Bioformulations with Beneficial Microbial Consortia, a Bioactive Compound and Plant Biopolymers Modulate Sweet Basil Productivity, Photosynthetic Activity and Metabolites
Abstract
:1. Introduction
2. Results
2.1. Growth and Yield Parameters
2.2. SPAD Index, Colorimetric Components
2.3. Physiological Parameters
2.4. Untargeted Metabolomic Analysis and Compounds Differentially Expressed in the Organic Extracts
2.5. Targeted Metabolomic Analysis: Quantification of p-Coumaric, Caffeic and Rosmarinic Acids
3. Discussion
4. Materials and Methods
4.1. Application of Microbial Biostimulants
4.2. Plant Material, Greenhouse Experimental Design and Treatments
4.3. Sampling and Yield Assessment
4.4. SPAD Index and Colorimetric Components
4.5. Determination of Leaf Gas Exchange and Photosystem II Efficiency
4.6. Preparation of Basil Leaves Extracts
4.7. LC-MS analysis—Targeted and Untargeted Metabolome
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rouphael, Y.; Giordano, M.; Pannico, A.; Di Stasio, E.; Raimondi, G.; El-Nakhel, C.; Di Mola, I.; Mori, M.; De Pascale, S. Nutritional quality of hydroponically grown basil in response to salinity and growing season. In International Symposium on New Technologies for Environment Control, Energy-Saving and Crop Production in Greenhouse and Plant 2017; Yang, Q., Li, T., Eds.; ISHS Acta Horticulturae: Beijing, China, 2018; Volume 1227, pp. 693–698. [Google Scholar] [CrossRef]
- Corrado, G.; Lucini, L.; Miras-Moreno, B.; Chiaiese, P.; Colla, G.; De Pascale, S.; Rouphael, Y. Metabolic Insights into the Anion-Anion Antagonism in Sweet Basil: Effects of Different Nitrate/Chloride Ratios in the Nutrient Solution. Int. J. Mol. Sci. 2020, 21, 2482. [Google Scholar] [CrossRef] [Green Version]
- Corrado, G.; Formisano, L.; De Micco, V.; Pannico, A.; Giordano, M.; El-Nakhel, C.; Chiaiese, P.; Sacchi, R.; Rouphael, Y. Understanding the Morpho-Anatomical, Physiological, and Functional Response of Sweet Basil to Isosmotic Nitrate to Chloride Ratios. Biology 2020, 9, 158. [Google Scholar] [CrossRef]
- Corrado, G.; Chiaiese, P.; Lucini, L.; Miras-Moreno, B.; Colla, G.; Rouphael, Y. Successive Harvests Affect Yield, Quality and Metabolic Profile of Sweet Basil (Ocimum basilicum L.). Agronomy 2020, 10, 830. [Google Scholar] [CrossRef]
- Dai, Q.; Borenstein, A.R.; Wu, Y.; Jackson, J.C.; Larson, E.B. Fruit and Vegetable Juices and Alzheimer’s Disease: The Kame Project. Am. J. Med. 2006, 119, 751–759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Checkoway, H.; Powers, K.; Smith-Weller, T.; Franklin, G.M.; Longstreth, W.T.; Swanson, P.D. Parkinson’s Disease Risks Associated with Cigarette Smoking, Alcohol Consumption, and Caffeine Intake. Am. J. Epidemiol. 2002, 155, 732–738. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.I.; Anwar, F.; Sherazi, S.T.H.; Przybylski, R. Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum L.) essential oils depends on seasonal variations. Food Chem. 2008, 108, 986–995. [Google Scholar] [CrossRef]
