Exploring the Ability of Meningococcal Vaccines to Elicit Mucosal Immunity: Insights from Humans and Mice
Abstract
:1. Introduction
2. CEACAM1-Humanized Mice as a Model for Meningococcal Nasal Colonization
3. Serum Bactericidal Antibodies and Protection from Invasive Disease
4. Infection-Induced Immunity to Nasal Colonization
5. Polysaccharide Conjugate Vaccines
6. Protein Vaccines
7. Interaction between Human Protein and Immunizing Antigen
8. Outstanding Questions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Balmer, P.; Burman, C.; Serra, L.; York, L.J. Impact of meningococcal vaccination on carriage and disease transmission: A review of the literature. Hum. Vaccines Immunother. 2018, 14, 1118–1130. [Google Scholar] [CrossRef] [Green Version]
- Campbell, H.; Parikh, S.R.; Borrow, R.; Kaczmarski, E.; Ramsay, M.E.; Ladhani, S.N. Presentation with gastrointestinal symptoms and high case fatality associated with group W meningococcal disease (MenW) in teenagers, England, July 2015 to January 2016. Eurosurveillance 2016, 21. [Google Scholar] [CrossRef] [PubMed]
- Stinson, C.; Burman, C.; Presa, J.; Abalos, M. Atypical presentation of invasive meningococcal disease caused by serogroup W meningococci. Epidemiol. Infect. 2020, 148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dretler, A.W.; Rouphael, N.G.; Stephens, D.S. Progress toward the global control of Neisseria meningitidis: 21st century vaccines, current guidelines, and challenges for future vaccine development. Hum. Vaccines Immunother. 2018, 14, 1146–1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pace, D.; Pollard, A.J. Meningococcal disease: Clinical presentation and sequelae. Vaccine 2011, 30, B3–B9. [Google Scholar] [CrossRef]
- Olbrich, K.J.; Müller, D.; Schumacher, S.; Beck, E.; Meszaros, K.; Koerber, F. Systematic Review of invasive meningococcal disease: Sequelae and quality of life impact on patients and their caregivers. Infect. Dis. Ther. 2018, 7, 421–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maiden, M.C.J.; Stuart, J.M. Carriage of serogroup C meningococci 1 year after meningococcal C conjugate polysaccharide vaccination. Lancet 2002, 359, 1829–1830. [Google Scholar] [CrossRef]
- Maiden, M.C.J.; Ibarz-Pavón, A.B.; Urwin, R.; Gray, S.J.; Andrews, N.J.; Clarke, S.C.; Walker, A.M.; Evans, M.R.; Kroll, J.S.; Neal, K.R.; et al. Impact of meningococcal serogroup C conjugate vaccines on carriage and herd immunity. J. Infect. Dis. 2008, 197, 737–743. [Google Scholar] [CrossRef]
- Ramsay, M.E.; Andrews, N.J.; Trotter, C.L.; Kaczmarski, E.B.; Miller, E. Herd immunity from meningococcal serogroup C conjugate vaccination in England: Database analysis. Br. Med. J. 2003, 326, 365–366. [Google Scholar] [CrossRef] [Green Version]
- Novak, R.T.; Kambou, J.L.; Diomandé, F.V.K.; Tarbangdo, T.F.; Ouédraogo-Traoré, R.; Sangaré, L.; Lingani, C.; Martin, S.W.; Hatcher, C.; Mayer, L.W.; et al. Serogroup A meningococcal conjugate vaccination in Burkina Faso: Analysis of national surveillance data. Lancet Infect. Dis. 2012, 12, 757–764. [Google Scholar] [CrossRef] [Green Version]
- Collard, J.-M.; Issaka, B.; Zaneidou, M.; Hugonnet, S.; Nicolas, P.; Taha, M.-K.; Greenwood, B.; Jusot, J.-F. Epidemiological changes in meningococcal meningitis in Niger from 2008 to 2011 and the impact of vaccination. BMC Infect. Dis. 2013, 13, 576. [Google Scholar] [CrossRef]
- Kristiansen, P.A.; Diomandé, F.; Ba, A.K.; Sanou, I.; Ouédraogo, A.S.; Ouédraogo, R.; Sangaré, L.; Kandolo, D.; Aké, F.; Saga, I.M.; et al. Impact of the serogroup A meningococcal conjugate vaccine, MenAfriVac, on carriage and herd immunity. Clin. Infect. Dis. 2012, 56, 354–363. [Google Scholar] [CrossRef] [Green Version]
