | −1.02 | Auxin | AUX/IAA/ATAUX2-11 | |
ClCG05G010220 | Cyclin D3-1 | 1.9249 | Brassinosteroid | CYCD3/CYCD3 | |
ClCG05G017790 | Abscisic acid receptor PYR1 | −1.8846 | Abscissic acid | PYR/PYL | |
ClCG09G000190 | Histidine-containing phosphotransfer protein, putative | −1.9525 | Cytokinine | AHP/AHP4 | |
ClCG09G009470 | Auxin response factor | 1.5998 | Auxin | ARF | |
HighZn_FON_11 dpt | ClCG02G011740 | Auxin transporter-like protein 3 | 1.2816 | Auxin | AUX1 |
ClCG03G014890 | Jasmonate-zim-domain protein 1 | 0.84193 | Jasmonic acid | JAZ/JAZ1 | |
ClCG05G010220 | Cyclin D3-1 | 1.8242 | Brassinosteroid | CYCD3/CYCD3 | |
ClCG05G010400 | GH3 | 1.7049 | Auxin | GH3 | |
ClCG05G015030 | GH3 | 1.4005 | Auxin | GH3 | |
ClCG05G018490 | Auxin response factor, putative | 1.1285 | Auxin | ARF | |
ClCG05G020230 | Cyclin D | 1.6576 | Brassinosteroid | CYCD3 | |
ClCG06G001800 | jasmonate-zim-domain protein 10 LENGTH = 197 | 1.1178 | Jasmonic acid | JAZ | |
ClCG06G008840 | Auxin-responsive protein | 1.1682 | Auxin | AUX/IAA | |
ClCG07G014490 | Jasmonate ZIM-domain protein 3b | 2.033 | Jasmonic acid | JAZ | |
ClCG08G015300 | BES1/BZR1 protein | 1.1164 | Brassinosteroid | BZR1/2 | |
ClCG10G001590 | Transcription factor MYC2-like protein | 2.4574 | Jasmonic acid | MYC2 | |
ClCG11G001010 | Histidine kinase 2 | −0.87669 | Cytokinine | CRE1/WOL | |
ClCG11G006270 | Auxin transporter-like protein | 1.0301 | Auxin | AUX/IAA/AUX1 | |
HighZn_RKN_11 dpt | ClCG01G001770 | Unknown protein | 1.132 | ||
ClCG01G017190 | GH3-1 | 2.6134 | Auxin | GH3/GH3.1 | |
ClCG01G018130 | Auxin-responsive family protein | 1.2014 | Auxin | AUX/IAA/IAA9 | |
ClCG02G004210 | Auxin transporter-like protein 3 | 2.2592 | Auxin | AUX1/LAX2 | |
ClCG02G006220 | Cyclin D3.2 protein | 1.7357 | Brassinosteroid | CYCD3 | |
ClCG02G007190 | Cysteine-rich venom protein | −1.3058 | Salicylic acid | PR-1 | |
ClCG02G011740 | Auxin transporter-like protein 3 | 2.6958 | Auxin | AUX1/LAX2 | |
ClCG03G001230 | Protein phosphatase 2C | 1.0321 | Abscissic acid | PP2C/PP2CA | |
ClCG03G014890 | Jasmonate-zim-domain protein 1 | 1.8871 | Jasmonic acid | JAZ/JAZ1 | |
ClCG03G016180 | Protein phosphatase 2c, putative | 1.5072 | Abscissic acid | PP2C/ABI1 | |
ClCG04G004170 | BTB/POZ ankyrin repeat protein | 2.8402 | Salicylic acid | NPR1/BOP2 | |
ClCG05G000910 | Abscisic acid receptor PYR1 | −0.78244 | Abscissic acid | PYR/PYL/RCAR1 | |
ClCG05G002710 | Kinase family protein | 0.99557 | Cytokinine | B-ARR/BSK2 | |
ClCG05G004370 | Ethylene-responsive transcription factor 1B, putative | 1.9806 | Ethylene | ERF1/2 | |
ClCG05G008820 | Protein phosphatase 2c, putative | 2.2817 | Abscissic acid | PP2C/PP2CA | |
ClCG05G010220 | Cyclin D3-1 | 3.8147 | Brassinosteroid | CYCD3/CYCD3 | |
ClCG05G010400 | GH3 | 2.8392 | Auxin | GH3/GH3.1 | |
ClCG05G015030 | GH3 | 2.6677 | Auxin | GH3 | |
ClCG05G017790 | Abscisic acid receptor PYR1 | −1.8103 | Abscissic acid | PYR/PYL2 | |
ClCG05G018470 | SAUR-like auxin-responsive protein family LENGTH = 154 | 2.753 | Auxin | SAUR | |
ClCG05G018490 | Auxin response factor, putative | 2.8171 | Auxin | ARF/MP | |
ClCG05G020230 | Cyclin D | 3.1068 | Brassinosteroid | CYCD3 | |
ClCG06G001800 | jasmonate-zim-domain protein 10 LENGTH = 197 | 1.1222 | Jasmonic acid | JAZ/JAZ10 | |