- Vauzour, D.; Rodriguez-Mateos, A.; Corona, G.; Oruna-Concha, M.J.; Spencer, J.P.E. Polyphenols and Human Health: Prevention of Disease and Mechanisms of Action. Nutrients 2010, 2, 1106–1131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Commenges, D.; Scotet, V.; Renaud, S.; Jacqmin-Gadda, H.; Barberger-Gateau, P.; Dartigues, J.-F. Intake of flavonoids and risk of dementia. Eur. J. Epidemiol. 2000, 16, 357–363. [Google Scholar] [CrossRef]
- Quideau, S.; Deffieux, D.; Douat-Casassus, C.; Pouysegu, L. ChemInform Abstract: Plant Polyphenols: Chemical Properties, Biological Activities, and Synthesis. Angew. Chem. Int. Ed. 2011, 42, 586–621. [Google Scholar] [CrossRef] [PubMed]
- Pragasam, S.J.; Venkatesan, V.; Rasool, M. Immunomodulatory and Anti-inflammatory Effect of p-Coumaric Acid, a Common Dietary Polyphenol on Experimental Inflammation in Rats. Inflammation 2013, 36, 169–176. [Google Scholar] [CrossRef]
- Rajendra Prasad, N.; Karthikeyan, A.; Karthikeyan, S.; Venkata Reddy, B. Inhibitory effect of caffeic acid on cancer cell proliferation by oxidative mechanism in human HT-1080 fibrosarcoma cell line. Mol. Cell. Biochem. 2011, 349, 11–19. [Google Scholar] [CrossRef]
- Olthof, M.R.; Hollman, P.C.H.; Katan, M.B. Chlorogenic Acid and Caffeic Acid Are Absorbed in Humans. J. Nutr. 2001, 131, 66–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hakkim, F.L.; Shankar, C.G.; Girija, S. Chemical Composition and Antioxidant Property of Holy Basil (Ocimum sanctum L.) Leaves, Stems, and Inflorescence and Their in Vitro Callus Cultures. J. Agric. Food Chem. 2007, 55, 9109–9117. [Google Scholar] [CrossRef] [PubMed]
- Sanbongi, C.; Takano, H.; Osakabe, N.; Sasa, N.; Natsume, M.; Yanagisawa, R.; Inoue, K.-I.; Sadakane, K.; Ichinose, T.; Yoshikawa, T. Rosmarinic acid in perilla extract inhibits allergic inflammation induced by mite allergen, in a mouse model. Clin. Exp. Allergy 2004, 34, 971–977. [Google Scholar] [CrossRef] [PubMed]
- Bais, H.P.; Walker, T.S.; Schweizer, H.P.; Vivanco, J.M. Root specific elicitation and antimicrobial activity of rosmarinic acid in hairy root cultures of Ocimum basilicum. Plant Physiol. Biochem. 2002, 40, 983–995. [Google Scholar] [CrossRef]
- Kiferle, C.; Lucchesini, M.; Mensuali, A.; Maggini, R.; Raffaelli, A.; Pardossi, A. Rosmarinic acid content in basil plants grown in vitro and in hydroponics. Centr. Eur. J. Biol. 2011, 6, 946–957. [Google Scholar] [CrossRef]
- Colla, G.; Rouphael, Y. Biostimulants in horticulture. Sci. Hortic. 2015, 196, 1–2. [Google Scholar] [CrossRef]
- Chouyia, F.E.; Romano, I.; Fechtali, T.; Fagnano, M.; Fiorentino, N.; Visconti, D.; Idbella, M.; Ventorino, V.; Pepe, O. P-Solubilizing Streptomyces roseocinereus MS1B15 With Multiple Plant Growth-Promoting Traits Enhance Barley Development and Regulate Rhizosphere Microbial Population. Front. Plant Sci. 2020, 11, 1137. [Google Scholar] [CrossRef]
- Romano, I.; Ventorino, V.; Ambrosino, P.; Testa, A.; Chouyia, F.E.; Pepe, O. Development and Application of Low-Cost and Eco-Sustainable Bio-Stimulant Containing a New Plant Growth-Promoting Strain Kosakonia pseudosacchari TL13. Front. Microbiol. 2020, 11, 11. [Google Scholar] [CrossRef]