- Kristiansen, P.A.; Ba, A.K.; Ouédraogo, A.-S.; Sanou, I.; Ouédraogo, R.; Sangaré, L.; Diomandé, F.; Kandolo, D.; Saga, I.M.; Misegades, L.; et al. Persistent low carriage of serogroup A Neisseria meningitidis two years after mass vaccination with the meningococcal conjugate vaccine, MenAfriVac. BMC Infect. Dis. 2014, 14, 663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LaForce, F.M.; Djingarey, M.; Viviani, S.; Preziosi, M.-P. Successful African introduction of a new Group A meningococcal conjugate vaccine: Future challenges and next steps. Hum. Vaccines Immunother. 2018, 14, 1098–1102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borrow, R.; Alarcón, P.; Carlos, J.; Caugant, D.A.; Christensen, H.; Debbag, R.; De Wals, P.; Echániz-Aviles, G.; Findlow, J.; Head, C.; et al. The Global Meningococcal Initiative: Global epidemiology, the impact of vaccines on meningococcal disease and the importance of herd protection. Expert Rev. Vaccines 2017, 16, 313–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fine, P.; Eames, K.; Heymann, D.L. “Herd Immunity”: A Rough Guide. Clin. Infect. Dis. 2011, 52, 911–916. [Google Scholar] [CrossRef]
- Johswich, K.O.; McCaw, S.E.; Islam, E.; Sintsova, A.; Gu, A.; Shively, J.E.; Gray-Owen, S.D. In vivo adaptation and persistence of Neisseria meningitidis within the nasopharyngeal mucosa. PLoS Pathog. 2013, 9, e1003509. [Google Scholar] [CrossRef] [Green Version]
- Johswich, K.O.; Gray-Owen, S.D. Modeling Neisseria meningitidis Infection in Mice: Methods and Logistical Considerations for Nasal Colonization and Invasive Disease; Humana Press Inc.: Totowa, NJ, USA, 2019; Volume 1969, pp. 149–168. [Google Scholar]
- Gu, A.; Zhang, Z.; Zhang, N.; Tsark, W.; Shively, J.E. Generation of human CEACAM1 transgenic mice and binding of Neisseria Opa protein to their neutrophils. PLoS ONE 2010, 5, e10067. [Google Scholar] [CrossRef] [Green Version]
- Johswich, K.O.; McCaw, S.E.; Strobel, L.; Frosch, M.; Gray-Owen, S.D. Sterilizing Immunity Elicited by Neisseria meningitidis carriage shows broader protection than predicted by serum antibody cross-reactivity in CEACAM1-humanized mice. Infect. Immun. 2015, 83, 354–363. [Google Scholar] [CrossRef] [Green Version]
- Buckwalter, C.M.; Currie, E.G.; Tsang, R.S.W.; Gray-Owen, S.D. Discordant effects of licensed meningococcal serogroup B vaccination on invasive disease and nasal colonization in a humanized mouse model. J. Infect. Dis. 2017, 215, 1590–1598. [Google Scholar] [CrossRef] [Green Version]
- Jerse, A.E.; Cohen, M.S.; Drown, P.M.; Whicker, L.G.; Isbey, S.F.; Seifert, H.S.; Cannon, J.G. Multiple gonococcal opacity proteins are expressed during experimental urethral infection in the male. J. Exp. Med. 1994, 179, 911–920. [Google Scholar] [CrossRef]
- Mustapha, M.M.; Marsh, J.W.; Shutt, K.A.; Schlackman, J.; Ezeonwuka, C.; Farley, M.M.; Stephens, D.S.; Wang, X.; Van Tyne, D.; Harrison, L.H. Transmission dynamics and microevolution of Neisseria meningitidis during carriage and invasive disease in high school students in Georgia and Maryland, 2006–2007. J. Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Acevedo, R.; Bai, X.; Borrow, R.; Caugant, D.A.; Carlos, J.; Ceyhan, M.; Christensen, H.; Climent, Y.; De Wals, P.; Dinleyici, E.C.; et al. The Global Meningococcal Initiative meeting on prevention of meningococcal disease worldwide: Epidemiology, surveillance, hypervirulent strains, antibiotic resistance and high-risk populations. Expert Rev. Vaccines 2019, 18, 15–30. [Google Scholar] [CrossRef] [Green Version]