ClCG06G008840 | Auxin-responsive protein | 1.7638 | Auxin | AUX/IAA/IAA27 | |
ClCG06G011420 | Indole-3-acetic acid inducible 29 | −1.2596 | Auxin | AUX/IAA | |
ClCG07G000600 | Auxin-responsive protein | −1.535 | Auxin | AUX/IAA/IAA16 | |
ClCG07G005870 | Jasmonate ZIM-domain protein 2 | 1.7448 | Jasmonic acid | JAZ/JAZ3 | |
ClCG07G011440 | auxin response factor 15 LENGTH = 598 | 3.0858 | Auxin | ARF/ARF9 | |
ClCG07G013340 | Auxin-responsive protein | 1.671 | Auxin | AUX/IAA/IAA26 | |
ClCG07G014490 | Jasmonate ZIM-domain protein 3b | 3.8539 | Jasmonic acid | JAZ/JAZ6 | |
ClCG08G015300 | BES1/BZR1 protein | 1.2391 | Brassinosteroid | BZR1/2 | |
ClCG08G016160 | Cyclin D3.1 protein | 0.77641 | Brassinosteroid | CYCD3 | |
ClCG09G009470 | Auxin response factor | 2.1743 | Auxin | ARF/ARF9 | |
ClCG10G001590 | Transcription factor MYC2-like protein | 3.1504 | Jasmonic acid | MYC2 | |
ClCG11G003560 | response regulator 12 LENGTH = 596 | −1.018 | Auxin | AUX/IAA/RR12 | |
LowZn_FON_11 dpt | ClCG05G015030 | GH3 | 1.389 | Auxin | GH3 |
ClCG07G014490 | Jasmonate ZIM-domain protein 3b | 1.9189 | Jasmonic acid | JAZ | |
ClCG07G005870 | Jasmonate ZIM-domain protein 2 | 1.5802 | Jasmonic acid | JAZ | |
ClCG10G001590 | Transcription factor MYC2-like protein | 1.7156 | Jasmonic acid | MYC2 | |
LowZn_FON_RKN_11 dpt | ClCG01G001770 | Unknown protein | 1.2498 | ||
ClCG05G004670 | Auxin-responsive protein | −1.4502 | Auxin | AUX/IAA/ATAUX2-11 | |
ClCG05G010220 | Cyclin D3-1 | 2.3229 | Brassinosteroid | CYCD3/CYCD3 | |
ClCG05G010400 | GH3 | 1.4416 | Auxin | GH3 | |
ClCG05G015030 | GH3 | 1.9852 | Auxin | GH3 | |
ClCG05G020230 | Cyclin D | 2.6506 | Brassinosteroid | CYCD3 | |
ClCG07G005870 | Jasmonate ZIM-domain protein 2 | 1.7035 | Jasmonic acid | JAZ | |
ClCG07G012040 | Auxin-responsive GH3 family protein | −1.1949 | Auxin | /GH3.17 | |
ClCG10G001590 | Transcription factor MYC2-like protein | 1.8151 | Jasmonic acid | MYC2 | |
SteineRKN_FON_11 dpt | ClCG05G010400 | GH3 | 1.2947 | Auxin | GH3 |
ClCG07G014490 | Jasmonate ZIM-domain protein 3b | 2.2331 | Jasmonic acid | JAZ | |
ClCG03G014890 | Jasmonate-zim-domain protein 1 | 1.285 | Jasmonic acid | JAZ/JAZ1 | |
ClCG10G001590 | Transcription factor MYC2-like protein | 1.8784 | Jasmonic acid | MYC2 | |
LZ_FON_11 dpt | ClCG05G015030 | GH3 | 1.389 | Auxin | GH3/DFL1 |
Treatment | Gene_id | Description | Log2 Fold Change | Name |
---|---|---|---|---|
HighZn_11 dpt | ClCG00G003890 | Kinase family protein | −1.7089 | SnRK2 |
ClCG05G017790 | Abscisic acid receptor PYR1 | −1.8846 | PYR/PYL | |
ClCG07G011590 | Nucleoside diphosphate kinase | −1.1574 | NDPK2 | |
ClCG09G008560 | Kinase family protein | −1.0076 | OXI1 | |
ClCG11G001650 | Protein kinase | 1.2952 | ANP1 | |
HighZn_FON_11 dpt | ClCG03G000130 | WRKY transcription factor 07 | 1.5388 | WRKY33 |
ClCG07G007900 | 1-aminocyclopropane-1-carboxylate synthase | 1.7681 | ACS6 | |
ClCG10G001590 | Transcription factor MYC2-like protein | 2.4574 | MYC2 | |
ClCG10G013100 | Respiratory burst oxidase-like protein | 1.5519 | RbohD | |
ClCG10G022500 | WRKY 7 transcription factor | 2.0214 | WRKY33 | |
HighZn_RKN_11 dpt | ClCG01G020770 | Chitinase | −1.0037 | ChiB |
ClCG02G007190 | Cysteine-rich venom protein | −1.3058 | PR1 | |