- Vinale, F.; Sivasithamparam, K. Beneficial effects of Trichoderma secondary metabolites on crops. Phytother. Res. 2020, 34, 2835–2842. [Google Scholar] [CrossRef]
- Woo, S.L.; Pepe, O. Microbial Consortia: Promising Probiotics as Plant Biostimulants for Sustainable Agriculture. Front. Plant Sci. 2018, 9, 1801. [Google Scholar] [CrossRef]
- Wani, S.A.; Chand, S.; Ali, T. Potential use of Azotobacter chroococcum in crop production: An overview. Curr. Agric. Res. 2013, 1, 35–38. [Google Scholar] [CrossRef]
- Rizvi, A.; Khan, M.S. Heavy metal induced oxidative damage and root morphology alterations of maize (Zea mays L.) plants and stress mitigation by metal tolerant nitrogen fixing Azotobacter chroococcum. Ecotoxicol. Environ. Saf. 2018, 157, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Gurikar, C.; Naik, M.K.; Sreenivasa, M.Y. Azotobacter: PGPR Activities with Special Reference to Effect of Pesticides and Biodegradation. In Microbial Inoculants in Sustainable Agricultural Productivity; Singh, D., Singh, H., Prabha R, Eds.; Springer International Publishing: Cham, Switzerland, 2015; Volume 1, pp. 229–244. [Google Scholar] [CrossRef]
- Harman, G.E.; Howell, C.R.; Viterbo, A.; Chet, I.; Lorito, M. Trichoderma species—opportunistic, avirulent plant symbionts. Nat. Rev. Microbiol. 2004, 2, 43–56. [Google Scholar] [CrossRef] [PubMed]
- Shoresh, M.; Harman, G.E. The relationship between increased growth and resistance induced in plants by root colonizing microbes. Plant Signal. Behav. 2008, 3, 737–739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raaijmakers, J.M.; Paulitz, T.; Steinberg, C.; Alabouvette, C.; Moënne-Loccoz, Y. The rhizosphere: A playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 2009, 321, 341–361. [Google Scholar] [CrossRef] [Green Version]
- Lorito, M.; Woo, S. Trichoderma: A Multi-Purpose Tool for Integrated Pest Management. In Principles of Plant-Microbe Interactions; Lugtenberg, B., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 345–353. [Google Scholar] [CrossRef]
- Vinale, F.; Sivasithamparam, K.; Ghisalberti, E.L.; Marra, R.; Woo, S.L.; Lorito, M. Trichoderma–plant–pathogen interactions. Soil Biol. Biochem. 2008, 40, 1–10. [Google Scholar] [CrossRef]
- Vinale, F.; Sivasithamparam, K.; Ghisalberti, E.L.; Woo, S.L.; Nigro, M.; Marra, R.; Lombardi, N.; Pascale, A.; Ruocco, M.; Lanzuise, S.; et al. Trichoderma Secondary Metabolites Active on Plants and Fungal Pathogens. Open Mycol. J. 2014, 8, 127–139. [Google Scholar] [CrossRef] [Green Version]
- Vinale, F.; Sivasithamparam, K.; Ghisalberti, E.L.; Ruocco, M.; Woo, S.L.; Lorito, M. Trichoderma Secondary Metabolites that Affect Plant Metabolism. Nat. Prod. Commun. 2012, 7, 1545–1550. [Google Scholar] [CrossRef] [Green Version]