- Goldschneider, I.; Gotschlich, E.C.; Artenstein, M.S. Human immunity to the meningococcus. I. The role of humoral antibodies. J. Exp. Med. 1969, 129, 1307–1326. [Google Scholar] [CrossRef] [PubMed]
- McIntosh, E.D.G.; Bröker, M.; Wassil, J.; Welsch, J.A.; Borrow, R. Serum bactericidal antibody assays—The role of complement in infection and immunity. Vaccine 2015, 33, 4414–4421. [Google Scholar] [CrossRef] [PubMed]
- Goldschneider, I.; Gotschlich, E.C.; Artenstein, M.S. Human immunity to the meningococcus. II. Development of natural immunity. J. Exp. Med. 1969, 129, 1327–1348. [Google Scholar] [CrossRef]
- Miller, E.; Salisbury, D.; Ramsay, M. Planning, registration, and implementation of an immunisation campaign against meningococcal serogroup C disease in the UK: A success story. Vaccine 2001, 20, S58–S67. [Google Scholar] [CrossRef]
- Frasch, C.E.; Borrow, R.; Donnelly, J. Bactericidal antibody is the immunologic surrogate of protection against meningococcal disease. Vaccine 2009, 27, B112–B116. [Google Scholar] [CrossRef] [PubMed]
- Borrow, R.; Carlone, G.M.; Rosenstein, N.; Blake, M.; Feavers, I.; Martin, D.; Zollinger, W.; Robbins, J.; Aaberge, I.; Granoff, D.M.; et al. Neisseria meningitidis group B correlates of protection and assay standardization—International Meeting Report Emory University, Atlanta, Georgia, United States, 16–17 March 2005. Vaccine 2006, 24, 5093–5107. [Google Scholar] [CrossRef]
- Christensen, H.; May, M.; Bowen, L.; Hickman, M.; Trotter, C.L. Meningococcal carriage by age: A systematic review and meta-analysis. Lancet Infect. Dis. 2010, 10, 853–861. [Google Scholar] [CrossRef]
- Pollard, A.J.; Frasch, C. Development of natural immunity to Neisseria meningitidis. Vaccine 2001, 19, 1327–1346. [Google Scholar] [CrossRef]
- Robinson, K.; Neal, K.R.; Howard, C.; Stockton, J.; Atkinson, K.; Scarth, E.; Moran, J.; Robins, A.; Todd, I.; Kaczmarski, E.; et al. Characterization of humoral and cellular immune responses elicited by meningococcal carriage. Infect. Immun. 2002, 70, 1301–1309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horton, R.E.; Stuart, J.; Christensen, H.; Borrow, R.; Guthrie, T.; Davenport, V.; Finn, A.; The ALSPAC Study Team; Williams, N.A.; Heyderman, R.S. Influence of age and carriage status on salivary IgA to Neisseria meningitidis. Epidemiol. Infect. 2005, 133, 883–889. [Google Scholar] [CrossRef]
- Davenport, V.; Guthrie, T.; Findlow, J.; Borrow, R.; Williams, N.A.; Heyderman, R.S. Evidence for naturally acquired T cell-mediated mucosal immunity to Neisseria meningitidis. J. Immunol. 2003, 171, 4263–4270. [Google Scholar] [CrossRef] [PubMed]
- Vaughan, A.T.; Gorringe, A.; Davenport, V.; Williams, N.A.; Heyderman, R.S. Absence of Mucosal immunity in the human upper respiratory tract to the commensal bacteria Neisseria lactamica but not pathogenic Neisseria meningitidis during the peak age of nasopharyngeal carriage. J. Immunol. 2009, 182, 2231–2240. [Google Scholar] [CrossRef] [Green Version]
- Pelton, S.I. The global evolution of meningococcal epidemiology following the introduction of meningococcal vaccines. J. Adolesc. Health 2016, 59, S3–S11. [Google Scholar] [CrossRef] [Green Version]
- Astronomo, R.D.; Burton, D.R. Carbohydrate vaccines: Developing sweet solutions to sticky situations? Nat. Rev. Drug Discov. 2010, 9, 308–324. [Google Scholar] [CrossRef] [Green Version]