ClCG02G015820 | Protein kinase, putative | 0.98462 | ANP1 | |
ClCG03G000130 | WRKY transcription factor 07 | 2.0512 | WRKY33 | |
ClCG03G001230 | Protein phosphatase 2C | 1.0321 | PP2C | |
ClCG03G003540 | Nucleoside diphosphate kinase | −1.1075 | NDPK2 | |
ClCG03G016180 | Protein phosphatase 2c, putative | 1.5072 | PP2C | |
ClCG05G000910 | Abscisic acid receptor PYR1 | −0.78244 | PYR/PYL | |
ClCG05G004370 | Ethylene-responsive transcription factor 1B, putative | 1.9806 | ERF1 | |
ClCG05G008820 | Protein phosphatase 2c, putative | 2.2817 | PP2C | |
ClCG05G015780 | Leucine-rich receptor-like protein kinase family protein LENGTH = 976 | 2.7165 | ER/ERLs | |
ClCG05G017790 | Abscisic acid receptor PYR1 | −1.8103 | PYR/PYL | |
ClCG07G007900 | 1-aminocyclopropane-1-carboxylate synthase | 2.5606 | ACS6 | |
ClCG09G013300 | Receptor-like protein kinase | 2.4712 | ER/ERLs | |
ClCG09G015420 | Copper-transporting atpase paa1, putative | −1.1722 | RAN1 | |
ClCG10G001590 | Transcription factor MYC2-like protein | 3.1504 | MYC2 | |
ClCG10G013100 | Respiratory burst oxidase-like protein | 2.6512 | RbohD | |
ClCG10G022500 | WRKY 7 transcription factor | 2.1625 | WRKY33 | |
ClCG11G018720 | Catalase | −1.4567 | CAT1 | |
LZ_FON_11 dpt | ClCG10G001590 | Transcription factor MYC2-like protein | 1.7156 | MYC2 |
LZ_FON_RKN_11 dpt | ClCG07G011590 | Nucleoside diphosphate kinase | −0.96588 | NDPK2 |
ClCG10G001590 | Transcription factor MYC2-like protein | 1.8151 | MYC2 | |
ClCG11G001650 | Protein kinase | 1.5157 | ANP1 | |
Stnr_FON | ClCG03G000130 | WRKY transcription factor 07 | 1.0872 | NDPK2 |
ClCG07G007900 | 1-aminocyclopropane-1-carboxylate synthase | 1.2221 | MYC2 | |
ClCG10G001590 | Transcription factor MYC2-like protein | 1.8784 | ANP1 | |
ClCG10G013100 | Respiratory burst oxidase-like protein | 1.3053 | RbohD | |
ClCG10G022500 | WRKY 7 transcription factor | 2.0338 | WRKY33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karki, K.; Coolong, T.; Kousik, C.; Petkar, A.; Myers, B.K.; Hajihassani, A.; Mandal, M.; Dutta, B. The Transcriptomic Profile of Watermelon Is Affected by Zinc in the Presence of Fusarium oxysporum f. sp. niveum and Meloidogyne incognita. Pathogens 2021, 10, 796. https://doi.org/10.3390/pathogens10070796
Karki K, Coolong T, Kousik C, Petkar A, Myers BK, Hajihassani A, Mandal M, Dutta B. The Transcriptomic Profile of Watermelon Is Affected by Zinc in the Presence of Fusarium oxysporum f. sp. niveum and Meloidogyne incognita. Pathogens. 2021; 10(7):796. https://doi.org/10.3390/pathogens10070796
Chicago/Turabian StyleKarki, Kasmita, Tim Coolong, Chandrasekar Kousik, Aparna Petkar, Brendon K. Myers, Abolfazl Hajihassani, Mihir Mandal, and Bhabesh Dutta. 2021. "The Transcriptomic Profile of Watermelon Is Affected by Zinc in the Presence of Fusarium oxysporum f. sp. niveum and Meloidogyne incognita" Pathogens 10, no. 7: 796. https://doi.org/10.3390/pathogens10070796
APA StyleKarki, K., Coolong, T., Kousik, C., Petkar, A., Myers, B. K., Hajihassani, A., Mandal, M., & Dutta, B. (2021). The Transcriptomic Profile of Watermelon Is Affected by Zinc in the Presence of Fusarium oxysporum f. sp. niveum and Meloidogyne incognita. Pathogens, 10(7), 796. https://doi.org/10.3390/pathogens10070796