- Vinale, F.; Nigro, M.; Sivasithamparam, K.; Flematti, G.; Ghisalberti, E.L.; Ruocco, M.; Varlese, R.; Marra, R.; Lanzuise, S.; Eid, A.; et al. Harzianic acid: A novel siderophore from Trichoderma harzianum. FEMS Microbiol. Lett. 2013, 347, 123–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucini, L.; Rouphael, Y.; Cardarelli, M.; Bonini, P.; Baffi, C.; Colla, G. A Vegetal Biopolymer-Based Biostimulant Promoted Root Growth in Melon While Triggering Brassinosteroids and Stress-Related Compounds. Front. Plant Sci. 2018, 9, 472. [Google Scholar] [CrossRef] [Green Version]
- Le Mire, G.; Nguyen, M.L.; Fassotte, B.; du Jardin, P.; Verheggen, F.; Delaplace, P.; Jijakli, M. Review: Implementing plant biostimulants and biocontrol strategies in the agroecological management of cultivated ecosystems. Biotechnol. Agron. Soc. Environ. 2016, 20, 299–313. [Google Scholar] [CrossRef]
- Guilherme, M.R.; Aouada, F.A.; Fajardo, A.; Martins, A.F.; Paulino, A.; Davi, M.F.; Rubira, A.; Muniz, E. Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrier: A review. Eur. Polym. J. 2015, 72, 365–385. [Google Scholar] [CrossRef] [Green Version]
- Coeshott, C.M.; Smithson, S.L.; Verderber, E.; Samaniego, A.; Blonder, J.M.; Rosenthal, G.J.; Westerink, M.A.J. Pluronic®F127-based systemic vaccine delivery systems. Vaccine 2004, 22, 2396–2405. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Shi, Y.; Chen, Y.; Yu, S.; Hao, J.; Luo, J.; Sha, X.; Fang, X. Enhanced antitumor efficacy by Paclitaxel-loaded Pluronic P123/F127 mixed micelles against non-small cell lung cancer based on passive tumor targeting and modulation of drug resistance. Eur. J. Pharm. Biopharm. 2010, 75, 341–353. [Google Scholar] [CrossRef] [PubMed]
- Ensign, L.M.; Lai, S.K.; Wang, Y.-Y.; Yang, M.; Mert, O.; Hanes, J.; Cone, R. Pretreatment of Human Cervicovaginal Mucus with Pluronic F127 Enhances Nanoparticle Penetration without Compromising Mucus Barrier Properties to Herpes Simplex Virus. Biomacromolecules 2014, 15, 4403–4409. [Google Scholar] [CrossRef]
- Akash, M.S.H.; Rehman, K.; Chen, S. Pluronic F127-Based Thermosensitive Gels for Delivery of Therapeutic Proteins and Peptides. Polym. Rev. 2014, 54, 573–597. [Google Scholar] [CrossRef]
- López-Bucio, J.; Pelagio-Flores, R.; Herrera-Estrella, A. Trichoderma as biostimulant: Exploiting the multilevel properties of a plant beneficial fungus. Sci. Hortic. 2015, 196, 109–123. [Google Scholar] [CrossRef]
- Ruzzi, M.; Aroca, R. Plant growth-promoting rhizobacteria act as biostimulants in horticulture. Sci. Hortic. 2015, 196, 124–134. [Google Scholar] [CrossRef]
- Carillo, P.; Woo, S.L.; Comite, E.; El-Nakhel, C.; Rouphael, Y.; Fusco, G.M.; Borzacchiello, A.; Lanzuise, S.; Vinale, F. Application of Trichoderma harzianum, 6-Pentyl-α-pyrone and Plant Biopolymer Formulations Modulate Plant Metabolism and Fruit Quality of Plum Tomatoes. Plants 2020, 9, 771. [Google Scholar] [CrossRef] [PubMed]
- Sabra, M.; Aboulnasr, A.; Franken, P.; Perreca, E.; Wright, L.P.; Camehl, I. Beneficial Root Endophytic Fungi Increase Growth and Quality Parameters of Sweet Basil in Heavy Metal Contaminated Soil. Front. Plant Sci. 2018, 9, 1726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinci, G.; Cozzolino, V.; Mazzei, P.; Monda, H.; Spaccini, R.; Piccolo, A. An alternative to mineral phosphorus fertilizers: The combined effects of Trichoderma harzianum and compost on Zea mays, as revealed by 1H NMR and GC-MS metabolomics. PLoS ONE 2018, 13, e0209664. [Google Scholar] [CrossRef] [Green Version]