- Rappuoli, R.; De Gregorio, E.; Costantino, P. On the mechanisms of conjugate vaccines. Proc. Natl. Acad. Sci. USA 2019, 116, 14–16. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Stefanetti, G.; Berti, F.; Kasper, D.L. Polysaccharide structure dictates mechanism of adaptive immune response to glycoconjugate vaccines. Proc. Natl. Acad. Sci. USA 2019, 116, 193–198. [Google Scholar] [CrossRef] [Green Version]
- Bijlsma, M.W.; Brouwer, M.C.; Spanjaard, L.; van de Beek, D.; van der Ende, A. A decade of herd protection after introduction of meningococcal serogroup C conjugate vaccination. Clin. Infect. Dis. 2014, 59, 1216–1221. [Google Scholar] [CrossRef] [Green Version]
- Granoff, D.M. Relative importance of complement-mediated bactericidal and opsonic activity for protection against meningococcal disease. Vaccine 2009, 27, B117. [Google Scholar] [CrossRef] [Green Version]
- Plested, J.S.; Granoff, D.M. Vaccine-induced opsonophagocytic immunity to Neisseria meningitidis group B. Clin. Vaccine Immunol. 2008, 15, 799–804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roche, A.M.; Richard, A.L.; Rahkola, J.T.; Janoff, E.N.; Weiser, J.N. Antibody blocks acquisition of bacterial colonization through agglutination. Mucosal Immunol. 2015, 8, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Mitsi, E.; Roche, A.M.; Reiné, J.; Zangari, T.; Owugha, J.T.; Pennington, S.H.; Gritzfeld, J.F.; Wright, A.D.; Collins, A.M.; van Selm, S.; et al. Agglutination by anti-capsular polysaccharide antibody is associated with protection against experimental human pneumococcal carriage. Mucosal Immunol. 2017, 10, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Purmohamad, A.; Abasi, E.; Azimi, T.; Hosseini, S.; Safari, H.; Nasiri, M.J.; Imani Fooladi, A.A. Global estimate of Neisseria meningitidis serogroups proportion in invasive meningococcal disease: A systematic review and meta-analysis. Microb. Pathog. 2019, 134, 103571. [Google Scholar] [CrossRef] [PubMed]
- Piccini, G.; Torelli, A.; Gianchecchi, E.; Piccirella, S.; Montomoli, E. Fighting Neisseria meningitidis: Past and current vaccination strategies. Expert Rev. Vaccines 2016, 15, 1393–1407. [Google Scholar] [CrossRef]
- Vernikos, G.; Medini, D. Bexsero® chronicle. Pathog. Glob. Health 2014, 108, 305–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watson, P.S.; Turner, D.P.J. Clinical experience with the meningococcal B vaccine, Bexsero®: Prospects for reducing the burden of meningococcal serogroup B disease. Vaccine 2016, 34, 875–880. [Google Scholar] [CrossRef]
- Perez, J.L.; Absalon, J.; Beeslaar, J.; Balmer, P.; Jansen, K.U.; Jones, T.R.; Harris, S.; York, L.J.; Jiang, Q.; Radley, D.; et al. From research to licensure and beyond: Clinical development of MenB-FHbp, a broadly protective meningococcal B vaccine. Expert Rev. Vaccines 2018, 17, 461–477. [Google Scholar] [CrossRef]
- Pizza, M.; Scarlato, V.; Masignani, V.; Giuliani, M.M.; Aricò, B.; Comanducci, M.; Jennings, G.T.; Baldi, L.; Bartolini, E.; Capecchi, B.; et al. Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 2000, 287, 1816–1820. [Google Scholar] [CrossRef]