- Shirzadi, F.; Ardakani, M.R.; Asadirahmani, H.; Asgari, A. Effects of mycorrhiza (Glomus intraradices) azotobacter (Azotobacter chroococcum) and vermicompost on yield and essential oil of basil (Ocimum basilicum L.) in organic agriculture. Int. J. Biosc. 2015, 6, 1–6. [Google Scholar] [CrossRef]
- Roshanpour, N.; Darzi, M.T.; Hadi, M.H.S. Effects of plant growth promoter bacteria on biomass and yield of basil (Ocimum basilicum L.). Int. J. Adv. Biol. Biom. Res. 2014, 2, 2077–2085. [Google Scholar]
- Silletti, S.; Di Stasio, E.; Van Oosten, M.J.; Ventorino, V.; Pepe, O.; Napolitano, M.; Marra, R.; Woo, S.L.; Cirillo, V.; Maggio, A. Biostimulant Activity of Azotobacter chroococcum and Trichoderma harzianum in Durum Wheat under Water and Nitrogen Deficiency. Agronomy 2021, 11, 380. [Google Scholar] [CrossRef]
- Jetiyanon, K. Defensive-related enzyme response in plants treated with a mixture of Bacillus strains (IN937a and IN937b) against different pathogens. Biol. Control. 2007, 42, 178–185. [Google Scholar] [CrossRef]
- Kannan, V.; Sureendar, R. Synergistic effect of beneficial rhizosphere microflora in biocontrol and plant growth promotion. J. Basic Microbiol. 2008, 49, 158–164. [Google Scholar] [CrossRef]
- Srivastava, R.; Khalid, A.; Singh, U.; Sharma, A. Evaluation of arbuscular mycorrhizal fungus, fluorescent Pseudomonas and Trichoderma harzianum formulation against Fusarium oxysporum f. sp. lycopersici for the management of tomato wilt. Biol. Control. 2010, 53, 24–31. [Google Scholar] [CrossRef]
- Stockwell, V.O.; Johnson, K.B.; Sugar, D.; Loper, J.E. Mechanistically Compatible Mixtures of Bacterial Antagonists Improve Biological Control of Fire Blight of Pear. Phytopathol 2011, 101, 113–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pascale, A.; Vinale, F.; Manganiello, G.; Nigro, M.; Lanzuise, S.; Ruocco, M.; Marra, R.; Lombardi, N.; Woo, S.L.; Lorito, M. Trichoderma and its secondary metabolites improve yield and quality of grapes. Crop. Prot. 2017, 92, 176–181. [Google Scholar] [CrossRef] [Green Version]
- Rouphael, Y.; Carillo, P.; Colla, G.; Fiorentino, N.; Sabatino, L.; El-Nakhel, C.; Giordano, M.; Pannico, A.; Cirillo, V.; Shabani, E.; et al. Appraisal of Combined Applications of Trichoderma virens and a Biopolymer-Based Biostimulant on Lettuce Agronomical, Physiological, and Qualitative Properties under Variable N Regimes. Agronomy 2020, 10, 196. [Google Scholar] [CrossRef] [Green Version]
- Caruso, G.; El-Nakhel, C.; Rouphael, Y.; Comite, E.; Lombardi, N.; Cuciniello, A.; Woo, S.L. Diplotaxis tenuifolia (L.) DC. Yield and Quality as Influenced by Cropping Season, Protein Hydrolysates, and Trichoderma Applications. Plants 2020, 9, 697. [Google Scholar] [CrossRef] [PubMed]