- Crum-Cianflone, N.; Sullivan, E. Meningococcal vaccinations. Infect. Dis. Ther. 2016, 5, 89–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donnelly, J.; Medini, D.; Boccadifuoco, G.; Biolchi, A.; Ward, J.; Frasch, C.; Moxon, E.R.; Stella, M.; Comanducci, M.; Bambini, S.; et al. Qualitative and quantitative assessment of meningococcal antigens to evaluate the potential strain coverage of protein-based vaccines. Proc. Natl. Acad. Sci. USA 2010, 107, 19490–19495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bettinger, J.A.; Scheifele, D.W.; Halperin, S.A.; Vaudry, W.; Findlow, J.; Borrow, R.; Medini, D.; Tsang, R. Diversity of Canadian meningococcal serogroup B isolates and estimated coverage by an investigational meningococcal serogroup B vaccine (4CMenB). Vaccine 2013, 32, 124–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frosi, G.; Biolchi, A.; Sapio, M.L.; Rigat, F.; Gilchrist, S.; Lucidarme, J.; Findlow, J.; Borrow, R.; Pizza, M.; Giuliani, M.M.; et al. Bactericidal antibody against a representative epidemiological meningococcal serogroup B panel confirms that MATS underestimates 4CMenB vaccine strain coverage. Vaccine 2013, 31, 4968–4974. [Google Scholar] [CrossRef] [Green Version]
- Biolchi, A.; Tomei, S.; Santini, L.; Welsch, J.A.; Toneatto, D.; Gaitatzis, N.; Bai, X.; Borrow, R.; Giuliani, M.M.; Mori, E.; et al. Evaluation of strain coverage of the multicomponent meningococcal serogroup B vaccine (4CMenB) administered in infants according to different immunisation schedules. Hum. Vaccines Immunother. 2019, 15, 725–731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Law, D.K.S.; Lefebvre, B.; Gilca, R.; Deng, S.; Zhou, J.; De Wals, P.; Tsang, R.S.W. Characterization of invasive Neisseria meningitidis strains from Québec, Canada, during a period of increased serogroup B disease, 2009-2013: Phenotyping and genotyping with special emphasis on the non-carbohydrate protein vaccine targets. BMC Microbiol. 2015, 15, 143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Read, R.C.; Dull, P.; Bai, X.; Nolan, K.; Findlow, J.; Bazaz, R.; Kleinschmidt, A.; McCarthy, M.; Wang, H.; Toneatto, D.; et al. A phase III observer-blind randomized, controlled study to evaluate the immune response and the correlation with nasopharyngeal carriage after immunization of university students with a quadrivalent meningococcal ACWY glycoconjugate or serogroup B meningo. Vaccine 2017, 35, 427–434. [Google Scholar] [CrossRef] [Green Version]
- Deceuninck, G.; Lefebvre, B.; Tsang, R.; Betala-Belinga, J.F.; De Serres, G.; De Wals, P. Impact of a mass vaccination campaign against Serogroup B meningococcal disease in the Saguenay-Lac-Saint-Jean region of Quebec four years after its launch. Vaccine 2019, 37, 4243–4245. [Google Scholar] [CrossRef]
- Marshall, H.S.; McMillan, M.; Koehler, A.P.; Lawrence, A.; Sullivan, T.R.; MacLennan, J.M.; Maiden, M.C.J.; Ladhani, S.N.; Ramsay, M.E.; Trotter, C.; et al. Meningococcal B vaccine and meningococcal carriage in adolescents in Australia. N. Engl. J. Med. 2020, 382, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Marshall, H.S.; McMillan, M.; Koehler, A.; Lawrence, A.; Maclennan, J.M.; Maiden, M.C.J.; Ramsay, M.; Ladhani, S.N.; Trotter, C.; Borrow, R.; et al. B Part of It protocol: A cluster randomised controlled trial to assess the impact of 4CMenB vaccine on pharyngeal carriage of Neisseria meningitidis in adolescents. BMJ Open 2018, 8, e020988. [Google Scholar] [CrossRef] [Green Version]
- Serruto, D.; Bottomley, M.J.; Ram, S.; Giuliani, M.M.; Rappuoli, R. The new multicomponent vaccine against meningococcal serogroup B, 4CMenB: Immunological, functional and structural characterization of the antigens. Vaccine 2012, 30, B87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madico, G.; Welsch, J.A.; Lewis, L.A.; McNaughton, A.; Perlman, D.H.; Costello, C.E.; Ngampasutadol, J.; Vogel, U.; Granoff, D.M.; Ram, S. The meningococcal vaccine candidate GNA1870 binds the complement regulatory protein factor H and enhances serum resistance. J. Immunol. 2006, 177, 501–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giuntini, S.; Reason, D.C.; Granoff, D.M. Complement-mediated bactericidal activity of anti-factor H binding protein monoclonal antibodies against the meningococcus relies upon blocking factor H binding. Infect. Immun. 2011, 79, 3751–3759. [Google Scholar] [CrossRef] [Green Version]