- Van Oosten, M.J.; Di Stasio, E.; Cirillo, V.; Silletti, S.; Ventorino, V.; Pepe, O.; Raimondi, G.; Maggio, A. Root inoculation with Azotobacter chroococcum 76A enhances tomato plants adaptation to salt stress under low N conditions. BMC Plant Biol. 2018, 18, 205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teliban, G.-C.; Burducea, M.; Zheljazkov, V.; Dincheva, I.; Badjakov, I.; Munteanu, N.; Mihalache, G.; Cojocaru, A.; Popa, L.-D.; Stoleru, V. The Effect of Myco-Biocontrol Based Formulates on Yield, Physiology and Secondary Products of Organically Grown Basil. Agriculture 2021, 11, 180. [Google Scholar] [CrossRef]
- Bahari Saravi, H.; Gholami, A.; Pirdashti, H.; Baradaran Firouzabadi, M.; Asghari, H. The effects of endophyte symbiosis and spermidine foliar application on chlorophyll fluorescence and photosynthetic pigments of stevia (Stevia rebaudiana Bertoni) medicinal plant under salinity conditions. J. Plant Proc. Func. 2019, 8, 47–64. [Google Scholar]
- González-Rodríguez, R.M.; Serrato, R.; Molina, J.G.; Aragon, C.; Olalde, V.; E Pulido, L.; Dibut, B.; Lorenzo, J.C. Biochemical and physiological changes produced by Azotobacter chroococcum (INIFAT5 strain) on pineapple in vitro-plantlets during acclimatization. Acta Physiol. Plant. 2013, 35, 3483–3487. [Google Scholar] [CrossRef]
- Holm, Y. Bioactivity of basil. In Basil: The genus Ocimum; Hiltunen, R., Holm, Y., Eds.; Harwood Academic Publishers: Amsterdam, The Netherlands, 1999; Volume 10, pp. 113–135. [Google Scholar]
- Chanwitheesuk, A.; Teerawutgulrag, A.; Rakariyatham, N. Screening of antioxidant activity ad antioxidant compounds of some edible plants of Thailand. Food Chem. 2005, 92, 491–497. [Google Scholar] [CrossRef]
- Suppakul, P.; Miltz, J.; Sonneveld, K.; Bigger, S.W. Antimicrobial Properties of Basil and Its Possible Application in Food Packaging. J. Agric. Food Chem. 2003, 51, 3197–3207. [Google Scholar] [CrossRef]
- Carović-Stanko, K.; Orlic, S.; Politeo, O.; Strikić, F.; Kolak, I.; Milos, M.; Šatović, Z. Composition and antibacterial activities of essential oils of seven Ocimum taxa. Food Chem. 2010, 119, 196–201. [Google Scholar] [CrossRef]
- Freire, C.M.M.; Marques, M.; Costa, M. Effects of seasonal variation on the central nervous system activity of Ocimum gratissimum L. essential oil. J. Ethnopharmacol. 2006, 105, 161–166. [Google Scholar] [CrossRef]
- Shan, B.; Cai, Y.Z.; Sun, M.; Corke, H. Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents. J. Agri. Food Chem. 2005, 53, 7749–7759. [Google Scholar] [CrossRef]
- Surveswaran, S.; Cai, Y.-Z.; Corke, H.; Sun, M. Systematic evaluation of natural phenolic antioxidants from 133 Indian medicinal plants. Food Chem. 2007, 102, 938–953. [Google Scholar] [CrossRef]
- Lee, J.; Scagel, C.F. Chicoric acid found in basil (Ocimum basilicum L.) leaves. Food Chem. 2009, 115, 650–656. [Google Scholar] [CrossRef]
- Szeto, Y.T.S.; Kwok, T.C.; Benzie, I. Effects of a long-term vegetarian diet on biomarkers of antioxidant status and cardiovascular disease risk. Nutrition 2004, 20, 863–866. [Google Scholar] [CrossRef] [PubMed]