- Giuntini, S.; Reason, D.C.; Granoff, D.M. Combined roles of human IgG subclass, alternative complement pathway activation, and epitope density in the bactericidal activity of antibodies to meningococcal factor H binding protein. Infect. Immun. 2012, 80, 187–194. [Google Scholar] [CrossRef] [Green Version]
- Lujan, E.; Pajon, R.; Granoff, D.M. Impaired immunogenicity of meningococcal neisserial surface protein A in human complement factor H transgenic mice. Infect. Immun. 2015, 84, 452–458. [Google Scholar] [CrossRef] [Green Version]
- Beernink, P.T.; Shaughnessy, J.; Braga, E.M.; Liu, Q.; Rice, P.A.; Ram, S.; Granoff, D.M. A meningococcal factor H binding protein mutant that eliminates factor H binding enhances protective antibody responses to vaccination. J. Immunol. 2011, 186, 3606–3614. [Google Scholar] [CrossRef] [Green Version]
- Granoff, D.M.; Giuntini, S.; Gowans, F.A.; Lujan, E.; Sharkey, K.; Beernink, P.T. Enhanced protective antibody to a mutant meningococcal factor H-binding protein with low-factor H binding. JCI Insight 2016, 1, e88907. [Google Scholar] [CrossRef] [Green Version]
- Beernink, P.T.; Vianzon, V.; Lewis, L.A.; Moe, G.R.; Granoff, D.M. A meningococcal outer membrane vesicle vaccine with overexpressed mutant fHbp elicits higher protective antibody responses in infant rhesus macaques than a licensed serogroup B vaccine. mBio 2019, 10, e01231-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frandoloso, R.; Martinez-Martinez, S.; Calmettes, C.; Fegan, J.; Costa, E.; Curran, D.; Yu, R.H.; Gutierrez-Martin, C.B.; Rodriguez Ferri, E.F.; Moraes, T.F.; et al. Nonbinding site-directed mutants of transferrin binding protein B enhances their immunogenicity and protective capabilities. Infect. Immun. 2014. [Google Scholar] [CrossRef] [Green Version]
- Szatanik, M.; Hong, E.; Ruckly, C.; Ledroit, M.; Giorgini, D.; Jopek, K.; Nicola, M.A.; Deghmane, A.E.; Taha, M.K. Experimental meningococcal sepsis in congenic transgenic mice expressing human transferrin. PLoS ONE 2011, 6, e22210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eriksson, L.; Stenmark, B.; Deghmane, A.E.; Thulin Hedberg, S.; Sall, O.; Fredlund, H.; Molling, P.; Taha, M.K. Difference in virulence between Neisseria meningitidis serogroups W and Y in transgenic mice. BMC Microbiol. 2020, 20, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacLennan, J.; Kafatos, G.; Neal, K.; Andrews, N.; Cameron, J.C.; Roberts, R.; Evans, M.R.; Cann, K.; Baxter, D.N.; Maiden, M.C.J.; et al. Social behavior and meningococcal carriage in British teenagers. Emerg. Infect. Dis. 2006, 12, 950–957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woringer, M.; Martiny, N.; Porgho, S.; Bicaba, B.W.; Bar-Hen, A.; Mueller, J.E. Atmospheric dust, early cases, and localized meningitis epidemics in the african meningitis belt: An analysis using high spatial resolution data. Environ. Health Perspect. 2018, 126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Philippon, S.; Broutin, H.; Constantin de Magny, G.; Toure, K.; Diakite, C.H.; Fourquet, N.; Courel, M.F.; Sultan, B.; Guégan, J.F. Meningococcal meningitis in Mali: A long-term study of persistence and spread. Int. J. Infect. Dis. 2009, 13, 103–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alonso, J.-M.; Guiyoule, A.; Zarantonelli, M.L.; Ramisse, F.; Pires, R.; Antignac, A.; Deghmane, A.E.; Huerre, M.; van der Werf, S.; Taha, M.-K. A model of meningococcal bacteremia after respiratory superinfection in influenza A virus-infected mice. FEMS Microbiol. Lett. 2003, 222, 99–106. [Google Scholar] [CrossRef] [Green Version]
- Malley, R.; Trzcinski, K.; Srivastava, A.; Thompson, C.M.; Anderson, P.W.; Lipsitch, M. CD4+ T cells mediate antibody-independent acquired immunity to pneumococcal colonization. Proc. Natl. Acad. Sci. USA 2005, 102, 4848–4853. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.-J.; Gross, J.; Bogaert, D.; Finn, A.; Bagrade, L.; Zhang, Q.; Kolls, J.K.; Srivastava, A.; Lundgren, A.; Forte, S.; et al. Interleukin-17A mediates acquired immunity to pneumococcal colonization. PLoS Pathog. 2008, 4, e1000159. [Google Scholar] [CrossRef] [Green Version]
- Wilson, R.; Cohen, J.M.; Jose, R.J.; De Vogel, C.; Baxendale, H.; Brown, J.S. Protection against Streptococcus pneumoniae lung infection after nasopharyngeal colonization requires both humoral and cellular immune responses. Mucosal Immunol. 2015, 8, 627–639. [Google Scholar] [CrossRef] [Green Version]
- Ramos-Sevillano, E.; Ercoli, G.; Brown, J.S. Mechanisms of naturally acquired immunity to Streptococcus pneumoniae. Front. Immunol. 2019, 10, 358. [Google Scholar] [CrossRef] [Green Version]
- Wilk, M.M.; Borkner, L.; Misiak, A.; Curham, L.; Allen, A.C.; Mills, K.H.G. Immunization with whole cell but not acellular pertussis vaccines primes CD4 TRM cells that sustain protective immunity against nasal colonization with Bordetella pertussis. Emerg. Microbes Infect. 2019, 8, 169–185. [Google Scholar] [CrossRef] [Green Version]
- Chasaide, C.N.; Mills, K.H.G. Next-generation pertussis vaccines based on the induction of protective T cells in the rRespiratory tract. Vaccines 2020, 8, 621. [Google Scholar] [CrossRef] [PubMed]
- Solans, L.; Debrie, A.-S.; Borkner, L.; Aguiló, N.; Thiriard, A.; Coutte, L.; Uranga, S.; Trottein, F.; Martín, C.; Mills, K.H.G.; et al. IL-17-dependent SIgA-mediated protection against nasal Bordetella pertussis infection by live attenuated BPZE1 vaccine. Mucosal Immunol. 2018, 11, 1753–1762. [Google Scholar] [CrossRef]
- Malley, R.; Srivastava, A.; Lipsitch, M.; Thompson, C.M.; Watkins, C.; Tzianabos, A.; Anderson, P.W. Antibody-independent, interleukin-17A-mediated, cross-serotype immunity to pneumococci in mice immunized intranasally with the cell wall polysaccharide. Infect. Immun. 2006, 74, 2187–2195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Currie, E.G.; Gray-Owen, S.D. Exploring the Ability of Meningococcal Vaccines to Elicit Mucosal Immunity: Insights from Humans and Mice. Pathogens 2021, 10, 906. https://doi.org/10.3390/pathogens10070906
Currie EG, Gray-Owen SD. Exploring the Ability of Meningococcal Vaccines to Elicit Mucosal Immunity: Insights from Humans and Mice. Pathogens. 2021; 10(7):906. https://doi.org/10.3390/pathogens10070906
Chicago/Turabian StyleCurrie, Elissa G., and Scott D. Gray-Owen. 2021. "Exploring the Ability of Meningococcal Vaccines to Elicit Mucosal Immunity: Insights from Humans and Mice" Pathogens 10, no. 7: 906. https://doi.org/10.3390/pathogens10070906
APA StyleCurrie, E. G., & Gray-Owen, S. D. (2021). Exploring the Ability of Meningococcal Vaccines to Elicit Mucosal Immunity: Insights from Humans and Mice. Pathogens, 10(7), 906. https://doi.org/10.3390/pathogens10070906