- Orsini, F.; Maggio, A.; Rouphael, Y.; De Pascale, S. “Physiological quality” of organically grown vegetable. Sci. Hortic. 2016, 208, 131–139. [Google Scholar] [CrossRef]
- Scagel, C.F.; Lee, J. Phenolic Composition of Basil Plants Is Differentially Altered by Plant Nutrient Status and Inoculation with Mycorrhizal Fungi. Hort. Sci. 2012, 47, 660–671. [Google Scholar] [CrossRef]
- Cai, F.; Druzhinina, I.S. In honor of John Bissett: Authoritative guidelines on molecular identification of Trichoderma. Fungal Divers. 2021, 107, 1–69. [Google Scholar] [CrossRef]
- Viscardi, S.; Ventorino, V.; Duran, P.; Maggio, A.; De Pascale, S.; Mora, M.L.; Pepe, O. Assessment of plant growth promoting activities and abiotic stress tolerance of Azotobacter chroococcum strains for a potential use in sustainable agriculture. J. Soil Sci. Plant Nutr. 2016, 16, 848–863. [Google Scholar] [CrossRef] [Green Version]
- Marra, R.; Vinale, F.; Cesarano, G.; Lombardi, N.; D’Errico, G.; Crasto, A.; Mazzei, P.; Piccolo, A.; Incerti, G.; Woo, S.L.; et al. Biochars from olive mill waste have contrasting effects on plants, fungi and phytoparasitic nematodes. PLoS ONE 2018, 13, e0198728. [Google Scholar] [CrossRef] [PubMed]
Treatment | Leaf Number | Leaf Yield FW | Aboveground Biomass FW | Aboveground Biomass DW | Root DW | DM |
---|---|---|---|---|---|---|
(No. plant−1) | (g plant−1) | (g plant−1) | (g plant−1) | (g plant−1) | (%) | |
CTRL | 290.6 a | 93.85 bcd | 153.0 cd | 17.48 c | 4.44 d | 11.42 |
BP | 208.7 f | 92.81 bcd | 166.8 bc | 18.58 bc | 4.79 cd | 11.14 |
T22 | 236.6 cde | 86.52 cd | 151.2 cd | 17.54 c | 4.99 bcd | 11.59 |
76A | 219.8 ef | 94.15 bc | 159.7 bc | 18.87 bc | 6.75 a | 11.80 |
6PP | 226.1 def | 90.83 bcd | 178.3 ab | 20.95 ab | 5.24 bcd | 11.76 |
BP + T22 | 227.4 def | 86.64 cd | 148.2 cd | 16.54 c | 5.81 b | 11.18 |
BP + 76A | 255.7 bc | 87.06 cd | 153.0 cd | 17.71 c | 5.59 bc | 11.61 |
BP + 6PP | 272.8 ab | 106.26 ab | 193.2 a | 21.56 a | 4.72 cd | 11.16 |
T22 + 76A | 265.2 b | 77.41 d | 130.8 d | 16.19 c | 5.17 bcd | 12.39 |
BP + T22 + 76A | 241.5 cd | 109.62 a | 189.1 a | 22.19 a | 5.67 bc | 11.73 |
Significance | *** | ** | *** | *** | *** | ns |
Treatment | SPAD Index | L* | a* | b* |
---|---|---|---|---|
CTRL | 33.95 d | 41.69 | −6.80 c | 14.65 |
BP | 36.17 ab | 41.10 | −6.30 abc | 13.38 |
T22 | 36.97 a | 41.17 | −6.46 bc | 14.05 |
76A | 35.78 ab | 41.75 | −6.22 ab | 13.47 |
6PP | 34.26 cd | 41.24 | −6.20 ab | 12.96 |
BP + T22 | 35.30 bc | 41.09 | −5.87 a | 12.45 |
BP + 76A | 36.19 ab | 42.03 | −6.37 abc | 13.14 |
BP + 6PP | 33.80 d | 41.78 | −6.52 bc | 14.48 |
T22 + 76A | 36.28 ab | 41.78 | −6.27 abc | 13.08 |
BP + T22 + 76A | 35.09 bcd | 40.05 | −6.61 bc | 13.87 |
Significance | *** | ns | * | ns |
Treatment | ACO2 | rs | E | Fv/Fm |
---|---|---|---|---|
(μmol CO2 m−2 s−1) | (m2 s1 mol−1) | (mol H2O m−2 s−1) | ||
CTRL | 15.75 d | 3.85 | 4.62 | 0.81 bc |
BP | 17.61 ab | 4.69 | 4.27 | 0.82 a |
T22 | 17.62 ab | 4.90 | 4.48 | 0.83 a |
76A | 18.28 a | 4.05 | 4.46 | 0.82 a |
6PP | 16.55 cd | 4.77 | 4.24 | 0.82 ab |
BP + T22 | 16.43 cd | 3.84 | 4.80 | 0.81 bc |
BP + 76A | 17.22 bc | 4.43 | 4.52 | 0.81 bc |
BP + 6PP | 16.48 cd | 5.18 | 4.41 | 0.79 d |
T22 + 76A | 17.54 ab | 4.36 | 4.86 | 0.80 c |
BP + T22 + 76A | 16.55 cd | 4.59 | 4.49 | 0.81 c |
Significance | *** | ns | ns | *** |
Compound | Mass | RT | Chemical Empirical Formula | Similarity Score |
---|---|---|---|---|
Isocitric acid | 192.0279 | 0.976 | C6H8O7 | 83.63 |
Caffeic acid | 180.0418 | 2.362 | C9H8O4 | 87.15 |
4-hydroxybenzoic acid | 138.0319 | 2.853 | C7H6O3 | 85.75 |
Luteolin-3-O-glucuronide | 448.1219 | 3.888 | C21H18O12 | 98.66 |
Ferulic acid | 194.0577 | 4.159 | C10H10O4 | 86.95 |
Lupinisoflavone E | 438.1652 | 4.182 | C25H26O7 | 67.85 |
Phenylacetic acid | 136.0518 | 4.336 | C8H8O2 | 86.73 |
Tricetin 3′-methyl ether 7-glucuronide | 492.0885 | 4.439 | C22H20O13 | 87.54 |
Medioresinol | 388.1731 | 4.463 | C21H24O7 | 97.86 |
Foliasalacioside A2 | 434.2136 | 4.644 | C19H32O8 | 93.11 |
Apigenin-7-O-glucoside | 432.1993 | 4.714 | C21H20O10 | 83.72 |
7-hydroxycoumarin | 162.0316 | 5.006 | C9H6O3 | 86.6 |
Rosmarinic acid | 360.0843 | 5.015 | C18H16O8 | 99.32 |
Quercetin-5,3′-dimethyl ether-3-glucoside | 492.1269 | 5.026 | C23H24O12 | 49.67 |
p-coumaric acid | 164.0837 | 5.148 | C9H8O3 | 87.36 |
Cirsimaritin | 314.079 | 5.613 | C17H14O6 | 99.65 |
Rotundic acid | 488.3499 | 6.571 | C30H48O5 | 96.79 |
Colneleic acid | 294.2194 | 6.961 | C18H30O3 | 98.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Comite, E.; El-Nakhel, C.; Rouphael, Y.; Ventorino, V.; Pepe, O.; Borzacchiello, A.; Vinale, F.; Rigano, D.; Staropoli, A.; Lorito, M.; et al. Bioformulations with Beneficial Microbial Consortia, a Bioactive Compound and Plant Biopolymers Modulate Sweet Basil Productivity, Photosynthetic Activity and Metabolites. Pathogens 2021, 10, 870. https://doi.org/10.3390/pathogens10070870
Comite E, El-Nakhel C, Rouphael Y, Ventorino V, Pepe O, Borzacchiello A, Vinale F, Rigano D, Staropoli A, Lorito M, et al. Bioformulations with Beneficial Microbial Consortia, a Bioactive Compound and Plant Biopolymers Modulate Sweet Basil Productivity, Photosynthetic Activity and Metabolites. Pathogens. 2021; 10(7):870. https://doi.org/10.3390/pathogens10070870
Chicago/Turabian StyleComite, Ernesto, Christophe El-Nakhel, Youssef Rouphael, Valeria Ventorino, Olimpia Pepe, Assunta Borzacchiello, Francesco Vinale, Daniela Rigano, Alessia Staropoli, Matteo Lorito, and et al. 2021. "Bioformulations with Beneficial Microbial Consortia, a Bioactive Compound and Plant Biopolymers Modulate Sweet Basil Productivity, Photosynthetic Activity and Metabolites" Pathogens 10, no. 7: 870. https://doi.org/10.3390/pathogens10070870
APA StyleComite, E., El-Nakhel, C., Rouphael, Y., Ventorino, V., Pepe, O., Borzacchiello, A., Vinale, F., Rigano, D., Staropoli, A., Lorito, M., & Woo, S. L. (2021). Bioformulations with Beneficial Microbial Consortia, a Bioactive Compound and Plant Biopolymers Modulate Sweet Basil Productivity, Photosynthetic Activity and Metabolites. Pathogens, 10(7), 870. https://doi.org/10.3390/pathogens10070870